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AVERAGING THE FREQUENCY OF THE LARYNX TONE IN THE CORRELATION
METHOD OF ITS ESTIMATION USING THE TECHNIQUE OF LINEAR PREDICTION

ANDRZEJ DZIURNIKOWSKI

PESEL (02-106 Warszawa, ul. Pawinskiego 17/21)

This paper presents some problems in the effects of averaging the results
obtained from the analysis of a speech signal, related to the use of the correlation
method of the estimation of the frequency of the larynx tone. The present con-
siderations are concerned with the analysis of a speech signal using the algorithm
of linear prediction. The thesis that the results obtained from averaging depend
on the parameters of the analysis assumed and the character of a signal is proposed
and the reasons for this phenomenon discussed. This dependence must not be
neglected in choosing the methods of gpeech signal analysis in real investiga-
tions.

1. Introduction

The autocorrelation analysis of a speech signal is one of the earliest methods
of the estimation of the frequency of the larynx tone (the fundamental fre-
quency). Since, in general, a speech signal is an implementation of a certain
stochastic process which for adequately long durations in its selected classes,
can be regarded as a stationary signal, it is necessary to take into consideration
during the analysis of it the dependencies which arise from this fact and condi-
tions for the estimators of an autocorrelation function of this type of signals.

This paper presents numerical methods of the estimation of the frequency
of the larynx tone by means of the autocorrelation analysis using the technique
of linear prediction. The direct considerations and examples are based on the
analysis of the autocorrelation sequence of the error signal of linear prediction.

1t is proposed that the precision of the results obtained using the estimation
method assumed depends directly both on the parameters of the analysis as-
sumed and the character of the signal itself in a predetermined interval of the
analysis. The averaging of the estimated values of the periods of the larynx
tone is an effect of these dependencies.
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The present paper discusses this problem and presents a method for its
analysis, based on a measure of the deviation of the estimated values of the
periods of the larynx tone from their real values, as proposed by the author,
and the smoothing coefficient defined on the basis of this measure.

The existence of these factors in the methods for the determination of the
value of the periods of the larynx tone presented here must be considered in the
determination of the aim of investigation and also calls in question its use in
the spectral analysis of a speech signal, synchronised by the larynx tone.

7

2. Estimation of the autocorrelation function of a discrete stochastic process

All stochastic processes are characterised by giving a #n-dimensional
probability distribution of random wvariables for #->4-cc. A human speech
signal is one of these processes, experimental investigations of which are in
view of practical constraints performed on a signal of finite duration. It is,
therefore, impossible to determine precisely all the parameters of the probability
distribution on the basis of experimental data. In this situation, funetionals
defined by selected implementations of random processes obtained from in-
vestigation of signals are assumed as the parameters of the probability distri-
bution and are called the estimators of the parameters of processes analysed.
In the correlation methods for the investigation of random signals, which are
most frequently used to determine the regularity of the structure of a speech
signal and for determination of its successive periods, called the larynx tone,
the autocorrelation function of the process (or its transform) is assumed as
the parameter, which is defined as

Byt ta) = B[Xo(t;) Xo(ts)], ; (1)

where X,(t) = X(t)— E[X(f)]. For the stationary processes this function de-
pends only on v = #, —¢,. In numerous cases in view of the fact that the variance
does not depend on the time #, the normalised autocorrelation function is as-
sumed
Bty
RY(x) = g(“) : @)
&

Estimation of the parameters of the probability distribution of stochastic
processes, based on the estimators, must always satisty the following require-
ments: the estimators should be compatible, unweighted, “best” from the point
of view of a criterion assumed (e.g. effective where effectiveness is the ratio
of the minimum optimum variance to the variance of an estimator assumed)
[12]. There is a number of estimators for determination of the autocorrelation
function R(z) of a stationary process, based on its implementation. The estima-
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tor defined by the formula

T—7
Po(v) = [ a(t, ) Xo(8) Xo(t+7)at (3)

