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DETECTABILITY OF BLOOD VESSELS BY MEANS OF THE ULTRASONIC ECHOQ METHOD
USING A FOCUSED ULTRASONIC BEAM
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Department of Ultrasound, Institute of Fundamental Technological Research, Polish
Academy of Sciences
(00-049 Warszawa, ul. Swietokrzyska 21)

The detectability of a small, hypothetical cylinder-shaped blood vessel
with a diameter of 0.1 mm has been considered analytically using the ultrasonic
echo method. Soft tissues surrounding the vessel have been taken as homoge-
neous and not causing reflections of ultrasonic waves. They have been ascribed
both with bulk and shear elasticity. A beam of longitudinal ultrasonic waves
incident on the vessel has been taken in the form of a focused beam at the focus
of which the blood vessel has been placed. It has been assumed that the reflection
of ultrasonic waves from the blood vessel is caused by the difference between the
velocity of waves in the tissue surrounding the vessel and that in blood.

Assuming a frequency of ultrasonic waves of 2.6 MHz, a diameter of the
transmit-receive piezoelectric transducer of 2 cm, a focal length of this transducer
of 10 or 8 cm, voltage of the transmitter of 250 V and sensitivity of the receiver
of 10-°V, the conditions of detectability have been determined.

It has been shown that the signal of an echo from the blood vessel assumed
is potentially detectable. Its magnitude depends critically on the distance betwe-
en the vessel and the surface of the body, resulting from the attenuation of waves
in tissues penetrated.

1. Introduction

In an earlier paper [3], devoted to the detectability of blood vessels, the
present author assumed that the ultrasonic beam incident on the blood yessel
is parallel. The present considerations deal with a focused ultrasonic beam
which is used in most modern diagnostic apparatus.

Another change in the assumptions made for the present problem is the
taking of a more exact and more complex model of soft tissue in which ultraso-
nic waves propagate. The present author assumes that this tissue exhibits not
only bulk elasticity but also shear elasticity. In the previous work [3] only the
bulk elasticity of tissue was assumed.
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The problem of parameters characterizing the shear elasticity of soft tis-
sues, however, remains. One of the sources of information on this subject is
the paper of FrizZELL and others [6], who measured the characteristic impedance
of these tissues for transverse waves and determined on this basis the order of
the velocity and absorption of transverse waves in tissues of this type. The pre-
sent author used these data in obtaining the quantitative results of the analyti-
cal expressions derived.

Notation
A, A, — vector potential of displacement
A; — attenuation loss
a - — radius of blood vessel
ap — radius of plezoelectnc transducer
By — constant
b — wave number for blood dipole moment
] — velocity. of longitudinal wave in tissue
¢y — velocity of transverse wave in tissue’
cp o veloclty of longltudmal wave in blood

Oy, Oy, — constants
Dy, D, — constants

b 4 — focal length

HYD — Hankel function of second kmd

h ' — wave number of transverse wave in tissue

Iy — Bessel function '

j s hand :

k — wave number of longltudmal wave in tlssue

M — mass

m — natural number

Ny — Neuman functmn _

N, —. power of wave incident on tra.nsducer

N; — power of wave radiated by transducer

Qo — volume velocity of source

P — acoustic pressure

R — reflection loss

r — distance from transducer, ceordinate of polar system
8 — area

8 [+ — current radius on transducer surface

I — ftransducing loss

t y T _time : ’

u, u, — displacement vector, its radial component

g, Uy, Ug, U; — vibration velocity of sources (instantaneous values and amplitudes)
®, 4,  — vector of acoustic velocity, its radial component
w — vibration velocity of transducer surface

x — argument of eylindrical functions

4 — axis of blood vessel

Y — coordinate on ¥ axis

Zm — cylindrical function
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am(J), ap (H) — auxiliary constants
Bm . — auxiliary constant
¥m  — auxiliary constant
,,,(J), 8 (H) — auxiliary constants
— radius tending to zero
~ displacement potential in bleod
— azimuth
wavelength in tissue
— Lame constant in tissue
— Lame constant in blood
— Lame constant in tissue
density of tissue
density of blood
— normal stresses
— displacement potential in tissue
velocity potential in tissue
— angle
— angular velocity
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2. Ausumptionﬁ of analysin

