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ON THE DIFFRACTION OF SOUND WAVE BY A WEDGE

ROMAN WYRZYKOWSKI, JAN K. SNAKOWSKI

Institute of Physics, WSP Rzeszéw (35-311 Rzeszow, ul. Rejtana 16a)

This paper presents calculations for plane wave diffraction by a right-
-angled wedge. Using the UFIMTSEV and OBERHETTINGER'S theoretical approach,
formulae are obtained for the diffracted field potential on the shaded wall of
the wedge in the form of a series of cylindrical functions and a real integral.
Some results of numerical caleulations are also presented.

1. Introduction

More and more attention has been paid recently to the problems in the
field of the applications of the theory of acoustic wave diffraction in the pro-
tection of the environment and of working posts. This field includes research
related to all kinds of acoustic protecting devices, investigation of intensity
decrease in rooms ete.

The present paper aims to discuss the following problem: to what extent
one wall of a wedge (e.g. the corner of a building) is affected by a sound wave
which propagates along the other wall (Fig. 1). The evident theoretical basis
is here the theory of wave diffraction by a wedge of which the present problem
is a special case.

Sinee it is impossible to find a compact solution of the problem of diffrac-
tion by a wedge, three theoretical approaches have been formulated to date:
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Fig. 1. A schematic diagram of the right-angled wedge of b
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1) of SOMMERFELD [8, 9] which can be briefly summarized by saying that
it uses the image source method and such a conformal transformation that
straightens the wedge to a plane. This leads to an integralin a complex plane,
which can be subsequently expanded into a series or calculated directly in a nu-
merical way;

2) of OBERHETTINGER [4] which consists in relevant integral transforma-
tions of the function representing the incident wave and the diffracted wave,
and subsequently in summing up of the two waves so that the boundary condi-
tions on the wedge are satisfied. In turn, there follows an expansion into a series
whose coefficients are found from these Boundary conditions. An advantage
of the OBERHETTINGER method is the interesting proposal of this author that
an imaginary frequency should be formally intrcduced, thus simplifying the
necessary mathematical operations and permitting a transition to pulses;

3) of UrmMTsEV [1] which proceeds in a direction different from those of
the other two in that it assumes the acoustic potential in the form of a series
and shows subsequently that it can be summed into a SOMMERFELD integral.

The initial part of the present paper is based on the UrmMrsEv theory,
or rather part of it, which is adapted here to the present purposes and the
mathematical part of which is developed later on.

2. Formulation ef the problem and its analytical solution

The starting point are general formulae for the acoustic field of a wave
diffracted by a wedge. The geometry of the wedge is shown in Fig. 2. It is possible
to take a system of the eylindrical coordinates (r, ¢, 2) in which the axis 2 is
perpendicular to the plane of the figure, the pole is placed at a point which is
the trace of the point of the wedge on the plane of the figure and the angle ¢ is
measured in a positive direction from the “upper” edge of the wedge. The source
of the wave is a “thread” that is a straight line with densely set points radiating
a cylindrical wave. Fig. 1 shows the trace of this straight line in the form of
the point @ with the coordinates 7, and ¢,. The desired field is sought at the
point P with the cocrdinates » and ¢. It is possible to begin with a formulation

Fig. 2.{Geometry of the problem of diffraction by a wedge
in general case
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of the general formulae and preceed subsequently to the limit r, —oco. This
transition does not have to give, as UFIMTSEV proposed in [1], an exact value
of the acoustic field potential for a plane wave, which can be certain only when'
diffraction by an object of finite dimensions is considered. In the case of an
infinite edge it is possible to obtain a solution which can be used at relatively
long distances from the edge of the wedge. It is interesting to add here that
other works of the present authors in progress show that the point source ficld
in space gives, in the case of the wedge, different expressions for the transition
#4—>oc0 but both expressions agree for r—0.

Bearing in mind the fact that a cylindrical model of plane wave is used here,
it is possible to proceed in the later part to the value a = ¢ = 3/2. It is also
possible to assume simultaneously the harmonic time dependence in the form
exp( — wt). In the present case the boundary condition is the assumption that
the walls of the wedge are perfectly rigid and therefore the acoustic pontentml
must satisfy the boundary conditions

oD ‘
-6——0 for ¢ =0 and ¢ = a. (2.1)
P

It is known [2, 5, 6] that a solution of the Helmholtz equation for the acous-
tic potential in a eylindrical system of coordinates can have the form of a sum
of terms, i.e. of the product of c¢ylindrical and trigonometric functions, where
the order of the cylindrical function must be equal to the coeficient for the
angle ¢ in the argument of the trigonometric function. The basic solution of the
Helmholtz equation should be the sum of components containing Hankel fune-
tions of the first kind (which is related to the assumption of the dependence
exp( —iwt)) and cosines. For r = 0, however, the Hankel function has a discon-
tinuity of the type of — oo and therefore only the real part, i.e. the Bessel func-
tion, can be assumed. It is convenient to break the solution into two intervals:
the Bessel function must occur for r < 7, and the Hankel function for r > r,.
In order to make the solution continuous for » = 7,, the first solution must be
multiplied by the Hankel function of r, and the other, by the Bessel function
of 7,. This gives the solution in the form of the following series