0

is most frequently used, where a(t, v) is the weight function whose selection
affects in-a significant way the quality of the estimator. In the case when the
mean value of a random process is known, the quantity P,(z) defined by formula
(3) is an unweighted estimator of the function R, (7). Determination of the opti-
mum weight function a,, in view of the minimum variance of the estimator
P,(7) is here troublesome and requires knowledge of the autocorrelation fune-
tion R (7). Therefore, this estimator is quite often determined on the basis

of the integral mean as
e :
P(7) =- [ Xo(t) Xo(t+v)at (4)
I'—z ; ;

which gives a relatively low estimation error [12]. The situation is different
when the mean value of a random process is unknown and it is estimated on
the basis of the implementation of the process itself. In this case the error of
the weight of the estimator cannot be avoided. In order to avoid the weight
of this estimator it would be necessary to introduce additionally a coefficient
of the general form 1/1—F[R,(r)] [12]. Since the function R,(7) is unknown
at the time of estimation, therefore in order to avoid the weight first the weigh-
ted autocorrelation function is quite often determined and then iterative opera-
tions are used to avoid the weight [12]. It is a very complicated process, there-
fore, many authors consciously or not assume in their investigations estimated
values weighted by error. The estimator of the autocorrelation funection of
random signal is essentially the estimator of the function and not a parameter
and also a random funetion. Therefore, its covariance should be determined
in the estimation of the error of such estimator. Given in [12], the formula
for the estimation of the covariance of the estimator permits a conclusion that
the covariance between the values of the estimator decreages with increasing
duration of the process. Therefore, the final values of the estimator in a se-
quence are insignificant. In view of the above fact and also the relevant relations
for the variability of the estimator [12] it is possible to determine in practice
the duration 7, ., for which it is worthwhile to calculate the estimator [4, 5].

In practice under the pressure of requirements resulting from the assump-
tions of an experiment the analysis of this type is not frequently carried out
despite the fact that only in some cases this approach would have been justi-
fied by the requirement of the experiment e.g. when the absolute values of the
estimator are not essential, but the character of its variation or the position
of its extrema etec. As for a continuous stationary process, for the stationary
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sequence {X(n)} the estimator defined by the formula

N—j

¥ T
Bk &
J n=1

(n)a(n +j) (5)

is determined, to which all the remarks concerning the estimation of the auto-
correlation function of a random process apply.

In the further part of this paper for the sake of uniformity of notation,
the values of the autocorrelation function or its estimators will expressed by
o(j) (the coefficients of the autocorrelation function).

3. Numerical methods for the estimation of the frequency of the larynx tone
by the autocorrelation analysis using the technique of linear prediction

Only those signals will considered that are represented by the sample
sequences {x(n)} of the signal, i.e. signals in the form of numerical data, which
can be easily processed digitally using computer.

One of the basic methods for the estimation of the frequency of the larynx
tone used in the literature is the autocorrelation analysis of the sample sequence
of a speech signal, {#(n)} carried out on the basis of the relation

+00
0.() = D a(m)a(n+j). (6)
fN=—00
In practice the autocorrelation coefficients a}e calculated for the cut-off :

signal, i.e. a signal for which x(n) = 0 for n < 0 and » > N —1. This signifies
that '
e{—j) =0 for [j|=N,
and (7)
N-1-j
ol i) = 0. —j = D @(ma(n+j)  for j.=0,1,...,N-1.
n=0
There is a number of algorithms for calculating the autocorrelation coeffi-
cients, for example: the algorithm based on the calculation of the Fast Fourrier
Transform (FFT) [9, 11] or the algorithm which implements the so called con-
tinuous correlation [9]. However, in both these and other methods, the results
obtained, which are the basis for the estimation of the frequency of the larynx
tone, are, in addition to the estimation error, weighted by the higher harmonic
frequencies of I, (the effect of formants is significant), particularly the first one,
that oceur in a speech signal. One of the methods for the estimation of the larynx
tone freguency by the autocorrelation technique in a signal from which the effect of
formants was eliminated is the one proposed by ITAKURA and SA1To [7], a method
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for the estimation of the frequency of the larynx tone, using the technique
of linear prediction. The algorithm for calculating the estimated frequencies f,,
as described in [4] is based on the calculation in the discrete time domain of the
successive values of the error signal {e(n)} (cf. Fig. 1) defined as

M M :
e(n) = Y aw(n—i) = w(n)+ D aw(n—i), (8)

efn),

number of sample [n]

e(n)

number of sample [n]