It can be assumed that a cylinder- shaped vessel with the radius ¢ = 0.1 mm
-is placed in the focus of an ultrasonic beam generated by a bowl-shaped focusing
plezoelectrm transducer (Flg 1) The dmmeter of the transducer is 2.-2 . om

\3

Fig. 1. A scattered reflection of ﬁitra,sonic waves from a small blood vessel

T — transmitter, B — receiver, P — ultrasonic probe with piezoelectric transducer, v — small blood vessel, 7 —
incident wave, @, — reﬂected wave, ST — soft tissue, f — focal length of the tra.nsducer

and its focal length is f = 10 ¢m. An ultrasonic wave of a frequency of 9.6 MHz
“{wavelength 4 = 0.63 mm) is incident on the blood vessel, perpendlcularly to
its axis. The soft tissue surrounding the vessel and the walls of the vessel are assu-
med to be homogeneous and to have the same characteristic acoustic impedance.
In this case it can be assumed that the reflection of the ultrasonic wave from the
blood vessel is caused only by a difference between the velocity of the wave in
the tissue surrounding the vessel and that in blood. The densities of the tissue
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and blood are assumed to be the same. The velocity of longitudinal ultrasonic
waves in muscle tissue is assumed to be ¢ = 1.63 km /s (uterus muscle), while that
in blood is taken as ¢, = 1.57 km/s [7].

The velocity of transverse waves in musecle tissue is known only in terms of
the order of magnitude. FRIZELL and others [6] determined the velocity range
of these waves to be 9-100 m /s; it is then possible to assume for calculations the
velocity of transverse waves ¢; = 60 m/s which falls within the range mentio-
ned above.

This problem will be analyzed for steady state, as in the previous paper [3].

3. Ultrasonic field radiated by the transducer

The velocity potential of waves radiated by a plane transducer vibrating
with the velocity w can be determined from the integral expression given by
RAYLEIGH [10]

g == [0SR g (1)

2n r
8

where 8 is the vibrating area, k¥ = 2n /A and r is the distance from the transducer.
Expression (1) can be regarded as a quantitative representation of the Huygens
principle, The acoustic velocity v, the velocity potential ¢ and the acoustic pres-
sure p are connected by the relations

v = —gradg, ()
O
A% eprs (3)

Expression (1) is satisfied exactly only for plane vibrating surfaces; it can
also be used, however, in the case of weakly focusing transducers [9] when the
following conditions are satisfied,

0y <f, (4)
a, > 4, (5)

where a, is the radius of the transducer and f is its focal length.

From expressions (1) and (3) it is possible to determine the acoustic pressure
at a point of the field P (Fig. 2) lying on the ¥ axis of the blood vessel. Let us
consider the surface vibrating element d8 at the point @ on the surface of the
piezoelectric transducer. The distance r = QP can be expressed in the following
way (s <),

y*—2sycosy \'* Y2 — 28y cos
”=f(1+Tw) Nf(l-l-T; (6)




DETECTABILITY OF BLOOD VESSELS 257

where ¥ = GP, s is the distance between the point @ and the X axis and y is
the angle between the Y axis and the plane 0’ @@G. The error resulting from
simplification (6) is equal to [5]

dr = (42 —2 sy cosy)® (7

st

and in the worst case (for 8 = a, and cosyp = —1) it is smaller by a factor of
about 60 than the wavelength. The distance  in the denominator of expression (1)

Fig. 2. The coordinate system used in the analysis
T — plezoelectric transducer, ¥ — blood vessel, P — a point of the field under consideration, @ — foous

can be replaced with f. This causes only a slight change in the amplitude of
elementary waves reaching the point P under consideration from the surface
of the transducer. Consideration of expressions (1), (3) and (6) gives the value
of acoustic pressure