2 0y, (k) HY (k 7o) cosr,@pC087,0, 1< 7y,

D(r,9) = { " (2.2)
2 caJ,S(kr.,)H,(.;’(k T)COST,PoCO8T, @, 7> 7y,
8§=0
where
e T
fy o, (2.3)

and J, and HY) denote, respectively, Bessel and Hankel functions of the first
kind, of the order 7,. The choice of H‘" is, a8 was mentioned above, related to
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the choice of the time factor in the form exp ( —iwt) [2, 6]. It can be seen from
(2.2) and (2.3) that for ¢ = 0 and ¢ = a all the terms of the derivative é®/dp
become zero, thus satisfying the boundary condition (2.1).

The coefficients ¢, can now be calculated. This can be done applying the

identity
ff—ds_u' AGAV (2.4)

to a solid with its base limited by the contour L (Fig. 3) and the thickness dz. For
D=9 (r,9)
bl

B = faqsda (2.5)

Fig. 3. Integration contour in formula (2.5)

Transition to the limit r,—r, and r,—r, gives

0P oD
— rodp = | Addo. (2.6)
f( ar ruﬁﬂ) ! f

rg+0 6’)’ 8—0
In the case of a linear source in space, and in the present case, of the point
source @, the acoustic potential must satisfy the inhomogeneous Helmholtz
equation in the form [1, 5]

AD+12D — A '5("""“;"’—"’“’ , (2.7)

where A is a constant which can be normalized subsequently to the effective-
ness of the source; d( ) is a Dirae distribution which when multiplied by r pro-
vides the integration properties of this distribution in a cylindrical coordinate
system. In calculating 4 @ from equation (2.7), in order to substitute it on the
right side of (2.6), it should be borne in mind that for s—0 integration of the term
containing @ gives a result tending to zero and that an integral containing the
Dirac distribution é only remains. Thus, from equation (2.6)

f ( oo P
or

ro+0 or

B(rit,) d(p
)'rodep::Alim r=70 9P =9 s, (2.8)
ro=0 WA r
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Integration with respect to the variable r gives

Flgppie5

ro+0 = W
Since the size of the contour L is fully arbitrary, the identity of the inte-
grals in formula (2.9) involves the equality of the integrands and thus

oD oD A 5( ) (2.10)
— _— = — (g —@,)- d
o |p40 O A

-0 To
It is possible to substitute on the left side of formula (2.10) the correspon-
ding formula for @ with r < r, and r > r,, i.e. the first and second formulae
of (2.2). Because of their complex form it is best to consider a single component
of the sum first. Marking with a dash the integration with respect to the whole
parameter under a cylindrical function, this gives

A
) e == [ a(—gurdn. (29)
0

ro—0

MaJrs(kro)Hi?’(krﬂ) e kch;s(k "0)31(-2(""9) des

2%
= ke |, (), B ko) = ke, —— |, (212
s 8 nkr,
where W is a wronskian which for the functions J, (kr,) and H}.?(kro) has the
form.of (2.11) (ef. [7], p. 68). Formula (2.10) takes now the form

2 1 A
—— D €,008(7 o) co8(r,0) = — 6(p —@p). (2.12)
™y e To

Both sides of (2.12) can be divided by r,cos(r,¢) and integrated with respect
to ¢ in the interval from 0 to a. Since this interval must contain the value ¢,,
the right side becomes Ar;"'cos(r,¢,). On the left side, however, because of the
orthogonality of the system of the function cos(r,¢), integration of the particular
terms leads to their value of zero, except the term containing s = t % 0. Thus

2 -
% ¢, COB(7 @) f cos?(r,p)dp = Acos(rp,), (2.13)
0
i.e.
A=
¢ =—-. (2.14)
ia

Tt can be seen that the coefficient ¢, is constant for all ¢ # 0. For s = 0,
however, cos(r,p) = 1, i.e. it can be noted easily that integration of the left
side of (2.13) gives a result greater by a factor of two than before. It can thus be
written jointly,

Am

1a

Cs

=g, —, (2.16)
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where the symbol ¢, takes the values

1
s il
Y froe il (2.16)

1, &#0.