Fig. 1. An example of the error signal {e(n)} in the word “pokoju”

where a; are the coefficients of the inverse filter A () of order M, defined in the
z-domain as

M
Ag) = Dlag !, ay =1 (9)
=0

Given in [4], the analysis of the duration of the period of the larynx tone
and the estimation of its frequency is based on the autocorrelation analysis of the
sequence {e(n)}

+ oo

0.(j) = D e(m)e(n+j). (10)

N=—o00

There are a few specific variants of caleculating the autocorrelation sequence
{0,(7)} using the relations between the coefficients of linear prediction and the
real values of a signal, based on a direct implementation of the procedure descri-
bed by formula (10) or using the autocorrelation function {g,(j)} of the real
data {#(n)}. The second variant uses the relation obtained from transformation
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of formula (10) by insertion in it of the expression described by formula (8)

+o0

By i 2 Zaak (n—i)w(n+j—F). (11)

n=—00 i=—00 k=—00
This insertion involved the fact that

+ 00

e(n) = 2 a;x(n—1)

since a; = 0 for ¢ ¢ [0, M.
By substituting a new variable » = k—14 and transformation expression
(11) can be written in the form

“+ 00
0.(j) = D ea(r)e,(i—1), (12)
F=—00
where g, () is the autocorrelation of the sequence of the prediction coefficients
{a;}. In practice the limits of summation occur, since a; = 0 for i< 0; ¢ > M
and #(n) = 0 for n << 0; n > N —1, which causes that g,(n) = 0 for |n| > M
and g,(n) = 0 for |n| > M 1.

The estimation of the larynx tone based on expression (12) although it
does not require the calculation of the sequence {e(n)}, makes it necessary
however, to caleulate previously the sequence {o,(j—7)} on the basis of the
sequence {z(n)} and to calculate the prediction coefficients and subsequently
on their basis the sequence {o,(r)}. When using one of the many available te-
chniques of the calculation of the error signal given in [8] it is, however, more
convenient to analyse on the basis of relation (10) in the limited summation
range

N—-1-j
o.(i) = D e(n)e(n+j), (13)
n=0
where the sequence {g,(j)} is in practice calculated for j < N /2. This method,
which essentially consists in simple calculation of the autocorrelation coeffi-
cients, based on the values of the error signal of linear prediction will be the
basis of the further considerations.

4. The effect of the method for estimation of the larynx frequency on the precision of results
obtained

It follows from (13) that if one takes the sequence {g.(j)} as the direct basis
for tracing the duration of the period of the larynx tone by determining the
values of max {g,(j)} in a predetermined interval @ depending on f, (the sampling

J
frequem\ay) and a predetermined period of. the analysis of the frequency
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of the larynx tone, then the selection of the values of N in formula (13) essentially
affects the averaging of the values of {f,}, which are the successive
values of the estimated frequency of the larynx tone.

Tt is interesting to consider how the values of N are chosen in relation to
the frequency f, and a predetermined analytical range of the larynx tone limited
by the lower boundary f; and the upper boundary [, and how this affects the
averaging of the estimated values of {f,}; m =1,2..., in relation to
their real values. In practice only the lower boundary essentially affects the
choice of the values of N according to the relation accounting for the estimation

strategy as described in [3, 4]
v-| f—’”], (14)

fa

where the notation [a] denotes a smallest integer larger than or equal to a.
The function [a] was assumed in order to satisfy the requirement of viability
of the estimation strategy assumed. The value of N as a function of two parame-
ters varies in the manner shown in Table 1.

Table 1. The values of the function N
= f(fp, fa) for selected values of the pa-
rameters f, and fz

Jala] P
e | Lo |
20 1000 1200 2000
40 500 600 1000
50 400 480 800
60 334 400 667
80 250 300 500
100 200 240 400

While the lower predetermined frequency f, affects the determination
of the lower boundary of the interval @, in which max {g,(j)} is traced, the upper

frequency f, is the lower limit of the interval @; jge [L(f,), N/2]. The interval
thus defined is essential for the effect of averaging the estimated values of f,,.
This effect can to a lesser or greater degree occur in relation to the real period
of the larynx tone.