Bl fecos B 5 o

Application of the known properties of Bessel functions

kg

1
Jo(@) = — [ exp(jocosy)dp, 9)
0

[ ad (@) jdw = ad\(w), (10)
J,(0) =0, (11)
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yields, from expression (8), the following acoustic pressure distribution in the
focal plane of the transducer, along the Y axis,

jkooway, { [ ( )]} 2J \(ka,y [f)
' STXLLSE oy wt—k T —. 12
of AT || T -
This distribution is shown in Flg. 3 for the system assumed here.
AbF - o
1 / ‘
oo /
a5

0 T SN 5 -\i/? 8 9 10~ ymm
Fig. 3. The acoustic pressure distribution in the focal plane of the transducer along the ¥

~ axis determined from formula (12)
A — amplitude, F — phase ((f = 100 mm, ap = 10 mm, 4 = 0.63 mni)

4. Reflection of the plane wave from the blood vessel

an il of Bau cand S nilbos sdT .8

In the vertical plane perpendicular to the Y axis (Fig. 2), in the vicinity
of the vessel, the field radiated by the transducer can be considered plane locally,
.in view of the geometry of the problem (f > a, > A). The case is different in
‘the. horlzontal plane 0’ GP. The ultrasonic. Wavelength is, however, shorter by
one order of magnitude. than the width of the ultrasonic beam in the plane of
the focus (F1g 3). In view of this, it cah be assumed with some ‘approximation
that the reflection of an ultrasonic wave in each cross-section of the vessel will
be independent of the adjacent cross-sections: As a eonsequence, the partial
‘contributions, obtained independently for the reflection of the wave in each
plane section of the vessel, can be gathered, giving the solution of the problem
of reflection which: takes into account the distribution of the wave incident
along the Y axis. ' e

Analysis can be carried out in a plane system of polar coordinates where r
is the radius and 0 is the azimuth. The axis of the coordinate system is coaxial
with the axis of the blood vessel. The present analysis will consider both the
bulk and shear clasticity of the soft tissue.in which the wave radiated by the
transducer propagates. In view of this, it is moré covenient to replace the velo-
(¢ity potential (employed in acoustics) with scalar and vector displacement po-
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tentials (used in elasticity theory). Thus @ denotes here the scalar potential of
the displacement vector u, A the vector potential of the displacement vector.
The following relation then occurs,

u = grad®+rot A. (13)

It should be noted that in the case of the scalar displacement potential,
relations (2) and (3) take other form, i.e. ;

o |

> Neelond el (13a)
0

v = —grach. (13b)

at

The plane long1tuchnal wave incident on the blood vessel can be presented
as a series of cylindrical waves in the form [8]

D, —@M[Jo(kr)+22 ™ m(kr)cosmﬂ]exp(gwt), (18

where @,, is the amplitude of the potential; Jy and Jm are Bessel functions of
the order 0 and m, respectively (m being a natural number). When falling onto
the blood vessel, this wave is partly reflected and partly penetrates into the
vessel.

Two waves, a longitudinal one described by the scalar potenma.l @ and a tran-
gverse one described by the vector potential A, reflect from the vessel. The
transverse reflected wave will have two. cqmponents of the displacement vector,
u, and u, and therefore, according to (13), only one component of the vector
potentlal A, different from zero will oceur. The two reflected waves can be repre-
sented in the form of a series of cylindrical waves, i.e.

@, = 3D, H (kr)cos (mb) exp (jot) (15)
A, = Zomﬂg>(hr)sm(me)exp(jwt), (16)

where h = w/¢; is the wave number for the transverse wave and H) is a Hankel
function of the 2nd kind.

The-function cos 6 occurs in formula (15) since the longitudinal reflected
wave is symmetrical with respect to the incidence direction of the wave (6 =
= 180°), whereas sin 6 occurs in formula (16), since the transverse wave is anti-
symmetrical. This results from the geometry of the problem.

