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The present work analyzes surface wave propagation of the Rayleigh
type in a monoclinic system. The problem was considered for a TGS crystal.
Surface wave propagation was examined in the following planes: (010) in the
¢100>, <001)> directions and in some chosen directions forming angles 20°, 40°,
60°, 130°, 150°, 170°, 180° corresponding to the (100} direction, (100) in {010},
<001> directions, and (001) in {100} and <010> directions. The above analysis
was made using an electronic computation technique. As a result of our calcu-
lations we have found that surface waves cannot propagate along (100> and
<001> direetions in the planes (001) and (100) respectively. These directions are
perpendicular to the axes of symmetry and they do not lie in the (010) plane.

1. Introduction

Surface wave propagation of the Rayleigh type has been considered by
a number of authors. However, most of these authors considered surface wave
propagation only in crystals with regular, tetragonal, trygonal or hexagonal
symmetry. Very few papers deal with the monoclinic system. Numerous papers
consider the problem of the existence of forbidden directions for surface wave
propagation in the corresponding crystals. Thus, for example, STONLEY [1]
discovered several directions forbidden for the plane (001) in cubic erystals.
However, his considerations took into account only exponential terms of
damping. GAz1s [2] calculated the velocities of surface wave propagation for a free
surface in the (001) plane of many cubie erystals. Moreover, he proved that for
aluminium and copper, surface waves do not exist in the range of {110) direc-
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tions. BUCHWALD and DAvVIs [3] show that surface waves in anisotropiec media
are possible only if the free plane is a symmetry plane of the crystal. In a medium
with cubic symmetry surface wave propagation is possible only in the planes
(001) and (100). Their calculations show the ranges of a forbidden direction:
<100} in the (001) plane of aluminium, iron and lead. In their paper [4] other
authors prove that in all cubic crystals surface waves cannot propagate in the
(001) plane. The criterion given (necessary but not sufficient) for surface
wave propagation has the following form: ¢;; (63, —€44) > (€15 Cya)?.

Computations of a similar nature for LiF and Cu have been published by
TursoNoV [5], who showed that the direction <110} in the (001) plane is forbid-
den for surface wave propagation. The author presents the results of numerical
computations for LiF, for a propagation direction forming an angle of 15°
with the axis, #,, of the coordinate system. ; -

The problem of the existence of the forbidden directions for regular systems
has mainly been considered. Our aim was to investigate this problem in a erys-
tal with a monoclinic structure. It was performed for a TGS crystal.

2. Caleculation procedure

The general surface wave problem is formulated by assuming that the equa-
tion of motion is given by
Fuy > &y, "
d B s R (1)

where g is the density of the material, u, are the particle displacements and Cija 18
the the elastic stiffness tensor.
For example the solution of equation (1) for the (010) plane is as follows

3
w, = 2 O o exp [k (1, @, + Ly, + U0 2y — 1) ], 2)
nfl
where q; is the amplitude of the wave, depending on polarization, exp (ikl{"a,)
is the factor assuring the properties of a surface wave, I, is the parameter which
characterizes the wave decaying into the depth of the solid, and exp [ik (1, z, +
+ 1,2, —vt)]is the change of amplitude in time and space, a8 it is in case of bulk
wave.
Substituting equation (2) into (1) the relation between a and % is obtained.
Using the stress - free boundary conditions on «, = 0,

ou .
O3 = cajkl’a_mf =0 (j,%,71=1,2,3), (3)

the parameters a,, a,, ay, the velocity of surface wave, and also the vector com-
ponents of the particle displacements were obtained.
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In this work an analysis of surface wave propagation for the TGS crystal
in the three following planes has been made: (010), (100) and (001). In the plane
(010), the propagation of the surface wave was analyzed along the (100 and
{001) directions and in the directions which form angles of 20°, 40° 60°, 120°,150°,
170°, 180° with the ¢100) direction. In both remaining cases our calculations
were made in the (001) plane in the {100), <001 directions and in the (100) plane
along the (010>, {001) directions.

The coordinate system assumed for surface waves is presented in Fig. 1,
where a, b, ¢ are the crystallographic axes of the TGS monocrystal, @y, s, 23
are the axes of an orthogonal system with respect to which surface wave propa-
gation has been considered. The above calculations were made by applying
an electronic computation technique using an ODRA 1305 computer. The
values of the velocity as a parameter were changed with a step of +0.4m/s.

xlle

105940¢
y

x, |6

Fig. 1. Coordinate system for surface wave propaga- x,
tion in TGS crystal g

3. Calculation results

Table 1 presents the values obtained for the surface wave propagation
velocity, the roots of the characteristic equation, the normalized values of the
eigenvector, and the values of the boundary condition determinant for the
surface wave propagation directions considered in the present work. Fig. 2
presents, as example, the magnitude of the boundary condition determinant of
surface propagation velocity in the (010) plane along the (100} direction. Fig. 3
shows the dependence of the surface wave propagation velocity on the
direction in the (010) plane.