If T,, denotes the real m-th period of the larynx tone then it can be stated
that the longer the period T,, the lesser averaging effect occurs. The shorter
the period T,, the greater the effect is, depending in direct proportion on the
value of N. The variable N is a function of the permissible value of T; =
— max{T,}, defined by formula (14). Therefore, the higher frequency of the

m
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larynx tone is examined and at the same time the lower frequency f; is taken,
the greater the effect of averaging the frequency of the larynx tone will be in
its estimation based on the autocorrelation method and the technique of linear
prediction. ;

The above problem can be presented in the following way. If T, denotes
the hypothetical period of the larynx tone defined by the number of samples
of the signal sampled at the frequency fp and a denotes the filling coefficient
of interval [0, N] of the form

s ' (1)

N
then the function a(7),) which takes values from the interval [2, 7 ] behaves
b

as in Fig. 2.

CUP

0 t/f fo/ fo, fo/ ta, Ly R

Fig. 2. The curve of the function a(T}) in relation to the parameter fa

It can be seen that depending on the frequency f, assumed and in particular
on the possible gap f, = f, —f,, the filling coefficient varies taking a maximum
value of

Oy = 2 == (16)

When the funetion describing the signal is periodie, the coefficient a is
insignificant in the calculation of the autocorrelation coefficients, since it is

invariable for each successive period of a signal with the duration N. It is signi-

ficant, however, in the autocorrelation analysis of quasiperiodic signals, e.g.

a voiced speech signal. In this case a # const. and depending on the real values

L&
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of the period of the larynx tone T, can be expressed by the formula*

-1 i=a
z = 3 TN~ 3 T)

e Sl {3 Stacfe— Bl (S el

m=0 =10

where

0 for <O,

T, =0, v S I—amax]i Tp+1 == ooy (o) = {1 for z = 0.

The coefficient a, is a function of the successive periods of the larynx
tone; a, = f(Toy T4y Ty Tsy ..., T[“tﬂ) and takes the real positive values
Uy < Gpax - 5

Formula (17) applies to the real conditions of the autocorrelation analysis
of a signal of finite duration. The filling coefficient of a quasiperiodie signal,
a,, significantly affects the averaging of the estimated of the larynx
tone, since it reflects the share of a given number of the variable periods
in the calculation of the autocorrelation coefficients. There is still
another aspect related to the behaviour of the autocorrelation function deter-
mined by the sequence of its coefficients, which is connected with a speech signal,
and accordingly the error signal, being in most general terms a stochastic signal.
When one considers only the voiced speech signal, which is quasiperiodic and
therefore interesting for the estimation of the fundamental frequency Tons
then for adequately long signals it is often possible to assume that a signal
is ergodic. Under this assumption for such signals the autocorrelation function
behaves in a specific manner and is then defined by the relation

n=N
j . 1 .
(i) = JLTWWWZ_N‘X‘”’X‘” +j)- (18)

The autocorrelation function of an ergodic stochastic process is nonlinear
and takes values from a limited range, which results from the fact that

n=N
limo,(j) = 2,(0) = ¥m — ' Xt(n) (19)

j—0 N-—>+o0 2N aa i

and

lim o, () = lim > > X(m) X(n+)g(X w), X(n+j), ) = B X (m)], (20)

e i X X(wt1)

* Formula (17) is valid for the analysis of a quasiperiodic signal synchronised by the
larynx tone as deseribed in [4].



32 A. DZIURNIKOWSKI

where ¢ is the probability density function, while B[X (n)] is the first mo-
ment of the random variable X (n)* and o,(0) = maxg,(j). The possible assump-
tion is here used, that for j+ co interaction of the random variables X (n) and
X(n-+j), represented by the values =(n) and a(n +4), disappears
and in the boundary case they can be treated as statistically independent.

Similar relations apply to the error signal obtained using the technique
of linear prediction. The foregoing considerations dealt with the autocorrela-
tion signal analysis based on relation (6). In practice the analysis is carried out
on a signal of finite duration using relations (7) and (13). This fact naturally
causes a more rapid decrease in the value of the autocorrelation function. It
can be expressed in approximation by the relation

e'(J) = B(j) e.(4), (21)
where f(j) = A(TN_—il_TJ 3 JeL(f,), N/2] and functions as the damping coef-

ficient of the autocorrelation g,(j) (see Fig. 3).