"' Only the longitudinal wave peneétrates into the blood vessel. This wave
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can be assumed in the form
n = Y Byud,,(br)cos(mb)exp(jot), (17)
0

where 7 is the scalar displacement potential; b = w/e, ¢, i8 the velocity of
the wave in blood.

The constants D,,, C,, and B,, in relations (15)-(17) can be determined from
three boundary conditions which must be satisfied on the boundary of the
vessel r = a.

The first condition is the equality of the normal stresses o,, in tissue and
the acoustic pressure p in blood on the boundary of the vessel. It takes the form

ou,

0,y = Adivu+2u - -2, (18)

where A and p are Lame constants.

The minus sign on the right side of condition (18) results from the fact that
in mechanics tensile stresses are regarded as positive, while in acoustics the
corresponding pressures are considered to be negative.

Consideration of (13) in (18); of the formulae

divrot =0, (19a})
div grad = V?; (19b)
of the wave equations which are satisfied by the displacement potentials
V2P 4+ k2P = 0, (20a)
V2A,+h%4, =0, (20b)
Vi +b'np =0, (20c)
where
o2 el
k= p _l/z+2,u F (21a)
L Rupor)
h—q—Vy, (21b)

(0] gbm2
yaauil ol
> -y, o

(e, being the density of blood, 4, a Lame constant in blood), and also of the rela-
tion between the sound pressure p and the displacement potential

a*n
p=—ost, (22)
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gives the boundary ¢ ndition (18) for r = @, in the form

2
@(%——1)+——-(D"+ (~— ) =—-—13 (23)

In order to simplify notation the index z was dropped in the component
of the vector potential A,. The dash in the potentials denotes differentiation
with respect to r, while the index 6 denotes differentiation with respect to 6.

The second boundary condition involves the disappearance of the tangential
stresses on the boundary of the vessel (r = a). This condition has the form [2]

2 2 b | 1
— Qp——Py— A"+ — A"} —
r ra r

= Ay = 0. (24)

The third boundary condition requires the equality of the normal displa-
cements on the boundary of the vessel (r = a). Consideration of (13) gives

1
O+~ Ay =1 (25)

Ingertion into the above conditions of the sum @ = @, &, whose compo-
nents are expressed by expressions (14) and (15) and supstitution of potentials
(16) and (17) give the possibility of determining the constants D,, and C,, of
interest here which describe the waves reflected from the blood vessel. In view
of the orthogonality of the sine and cosine functions, these constants can be
determined independently, successively for each m [8]. In calculating the deri-
vatives of eylindrical functions it is possible to use the formulae

az,, (kr)

2 = k[ 2 ()~ Zpa ()], (26)

a2z, (kr) _ k”{ m(m—1)

1
= S 1] Zp (k1) + —— Ty (kr)}. 27

Thus, for m =0

’" 2k2 ’ Qb ’
FJ (For)e o (br) — ( T —l)Ju(k'r)Jo(br)——Jo(ki")Jo(b’r)
_Du =

oK Dy (28)
HE () (——1).1 (br)—l—  HY () (o) + 2 % B (k) T, (br)

while the constant C, is equal to zero.
For m > 1, however, the following expression can be obtained,

oo g IR B AU, ) L
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where

() = 2| = L], (30a)
an (B = 22 | an - w2, ~(300)
. 2m H(”(hr) 0 HY (hr) ”
.ﬁm Y _r—] +T?J w (br )m, 7 (30c)
o = | B8 o) = B )= 20 (300)
a0 = (B2 )i+ Sy L a,en 2200 s
g i st o canditon g rosalts R :
0, (H) = ( T —l)HSn’(kr)-l—?H(m’ (kr)+?Jm(br)W, (301)

and r = a.

‘The constant (5% Whlch occurs in expression (16) describing the transverse
reflected waves can be determined from the second boundary condition (24).
The following relation can then be obtained

Z i — 2 Ttk D[ 2 B b — 2B )|

0 -
mn 2
2y e _™ e
7 HY (hr) — HEY (hr) — — HE) (hr)

r=a.