The formula for the potential becomes

Ax mﬂ
ZZ N o, () B (o) cos (rygo)cos (1, ), 7 < 7oy
8§=0
D(r,p) = (2.17)

An o
ZT N 6y, () B (k) cos (ry i) cos(r,7), 7> 7o,

§=0 .

Proceeding to the problem of a plane wave propagating along one of the
walls of the wedge (with the qualification given above), the transition r,—o0
must first be considered. The following asymptotic formula can then be used for

HD (kr,)[2, 7],

2 A o
Hﬁ?(k’ro) ‘= ]/ == eXP[ (k’ro e )] = H{V (kr,)exp ( —ts r,). (2.18)

‘What remains is only the acoustic field for r < r, and thus

o

; Ax LT

B(r,9) = 5 HO(kry) e, exp ( —z;rs)J,s(kr) [c087, (¢ o) 0087, (9 -+ o).
§=0

(2.19)
In the case of a cylindrical wave source in a free space, the potential at
a given point must be proportional to the function H{) (kr,) where r, is the dis-
tance of this point from the source. In the case when kr, > | and kr, > kr it
can be assumed that for an arbitrary value of r the distance PQ (Fig. 2), which
in reality is
{ PQ = (r*+r2 —2rr,cos gqy ----cp,,))”2 (2.20)
can be taken for r,. It can certainly be so assumed for a plane wave which cor-
responds to an infinitely great v&lue of r,. In general, the acoustic potential
can be given by

(r, 9) =F[u(h¢—%}+u(1’,¢+%)], (2.21)

where I is the amplitude of the free wave and the function « represents the
diffraction phenomena.
Approximately, for large values of kry, > kr, for a cylindrical wave

4 '
F = TH{,"(R 7o), (2.22)
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while for a plane wave from the direction of ¢,
D, = Aexp[ —ikrecos(p —qo) ] ~ (2.23)

and the acoustic potential of a diffracted wave can be represented in the form
of the product of the amplitude 4, and the function w, as in (2.21). In turn,
the function defining the diffraction phenomena is equal to (when y denotes
the value ¢ — @, OT @+ @)

= <]

T . T
u(r, p) = .z_a‘z';s,exp(—@?'rs) J, (K r)Ccos (7, 9p). (2.24)
8=
It should be stressed that for r—0 J, (kr) = 0, except for s = 0, since
J,4(0) = 1. Therefore in the limits (for an arbitrary value of ¢)

w(0, ) = —. ' (2.26)
4a

Formula (2.23) permits, if necessary, the constant 4, to be normalized
to the output of the source for a plane wave. This problem is not considered
here in view of the aim of the present paper, i.e. a calculation of a decrease in
the amplitude along the wall of the wedge. It is interesting to note, however,
that it is useless to check here whether the solution assumed satisfies the so-
-called edge condition since UFIMTSEV himself reduces the results of his theory
to 2 SOMMERFELD integral [8, 9] whose properties have been investigated in

this respect.

3. The case of a plane wave propagating along the wall of the edge — the potential in the form
of a series

Returning to the case of interest shown in Fig. 2 when the plane wave
propagates along one of the walls of the wedge, and the interest here is in the
acoustic field on the other wall, the following values occur in the formula.e in
section 2

@0 =0,
K A b
LE L

The index of the Bessel function under the sign of sum is now

T B ALk
=g— =—g. (3.2)

. Since for the values of the angles assumed

@ —Po = P+ Poy (3.3)
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the difference ¢ — g, or the sum ¢ -+ ¢,, symbolically represented by v, can in the
present case be reduced to one value
37

Ef’—“—?’:a:-ﬁ": (3.4)

i.e. the factor 2 occurs in the formula for @. Thus

24,
B(r) = —

(-—1)"saexp(—'igs) Tyers (). . (3.5)

8=0

This gives @(r) in the form of a rapidly convergent series of Bessel functions.

Before making numerical calculations and drawing conclusions from the
theory given here, it is useful to present a completely different approach to the
same problem, which leads to an integral form of the expression for the poten-
tial @.

4. Integral expression for the potential

In order to reduce equation (2.24) to an integral form, it is possible to use
the purely formal transition to an imaginary wave number, proposed by OBER-
HETTINGER [4], in the form

k =iy, (4.1)

and thus passing to the so-called modified Bessel functions. On the basis of the
known relation for these functions ([3], 6.406),

1,(2) = exp ( —v%'i) d, (zex:p (g i)), (4.2)
it is possible to rewrite formula (2.24) in the form
1
u(r, p) = ;az;sslra(w)cos(r,.w- (43)
g=

In accordance with the aim of the present paper, it is possible to assume the
boundary case kry— oo, i.e. formula (2.22) and that ¢, = 0, and retaining still
the arbitrary value of the amgle, it is possible to write

oo

D(r, g) = ; 2 6,1, (y)cos (87" ¢) . (4.4)