B ()

]
|
]

SRR BE A - O i A

- Nz
Np-1
TP TR P BN SRS S ALk 48 . i
TR |
|
|
0 | L e
L(fy) Ny /2 Ny /2 J

Fig. 3. The dependence of the linear “damping coefficient” of autocorrelation, f(j) on the
length of the caleulation interval

The relation discussed above, which is connected with the random character
of the signal, is distinctly reflected in Figs. 4-8. In practice, relation (21) only
expresses a trend in the behaviour of the autocorrelation funetion, which can be
disturbed by the quasiperiodicity of the signal. This phenomenon is shown
in Figs. 4-8. A more exact consideration of how the signal itself affects the be-

* In the case of quasiperiodicity of the ergodic process

E[X(n)] =E[X(n+))]=...=B[X].
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Fig. 4. The function of the error of linear
prediction, {e(n)}p, calculated for the signal
{X (n)}p representing the word “pokoju”, for
the first N = 480 values of the signal {X (n)}p
from the beginning of the phoneme /k/ (4a)
and the corresponding autocorrelation function

{ee(7)} (40)

al

e(n)

b) el
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Fig. 5. The function of the error of linear

prediction, {e(n)} calculated for the signal

representing the word “pokoju” for N = 480

values of the signal {z(n)}p from the second

quasiperiod of the signal of the phoneme /[o/

(5a) and the corresponding autocorrelation
function {g.(j)} (5b)
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N

Fig. 7. The function of the error of linear

prediction, {e(n)} calculated for the signal

representing the word “pokoju” for N = 480

values of the signal {#(n)}p from the fourth

guasiperiod of the phoneme [o/ (7a) and

the corresponding autocorrelation function
{ee(j)} (70)

oY

Fig. 6. The function of the error of linear

prediction, {e(n)} calculated for the signal

representing the word “pokoju” for N' = 480

values of the signal {z(n)}p from the third

quasiperiod of the signal of the phoneme /o/

(6a) and the corresponding autocorrelation
function {p.(j)} (6b)
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a) efn)

b)  pGA

3000 I~
2000 | Fig. 8. The function of the error of linear
prediction, {e(n)} calculated for the signal re-
1000 i presenting the word “pokoju” for N = 480

L’V‘AV—V‘.\'——- values of the signal {z(n)}p from the fifth
o o quasiperiod of the phoneme /o/ (8a) and

the corresponding autocorrelation function
{0e(7)} (8D)

T

-2000

haviour of the autocorrelation function now follows. To that end the quasi-
periodic signal ¢(n) will be given in the form
k=K
o(n) = D' Oy By(n—kT,—n,), (22)
k=0
where Cy, Cy, ..., (', ... is the sequence of the coefficients of amplitude changes
in the successive periods of the signal, while ¥, (n) is the function describing
the k-th elementary process in the period and is a normalised
function, i.e. |E,(n)] = 1. The coefficients C; characterise changes in ampli-
tude of the signal, while the quantities 7 describe changes in the initial phage
of the k-th elementary process with respect to the hypothetical period T, (see
Fig. 9). The function F,(n) can be given in approximation in the following way

e 2
0 for n << kTh-f_nk?
By(n—kTy—m) =1 B(z)  for kTy+m, < n < (k+1) T+ 1,1, (23)
0 for n > (k+1)Th+7?k+1y
where v = n—kT, —17, '
T for 0< <1,

[B(z)] =12—7 for 1 <-7is52,
0 Xor (v >>9;
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Tt ecan be assumed that the coefficients C, and 7, are in general case random
variables characterised by unknown probability density functions g(¢) and
g(n), and essentially disturb the periodicity of the aumtocorrelation function.
Since the interest here is first of all the estimation of the fundamental frequency
of signals of this type, the present considerations will concern particularly the
influence of change in duration of successive periods of the signal e(n) defined
by the sequence of values of #,, k = 0,1, ... k, on the fundamental period T},
estimated using the autocorrelation function.