For the wave velocities in soft tissue and blood assumed above, the following
wave numbers can be obtained: & = 10 mm~!, h = 250 mm~-! and b =
= 10.4 mm~1, When inserted into relations (30), (31) and (32), these wave num-
bers permit the determination of the constants D,, and C,, which are shown in
Table I.

It follows therefore that the constants D, and accordingly the magnitudes
of the longitudinal reflected waves, decrease rapidly with increasing the wave
order m, whereas the constants C,, corresponding to the transverse waves show
an oscillatory character, which is understandable in view of the large value of
the argument ha = 25. ;

However, in view of very large attenuation, transverse waves exist only in
the closest vicinity of the blood vessel. It follows from the measurements of
Frizern and others [6] that the attenuation of these waves in soft tissues falls
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within thé range (2-30)-10% em-1. Accordingly, the further analysis aimed at
the determination of the detectability of a blood vessel will consider only longi-
tudinal waves and neglect the transverse waves which occur for the phenome-
non of reflection. Moreover, only the first two orders of reflected waves (m = 0.1)
will be considered. In view of the rapid decrease in the constants D,, with increa-

Table 1. The constants D, and O}
determined from formulae (28), (29)

and (31)
m | Df, = Dy|®ar| Of = On/Py
0 | 0.04766-79%° | o ! '
1 | 0.0068¢=7%0° | 0.0025¢743°
2 | 0.0008¢1176° | 0.0045¢—352°
3 | 0.00002¢749° | 0.0023¢+452°

sing m (see Table 1), the higher orders do not make a noteworthy contribution
to the caleulation of the amplitude of the longitudinal wave reflected from the
blood vessel.

Insertion into formula (13a) of expression (15) and of the constants D,
and D, gives the acoustic pressure of the wave reflected from the blood vessel
in the form

P = 0*[DH (kr) + DHP (kr) cos 8]exp (joot ) . (32)

The acoustic velocity of the reflected wave can be determined in a similar
way from expressions (13b) and (15),

v, = jo { —DkH®P (kr)+ D, [% H (kr) —ng”(kr)]cos 6} exp(jot). (33)

4. Pulsating and oscillating equivalent sources of the wave reflected from the vessel

The wave reflected from the blood vessel can be substituted for by equi-
valent waves radiated by pulsating and oscillating sources placed on the Y axis
of the vessel. Expression (32) shows that these sources will be pulsating (monopo-
les) and oscillating (dipoles). It can be assumed that these sources have the shape
of a sphere with the radius ¢ tending to zero. These spheres vibrate so that points
of their surfaces have the velocity

g = Ugexp(jot), (34a)
%, = U,cosfexp(jol), (34b)
where U, and U, are the amplitudes of the velocities.
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These velocities can be compared with the velocities defined by relation (33)
for the small arguments kr = ke. The Hankel functions which occur in this rela-
tion can be represented in the form

HP () = (@) —jNy (@), (35)

while for #—0 and m > 0,
I ()0, (36a)
_ (m —1)! (_2_)"‘

T @€

N, (@)~ (36D)

It follows therefore that in the present case (g—0)

N

T T A (37a)
wke

H (ke) = —- (37b)

Substitution of (37a) and (37b) into (33) and equating the sum (34a),
(34b) to expression (33) give
2D, 2D,

—w
TE mke?

Uy+ U,eo8 = —ow cos 0. (38)

Since this equation should be satisfied for all values of the angle 0,

2D
s 2= (39a)
TTE
2D,
Uy & i (39b)

It is known [11], on the other hand, that a pulsating source radiates a sound
pressure wave in the form

A Jjwe,

0 = S expj(wi—kr)], (40)

where @, is the amplitude of the volume velocity of the source when its dimen-
sions tend to zero and r is the distance from the source.