8=0

An integral representation of the modified Bessel function I,,(2) ([3], 6.443)
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can now be used,

oo

fexp{—zchw)exp(—pm)dm. (4.5)

0

I,(2) = -lgfexp(zcosm)cos (px)de — Sm(f: )

Inserting expression (4.5) into (4.4), two modifications of this formula
can be performed simultaneously : the order of summation and integration can
be changed and summation can be performed up to an arbitrary finite N and
then from N to infinity. This gives

kL N

a®(r, p) =lim | exp(yrcosa) {Z £,CO8 (—?— m) €08 (S% (p)} dw -+

oy 5=0

_f exp ( —yr ¢h x) {2 s,cos(%tq:) sin(%ra)exp(—s%w)}dm =
0 0

8=
oo

- Iimf exp(yreosx)s,(x, cp)dm—f exp( —yrchz)s,(z, p)dz.  (4.6)
0 0

The sums s, and s, in formula (4.6) can now be calculated. The first caleu-
lation, using elementary trigonometric formulae, gives the sum §, in the form

N
8 = Z & [cos o sl +cos Sﬂ(m_¢)]. (4.7)

a a

8=0

The two sums on the right side of formula (4.7) can be gathered by means
of a known formula ([3], 1.341.2), giving

T < T
sin(~—— (2N+1)(.’v+tp)) sm(— (2N+1)(m——(p))
1 2a 2a
8 =— . + = . (4.8)
sin (ﬁ (w-i-tp)) sin (Ea—(w——cp))

The components of the first expression tend in the limits for N—oo to
the Dirac distribution ¢ if the argument #+¢ and # —¢ [5]. It can be noted that
when ¢ > =, the first of the integrals in (4.6) disappears, since the two values
fall outside the integration interval.

In turn, the second sum in (4.6) can be transformed into the form

,, =Zs.exp(_s.;m)[smm+smw_—w a
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Using a relevant formula ([3], 1.461), it is possible to write that

; sin (% (n+<p)) sin (% (ww))
A + (4.10)
' T T ™
ch — x —cos (— (n-—i—qo)) ¢h — x —cos (— (w-q}))
a a a a

The form of the sum can now be determined for the case of interest when
@ =a= %‘r:. Substitution and calculation of the values of the relevant trigono-
metric functions give
G 1
2 2 -

R i
N33

82 = (4.11)

Substitution of this result into (4.6) and consideration that the first inte-
gral disappears lead to

o]

@(r,in)— = f SEL ) (4.12)
2 1/31':0 chi o1
R

. It is necessary to return now to the real value of the wave number k, as-
suming in formula (4.12) that y = — ik (ef. (4.1)). This gives the final formula
which expresses in integral form the acoustic potential along the wall of the
edge | i

=]

1 i oh
@(r,%w)= - femé”clw)dm. (4.13)
Y l/3ﬂ0 thm'—"'—'

The integral obtained on the real semi-axis is a rapidly converging one and,
in addition to (3.5), can be used to caleulate the diffracted field of a plane wave
on the wall of the wedge.

5. Conclusions

On the basis of the final formula (4.13), which gives in integral form the
expression for the acoustic potential of a plane wave diffracted by a right-angled
wedge, numerical calculations were made of the squared value of the modulus
of the sound pressure on the wall of the wedge. The following formula which
i8 valid in the case of a harmonic time dependence was used

[Pl = ew|?|. _ (5.1)
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The results of the numerical calculations are given in Figs. 4 and 5. Fig. 4
shows, in dB, a decrease in the sound pressure on the wedge as a function of
the relative distance kr = 2= r/A (lower curve) and, for comparison, for a spheri-
cal wave (dashed curve). Since the source of a spherical wave, placed on the
edge of the wedge, would have to show there an infinite value of the sound
pressure, therefore in this case its value at a point where kr =l was assumed

0 T T T =7 T T T T T

squared sound pressure [dB]

Fig. 4. Drop of the level of the squared modulus of sound pressure along the shaded wall of
the right-angled wedge as a function of the normalized distance from the edge (solid line),
compared with the curve characteristic of a spherical wave (daghed line)

S

o

[=;]

sound level drop per double distance [dB]

0 1 I L 1 1 1 L 1 1
0 20 40 60 80 100

k,

r

Fig. 5. Drop in the level of the squared modulus of sound pressure along the shaded wall of
the right-angled wedge per double distance (solid line), compared with the value characteris-
tic of a spherical wave (dashed line)
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as the reference point. Fig. 5 shows a drop in the sound pressure per double
distance as a function of a double distance.

It can be seen in the two diagrams that the sound Pbressure on the wedge
decreases initially at a much faster rate than that for a spherical wave and
subsequently stabilizes on the level characteristic for a spherical wave.
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