e(n)l

b =T
Cx-1 Cx 3

Ck-2 Crei

Vv T n

Cre2
ur Urs] Nke2
Th 2 T,, T,., 7 R n

Fig. 9. A random sequence of pulses of a quasiperiodic signal

We insert into formula (18) the signal described by formula (22)

n=N
} donid y
eo(j) = lim — D' e(m)e(n+3)
AT il n=—N
| N k=K 1=K
= lim oN Z OkEk(“_kTh—Wk)Z C E (n—1T,—n;+j)
N-roe n=—N k=0 il
| kKK n=+N
=lim —— 3" 30,0, Y Bln—kT,—n) Bln—1Ty—n+j). (24)
Aree k=0 1=0 n=—N

Substituting the relevant Fourier transforms [10] for the expression E(n),
with consideration of delay
1 N-1
Bn—kTy—m) = 5 2 8 (w,) 6 rm e~ ek Th gt

r=0
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where o, = 2nr/N and 8(w,) is the amplitude spectrum of the process H(n),
we obtain the following form of equation (24):

N I
2 ; 1 : 4
o.(j) = Nz Z IS 12 w,.j[lim ?N-_ Z 2 Ck 0, e-zwr(’ik-E—fq)8—1wr(k+I)Th] . (25)
r=0 k=0 l=0

Let us designate k41 = m and note that if ¢, and C; and Ik, and #, are
independent, then

=2

K
limLZCkOm_ke—iwr(nk+n,-) i C—L for m = 0,
e = : Clp(w) for m + 0;

C,=0_ and u=9_, ¢lo)= E["jm"]a

where ¢(w,) is the characteristic function of the distribution of the random
variable n [9]. Therefore

K N-1
1
ot = e 33 S st et emn i & S0, 0]
m=0 r=0
0 s ’
B 3}2 2NEZZ 18 (@,)]2 g (,) |26~ i), (26)

m=l r=90

where g,(j) is the autocorrelation function of the periodic signal E(n).

It should be noted that relation (26) is valid for N—+ oo, i.e. at the same
time K+ oo, which is not satisfied for investigations in practice, and also
under the assumption that H{e] = 0. More exact consideration of these problems
can be found in paper [1]. The above theoretical considerations lead to the con-
clusion that the autocorrelation function of the signal described by formula
(22) is a complicated probability density function of the random variable 7
and € and therefore it is difficult to draw conclusions on the behaviour of values
of the autocorrelation function without knowledge of these distributions.

Irrespective of the form assumed for the distributions of these variables,
the results of analyses based on relation (22) do not have general character,
since the shape of these distributions is strongly dependent on the individual
characteristics of the speaker. It is, however, an essential result of these consi-
derations that they confirmed strong dependence of the auto-
correlation function on the length of the analytical interval and
on the real duration of successive periods. The determination of the degree
of averaging the frequency of the larynx tone, consisting in tracing max{o(j)}

i

in a predetermined analytical interval is therefore dependent on the values-
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of N and T, the latter being a hypothetical duration of the larynx tone period,
chosen as the first period within the interval of the signal processed.

It seems justified to introduce a measure which would be a simple relation
describing the degree of deviation of the estimated mean duration of the period
of the larynx tone, from the real length of the first period within the predeter-
mined I-th interval of the analysis. This measure can be expressed in the form

‘ :
i T;I-z :T;e :Til' o (27)

o

The averaged estimated length can in approximation be described as the
arithmetic mean

ak
2 T
= N 82
Tzzt 1; E*T’ a]izl_a;] ( )
ag a;. :

If we hypothetically assume the periodicity of the signal in the investigated
interval N with a predetermined period equal to a chosen value 7;,i =1, 2,
.oy @, then we can determine the filling of this interval by relevant periods
of the signal as a; = [N/T;]. Thus assuming that 7T} =T! ~ N/} we
obtain the approximate value & of the quantity o}, as

l

a
R VAR, . B 9
Ip “; (29)

It should be noted here that expression (29) can be used to determine the
approximate value é, defined by formula (27) only for the relatively long analy-
tical intervals with respect to the periods of the larynx tone under analysis
(i.e. for high values of ). Fig. 10 shows schematically the examples of values
taken by the function a, depending on the distribution of the real successive
periods of the larynx tone for a predetermined length of the analytical period N.