It is now possible to form an equivalent cylindrical source (Fig. 4) of the
game volume velocity @, whose dimensions are very small compared to the wave-
length. The change in the shape of the source from spherical to cylindrical shape
has, in view of the relation 4 > &—0, no significance. It is therefore possible to
write (see Fig. 4)

dQ, = 2meUydy. (41)
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In turn, the acoustic pressure of the wave radiated by an oscillating source
at a long distance from the source has the form [11]

b
P, =k 5 cos Bexp [j(wt —Fkr)], (42)

where b denotes a dipole moment equal to

, _ Joesexp(ike) . _ e

=2 et Ljzke o) 5 U vi)

Introducing the mass of an oscillating sphere, M = p4me?/3, it is possible
to write
prap 3wMU, :

8n ()

Fig. 4. An equivalent cylindrical wave source with the radius ¢ and the length dy

Expressions (42) and (44) show that equivalent oscillating sources must
have the same momentum with constant frequency. It is therefore possible to
form a substitute equivalent eylindrical source. In view of the relation A4 » &—0,
the shape of the source is insignificant. The momentum of an equivalent oscil-
lating source can be written in the form

AdMU, = grne*U,dy. (45)

Comparison of expressions (40), (41) and (39a) and (42), (44), (45) and (39b)
gives the acoustic pressure of the wave radiated by the two equivalent cylin-
drical sources considered above, with the length dy, i.e.

0D, | 3 jueD,
+ ™

dp" = —j( cos B) exp [j(wt —kr)]dy. (46)

b 4

Considering relations (13a) and (12), it is finally possible to write the ex-
pression for the sound pressure of the wave radiated by the element dy placed
on the Y axis of a blood vessel. This pressure is equal to the pressure of the wave

7 — Archives of Acoustics 3—4/82
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reflected from the vessel

* Ty 2 2
2 Fn (%7_2_ 371;1 cose) k@f;v;% exp{j [wt—kf(l—i— ;’fz)—m]}x
2J \(ka,y [f)
s et O o (47)
ka,y [f 4
where
Dy = D[Py, (47a)
D} = D,|Dy,. (47b)

6. Ultrasonic waves incident on the transducer

The coordinate system now can be changed by setting its centre at the
point G (Fig. 2) and reversing the sense of the X axis.

The sound pressure of the wave incident on the piezoelectric transducer T,
averaged over its surface, can be determined using the integral

aQp 1w

B = — f f dp'sdsdy . (48)
Ty J s
The waves radiated by equivalent sources placed on the axis of the vessel
penetrate obliquely the wall of the wvessel, whereas the solution obtained in
chapter 3 applies to a plane problem and therefore can be used only for a per-
pendicular penetration of the wave through the walls of the vessel. The resul-
ting differences in phase and amplitude are so small as to be neglected, which
follows from the geometry of the problem assumed (f » @, and 4 > a).

In formula (47) r can be expressed by s and »p (see Fig. 2). Subsequently the
expression for dp’ thus changed can be inserted into formula (48) and integration
carried out in this formula with respect to the variables s and y in the way
used in chapter 2. This gives the mean acoustic pressure caused on the surface
of the transducer by the wave radiated by cylindrical sources of length dy pla-
ced on the Y axis of the blood vessel.

Carrying out, in turn, further integration with respect to the variable y
within the limits 4 oo, all the contributions of the elementary waves radiated
by the equivalent sources can be gathered. This integration leads to the final
result in the form:

kocwas,
2rf?

exp {j (et —2kf)} x

+o0

%f [2J1(kapy/f)]2exp( —jkyz)dy. (49)

3
b (D: +2 jDteos e)

ka,y[f f
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In formula (20) given by the present autor in a former paper [4] a mistake
was made and =* should be replaced with 2w, as it is here in equation (49).