Moreover, the components of the particle displacement along the directions.
determined by the axes of the coordinate system have been calculated. These
components in the (010) plane in the {100) direction are as follows:

u, = 0;[0.0782 exp(0.127 kx,) —0.429 exp(1.0035 kax,) —
—0.0166 exp (0.0308 kx,)]sink(x, —ot),  (4a)
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Fig. 2. Magnitude of boundary - condition determinant vs surface wave velocity for propa-
' gation in the (010) plane along the <100> direction
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Fig. 3. Dependence surface wave velocity on the direction for the (010) plane
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u, = €,[1.003exp (0.127 kx,) —0.165 exp (1.003 ka,) —0.13 exp(0.0308 kx,)] %
' Xeosk(x,—uot), (4b)

uy = (0,[0.0308 exp(O 1276 kx,) +0.0234 exp(l 003 fwy) —0.123 exp (0.031 kay)] x
xXsink(z, —vt). (4¢)

Since there are three components of particle displacement not equal to
zero, and displaced in phase correspondingly, we may conclude that the motion
of the particles is elliptical. The ellipse lies in a plane perpendicular to a free
surface and forms an angle ¢ = 11.9° with the wave vector direction. The value
of this angle, determined by tan-! ug,/u,,, i equal to zero (43 = 0), at a depth
equal to 0.5 wavelengths. Then the ellipse lies in the plane containing the wave
vector. The ratio of the elliptical axes lengths is equal to 1.6 on a free surface.

' The change in the displacement eomponents as a function of depth is
presented in Fig. 4

A considerable penetration of the u, component 4 wavelengths beneath
the surface may be noted. For the direction <{001) in the plane (010) where,
except for one imaginary root, there are two complex roots, the amplitude
change with depth has the character of a sinusoid decaying exponentially. This
change is shown in Fig. 5. The amplitude of the particle displacement compo-
nents decays at a depth of 3 wavelengths beneath the surface. The displacement
components for these directions are the following:

Uy = C1{—1.005exp (1.049 kx,) + exp(0.203 ka,) [2.27 cos(0.6539 kz,) —
—1. 024511:1(0 659 kx,)]}cosk(ws —ot), (ba)

ty = Cy{—0. 212exp(1 049 Jey) -+ exp (0.203 Fay) [2.187 05 (0.659 Jeay) +
+4.535in(0.659 ka,)]} sink(z; —vt),  (5b)

ug = €,{0.1853 exp (1.049 Te,) + exp (0.203 kwy) [3.811 €08 (0.659 k) —
—2.68458in(0.659 kx,) ]} cos ki ( $3—'vt) (5e)

The movement of partwles in this case is elliptical, as for the <100> direction.
The plane of this ellipse forms an angle of 17° with the wave vector direction and
is perpendicular to the wave propagation plane. The value of this angle changes
with depth. For the remaining considered directions, surface wave propagation
in the (010) plane, and for the plane (001) in the {010) direction, and the {010)
direction in the (100) plane, the equations determining the displacement compo-
nents have the same character as for the above directions.

4. Conclusions

In the case of surface wave propagation along the {100) direction in the
(001) plane and <001) in the (100> plane the characteristic equation is divided
into two equations of the second order and of the fourth order. Analyzing the
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second order equation and assuming stress-free surface boundary conditions,
it has been proved that only a transverse bulk wave can propagate in the (100>
direction in the (001) plane. This wave propagates at an angle of tan™' 1} = 1.6°
to the free surface. The velocity which corresponds to the wave is equal to
V =1919.9 m/s. The calculated displacement components of the particles in
this wave are as follows

Uy = g =0, wy = Cexp[ik(0.027 x5+, —0t)]. (6)

While solving the equation of fourth order roots with the imaginary part
not equal to zero have not been found. It is known that only these roots cor-
respond to a surface wave which would simultaneously satisfy the boundary
conditions. The boundary conditions were satisfied only in the range of real roots.
Therefore, it may be assumed that only transverse bulk waves can propagate
in the direction considered. This wave propagates at an angle equal to 10.6° to
the free surface with a velocity ¥V = 2038 m/s.

Similar results for the {001 direction in the (100) plane have also been
obtained. Thus, in the case of the TGS ecrystal considered the {100} direction
in the (001) plane, and {001) in the plane (100) are forbidden for surface wave
propagation.
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