It follows from the foregoing considerations that in the autocorrelation
analysis the estimated periodicity of the signal deviates in succesive steps of the
analysis from the real values of periods of the quasiperiodic signal and depends
in most general case on the value of @, and also on the real period 7, =T,,
itself. This difference can be defined in approximation by the deviation measure
6, whose sign shows the direction of this deviation.

The deviation measure 8, does not define the measure of averaging irres-
pective of how this measure will be defined. There is, however, a relation bet-
ween these two measures, since the averaging measure is a funection of the varia-
bles (N, T%, o}).

If we take as the averaging measure a smoothing coefficient of the sequence
of the real durations of the period of the larynx tone in the form of a normalised
sum of differences between the successive real values and estimated period



AVERAGING THE FREQUENCY OF THE LARYNX TONE 39

durations for their predetermined number L in the form

L L
1 1
Wh = — N (T —TIT, = — 3|8, (30)
i=1 i=1

then the thus defined smoothing coefficient is the arithmetic mean of succes-
sive deviation measures. The greater absolute values the coefficient W% takes
the more significant the smoothing of the real values of the sequence {T%}
becomes. Some conclusions can be drawn, therefore, on the averaging of these
values in their estimation by the method of linear prediction, based on determi-
nation in a predetermined analytical interval of the averaged values of succes-
sive periods of the larynx tone [4]. The value of the coefficient W via the
absolute values of the deviation measure 6], depends on the ratio a;/a}, which
to some extent reflects the quasiperiodicity of the signal investigated.
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Fig. 10. An example of the values of the function depending on the length and
distribution of guasiperiods of a signal

The longer the analytical interval defined by the value of N and the shorter
the quasiperiods 7'; contained in it, the greater value a, takes, which affects
determination of theraveraged duration of the estimated period T',. At the same
time, however, the greater the measure 4, can hecome in the case of local steplike
change in the real value of the larynx tone. In turn, for low values of N (short
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analytical interval) and long quasiperiods T;a, decreases, which causes large
averaging errors to occur in the estimation of value of T, and subsequently
significant changes in values of d,. This can be demonstrated by the estimation
of the period T, for the two successive sequences of the quasiperiods T;; the
sequence C, = {88, 95, 103, 107, 111, 119} and the sequence C, = {89, 115, 85,
108, 112}. The results obtained are shown in Table 2.

Table 2. Variation in the deviation of the estimated mean duration of the

period of the larynx tone from the real duration of the first period, depen-

ding on the length of the analytical period N, for two chosen sequences of
values of T

Coefficients s i
Ol OE
N 240 320 480 240 320 . | 480
% 2 3 4 2 3 I 1
7, 91 98 | 100 | 102 96 | 99
s, —0.039 | —0.113 | —0.136 | —0.16 | —0.09 | —0.12

It can be seen, therefore, that smoothing the signal by averaging its real
values obtained from their estimation depends on the structure of the signal
and the length of the analytical interval, which can locally cause large error
of the values estimated. Irrespective, therefore, of uncontrolled smoothing
or averaging of the real values of the parameters defined, which results from the
analytical method assumed for their estimation, additional averaging of the
estimated parameters {T'} is introduced, in order to minimise the local errors
and smooth out the results of the sequence 7. This is most often done by linear
or nonlinear approximating of successive values T: on the basis of the previous
values [4].

5. Discussion of the results obtained from a specific computer implementation of the algorithm
for the extraction of the larynx tone by the method of linear prediction

The foregoing considerations served to elaborate the assumptions for a com-
puter implementation of the algorithm for the extraction of the larynx tone
in a continuous speech signal. This algorithm was written in the Fortran lan-
gunage and used for statistical investigations aimed at elaboration of a method
for speaker identification.

This algorithm described in [4] assumed the following implementation
conditions. The lower frequency limiting the analytical range of the larynx
tone frequency was taken as f; = 50 Hz, which at the sampling frequency used in

these investigations defined the length of the analytical segment N = 480 samples
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according to formula (14) and Table 1, while the upper limiting frequency of the
larynx tone was f, ~ 333 Hz.