The ratio of the power of the wave incident on the transducer N, to the
power of the wave radiated by this transducer N, will be determined. In view
of the geometry of the system assumed, sufficient approximation is provided
in this case by the formaulae for a plane wave. Thus

Yo [Panl*nay  wieomay [ipfwl ]” (50)
N, 206 2 woc
or, after substitution of the value p,, from expression (49), finally,
2
N, 3 2J(kay [f) "
Dy +j— D*cos@] f [ - ] xp(—jky*[f)dy| - (51)
¥ [ 2" ke, ] g

The above formula permits the calculation of signal losses of an ultrasonie
wave on its path from the transducer to the blood vessel and back (without
considering attenuation in tissue). Substitution of the values a,, f, k¥ and Dy,
into the above formula and assumption of the angle 6 as 180° approximately
(in practice it varies in the limits 177-183°) give the value

T =0.00242 = R = —52 dB. (52)
¢

R represents here the loss in the wave signal radiated, which occurs as a res-
ult of that the wave partly goes round the vessel, partly penetrates into it and
of that the reflected wave diverges so that only a slight part of the power of the
wave returns to the transducer. The quantity E can be called the reflection loss.

7. Detectability of a blood vessel. Discussion

Assumption of an output voltage of the transducer of 250 V and a typical
sensitivity of the ultrasonograph receiver of 10~° V gives a ratio of these quanti-
ties equal to W = 2.5-107 == 148 dB. The loss caused by the transducing of
ultrasonic electrical impulses was assumed as T = —15 dB.

Fig. 5 shows the signal level generated by the transmitter and its trans-
ducing loss T, the reflection loss R and the attenuation loss A, in the tissues
penetrated. The present hypothetical vessel can be detected at a distance of
10 em from the surface of the body with attenuation in tissue of 1.8 dB/em
(obstetries [1]). In the case of attenuation of 3.7 dB (muscle tissue, perpendi-
cular to fibres [7]) the signal will only be stronger by 7 dB than the noise level
and it will be more difficult to detect the vessel. When the focal length f is shor-
tened from 10 to 8 em (dynamic focussing) and the blood vessel is placed there,
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the reflection loss B decreases by only about 1 dB, while the attenuation loss
A ; decreases by as much as 16 dB. The detectability of a blood vessel would
thus increase greatly.

dB

(50v) 0 - - —
R R R
4 b & \ W= 148 dB

A!

4 l.?SdB _

iy 727 /////////////
7 %

2272

Fig. 5. The signal losses in the detection of a cylindrical blood vessel with a diameter of
0.1 mm by the ultrasonic echo method

T — transducing loss, B — reflection loss, 4] — attenuation loss in tissues penetrated, W — transmitter voltage
to receiver voltage sensitivity ratio
a — distance 10om, attenuation in tissue 1.8 dB/em; b — distance 10 cm, attenuation in tissue 3.7 dB/em;
¢ — distance 8 om, attenuation in tissue 3.7 dB/cm

111
>

~K0 ==_103 dB 2

It is important to note that the tissues penetrated are inhomogeneous.
A number of echoes result from reflections from small anatomical structures
(muscle fibres, arterioles, capillaries). In view of this, the signal received from
a given blood vessel can, nevertheless, remain undetected amoung other signals.

8. Conclusions

The analysis performed has confirmed the previous conclusions of the author
[3] regarding the detectability of small blood vessels. The signals received from
a very small blood vessel with a radius of 0.1 placed at a distance of 10 cm from
the transducer give potentially detectable signals at a frequency of 2.5 MHz.

The substitution of a focussed ultrasonic beam for a parallel one and the
consideration of the shear elasticity of soft tissues, in addition to their bulk
elasticity, introduced quantitative changes in the detectability of blood ves-
sels. In the present investigation the reflection loss B was —52 dB, while in the
previous study their value was —67 dB. In this case the signals received from
the vessel under consideration are stronger by 15 dB. The strength of these
signals depends critically on the distance between the vessel and the surface
of the body, in view of attenuation loss in the tissues penetrated.
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The quantitative results obtained here are estimated only, mainly because
of the lack of data describing the acoustic parameters of tissues (e.g. the walls
of the vessel). In view of this, the difference between the propagation velocities
of waves in the tissue surrounding the vessel and in blood has been assumed as
the reason for the reflection of ultrasonic waves from the vessel. It is necessary
to note, however, that the conditions assumed here are less favourable for the
reflection of ultrasonic waves from a blood vessel than in practice.
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