Thus the coefficient a, was contained in the interval from 2 to 14 and in
the investigation of male voices whose mean frequency F, oscillated about
a frequency of ~ 120 Hz, this coefficient was close to 5 (Figs. 4-8). The avera-
ging range in a signal of relatively low disturbance in its periodicity should
be thus selected that it could be possible to estimate correctly sueccessive values
of F,; and at the same time smooth out their variations. Moreover, it may hap-
pen during the estimation of the larynx tone by the autocorrelation technique
that disturbances in the structure of the signal {X(n)} and in {e(n)}
were so significant as to cause (as in the case in Fig. 4b) “local disturbances?”
in the work of the unit tracing max{g, ( J)}. This also happened (in addition to

g

the events shown in Fig. 4) when the analytical segment contained transitions
from phoneme to phoneme with large amplitude differences or decaying signals
(in terms of decreasing amplitude). In order to avoid error caused by this in-
fluence an additional estimation predicting unit was introduced, whose funetion
was to determine on the basis of the previously estimated periods of the larynx
tone, T; _,,n =1,2,...,¢—1, the expected length of the period 7';and accordingly
of the successive interval. It was thus possible to avoid estimation error equal to
half or multiple length of the real periods of the larynx tone. This caused, ho-
wever, as in the case in Fig. 4, additional averaging of the signal through smoot-
hing in addition to the smoothing resulting from averaging in the caleulation
of the autocorrelation function and approximation of the results, reducing
partly the effect of the disturbances on parameter estimation, which did not
oceur in the previous steps of the algorithm. As an example, the result obtained
from the implementation of such strategy of the estimation of the frequency
of the larynx tone in a continuous speech signal for a 30-year old man who said
“W pokoju palila sie slaba zaréwka”, is shown in Fig. 11. For comparison the

“results obtained from the implementation of the programme SPM3A based
on primary microphonematic segmentation [3, 5] for the same speech signal is
shown in Fig. 12.

The results obtained by successively tracing the real lengths of single
periods of the larynx tone (the programme SPM3A [3, 5]) are in accordance to
the previous conclusions characterised naturally by larger scatter of their values
than in the case of the results obtained from linear prediction.

The results obtained by linear prediction reflect changes in the mean values
of the results of primary segmentation calculated for a time constant of the order
of scores of milliseconds, which fully confirms the foregoing conclusions on smoot-
hing and averaging results obtained from the autocorrelation analysis used in
the estimation of the larynx tone by the method of linear prediction. The dif-
ferences at the beginning and at the end of the curves in Figs. 11 and 12 result
from relatively high disturbances of the structure of the signal {X (n)} and also
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Tig. 11. The estimated piteh contour obtamed by the method of hnear prediction for the ssgna.l
representing the sentence “w pokoju palita sie staba zardwka”

Fig. 12. The estimated pitch contour obta.fne_d by primary segmentation of the speech
signal representing the sentence “w pokoju palila sig slaba zaroéwka”
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from the assumed threshold values and the analytical intervals of &y (ef. [6])
and can be avoided by changing these values or their adequate fitting to a spe-
cific signal.

6. Conclusions

It ean be stated on the basis of the results obtained by the two methods
for the estimation of the parameter F, that both are viable from the point
of view of their conditions and in agreement with theoretical predictions.
These methods can be used for further analysis of human speech for different
purposes. While the results obtained from primary segmentation serve for spec-
tral analysis of the signal synchronised by the larynx tone in a system for
speech recognition [2], the results obtained from the implementation of the
programme based on the method of linear prediction are useless for this type
of analysis. They can be used, however, in statistical investigation of the para-
meter F, for speaker identification or verification [6]. At present the author
is performing extensive investigations of selected statistical parameters of the
distributions of the frequency F, obtained by using both methods described
above in order to determine the effect of the extraction methods used on the
precision of identification and verification of speakers, depending on the clas-
sification algorithms employed. Preliminary investigations showed that there
are parameters which show smaller scatter when the model of linear prediction
is used than in the case when the method of primary segmentation is used,
which is essential for the classification of characteristics. This confirms the
conclusion that the choice of analytical method essentially affects the results
of the investigations of speech signal and accordingly different directions of
investigation (e.g. speech recognition or speaker identification require different
analytical methods). In the present case the estimation of the frequency of the
larynx tone by the method of linear prediction for spectral analysis of a speech
signal synchronised by the larynx tone is not suitable despite advantages of the
method itself (e.g. easy implementation of the digital algorithm for linear
prediction).
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