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THE BLURRED CUT-OFF FREQUENCY OF ACOUSTIC HORNS

TOMASZ ZAMORSKI

Institute of Physics of Higher Pedagogical School, Rzeszéw
(35-310 Rzeszow, ul. Rejtana 16A)

On the basis of discussion of the Webster equation the conditions and possi-
bilities of a blurred cut-off frequency for horns of arbitrary geometry were
analyzed. The transmission properties of horns in the blurred region were discu-
ssed. Subsequently the blurred cut-off frequency was considered for hyperbolic
horns of annular cross-section.

1. Introduction

The notion of the eut—ofﬂrequency of a horn occurs in the theory ofacoustic
horns in a discussion of the so-called Webster equation [7, 8]. This equation
describes the wave motion in the horn with the simplifying assumptions that
the propagating wave is plane, harmonie, of infinitely small amplitude, and
propagates without energy losses. In the case when the geometrical axis of the
horn coincides with the axis of the abscissa, the Webster equation written in
the reduced form is the following [8]

a:r 1-d%
— +(,u==—~ = )F =0, (1)

where F is the wave function [1] related to the sound pressure p and the area of
cross section of the horn § by the formula :

P
P =—— (2)
Ve’
a is the dimensionless abscissa determined by the formula
&
sty (3)
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with z, being the coefficient of divergence of the walls of the horn; u is dimension-
less frequency

f
= (4)
£ ‘
where f is the absolute frequency and f, is a constant with the dimensions of
frequency defined by the relation
@

fo_

B »
2nx,

(5)

~ with ¢ being adiabatic velocity of the acoustic wave; o is the dimensionless
radius of the cross-section of the horn defined by the formula
RS (6)
S,
with 8, being the area of the horn inlet.

The form of the solution of the wave equation (1) depends on the sign of
the expression in the brackets by the function F. If this expression is larger
than zero, which occurs when u?< p~'d2g/da?, then the function F becomes
periodic. However, in the case where the term in the brackets is less than zero,
F is an aperiodic function. This occurs when p? < ¢~ 'd%p/da®. The function F is
connected with the acoustic pressure by formula (2) and describes the wave
motion in the horn; it should, therefore, be a periodic function. It should be
stated, therefore, that for the frgquencies which satisfy the condition w2 > p~*
d*¢[da* the wave motion oceurs in the horn, while for the frequencies for which
u?<< o~ d?p/d a? this motion does not oceur and the horn does not guide acoustic
waves. The boundary between these two frequency ranges can be obtained
by equating the above mentioned expression, which occurs in formula (1), to
zero. Then one obtains the cut-off frequency of the horn, u,,, which was mentio-

ned in the introduction and below which the wave motion in the horn will
decay

1 d%p
=1/ —. 7
Hex a0 (7)
It can be scen from formulae (6) and (7) that the cut-off frequency Pgr
depends on the geometry of the horn. For the horns discussed so far in the
literature the expression under the square root sign in formula (7) took a constant
value, which implied a constant value for u,. . For example, in the case most
frequently described and used practically, Salmon’s horn, this expression is
equal to unity [5, 6, 8],

: 1 d%
b P (8)
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Thus the dimensionless cut-off frequency u,. is also equal to unity, and
from (4) it can be seen that in this particular case the absolute cut-off frequency
is equal to the constant f,.

Generally, however, the expression under the square root sign in formula (7)
must be a function of the position on the axis of the horn. This function will
be subsequently denoted by V,, in this paper,

L .d%*o
o o da®’

(9)

In this case the frequency p,, also becomes a funetion of position and extends
over a certain frequency range for a horn of a given length. This is the so ealled
blurred cut-off frequency. Analysis of this phenomenon is the subjeet of the
Ppresent paper.

2. Analysis of the transmission properties of a horn in the blurred cut-off frequency region

Let us assume that ¥V, is a continuous function. Moreover, we shall assume
that the function is monotonic* and consider the case where V,, decreases.
This case is illustrated by Fig. 1 for a horn of length a;, whose inlet was pla,ced
~at the origin of the coordinate system.
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Fig. 1. The monotonically decreasing function V) as a “geometric barrier” of the horn
for waves at frequencies p < pgry

* assumption of monotonicity of the function V() corresponds to horns used in practice.
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Fig. 1 shows that'for frequencies higher than Hgr, OVET the whole length of
the horn u® > V. According to what has been said in section 1, this signifies
that wave motion occurs in the horn for u > pu,,,. Below the frequency pu,,, over
the whole length of the horn the relation u? < V|, is satisfied, which is a lack of
periodicity in the wave function ¥ and a decay of wave motion. However, at
frequencies in the interval from g, to u,,, the function F is periodic only over
some sections of the horn: this is the interval of the blurred cut-off frequency of
the horn. Accordingly, it is proposed that the quantities u,, and pu.,, which
are the limits of this interval, should be called the lower and upper threshold
frequencies of the horn. In the present case pg, and pu,, can be determined
from formula (7) by insertion into it of the dimensionless value of the abscissa
of the inlet (a = 0) and the outlet (a = a,) of the horn

1 1z
B Hep1 = l/ Q) » (10)
o

: M :
Hegrz = ]/ C(ap) » (11)
Q(ap

where the dashes denote differentiation with respect to the dimensionless
abscissa a.

In order to consider more closely the phenomena occurring in the frequency”
interval [p, pgr] ONE can consider a frequency u, within this interval. It can
be seen from Fig. 1 that the inequality uj < V|, occurs here over the inlet
section of the horn of length «,,. The wave function F is aperiodic in this region
of the horn, although from «, to the outlet this function has an oscillatory
character, since uj > V. However, with decreasing frequency, for u < pu,,
the outlet section of the horn where F is aperiodic becomes increasingly longer.
Finally, at the lower threshold frequency (u = p,,) this section expands te
the whole horn, from 0 to ¢;. In summary it can be stated that with increasing
frequency below the upper threshold of the horn, the transmission properties of
the waveguide gradually worsen. '

This phenomenon can be considered more preclsely by using the analogy
between the reduced form of the Webster equation (1) and the onedimensional
. Schridinger equation known from quantum mechanics [2]. This analogy occurs
particularly distinctly when we write the Webster equation (1) using equation (9)

a:F
da?

Equation (12) indicates that the function V, giving information about
the geometry of the horn is an analogue of the potential energy funetion in
quantum theory. Thus, the problem of the transmission properties of the horn
in the interval [y, #g] is analogous to the problem of the penetration of pa-
rticles through the potential barrier in quantum mechanics. Since, as in quan-

+(u* =V ) F = 0. . (12)
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)

tum mechanies, one can speak of an energy barrier (potential barrier) for eleme-
ntary particles, one can now speak of a “geometric” barrier formed by the horn
for a wave of a given wavelength. The dashed region in Fig. 1 can, therefore, be
considered to be a measure of the size of the barrier for a wave of a given freque-
ney p = fy.

Using the WKB approximation known from quantum mechanies [2, 3]
one can, taking into consideration the analogy mentioned above, use the formula.
that is employed in the. WKB method for the coetficient, D,, of transmission
through the potential barrier. In the present case it will be the coefficient of
power transmission by the horn. For example, when y = u, and uj lies below
the peak of the barrier the formula for D, has the form

D, =exp[~—2fp]/V(u)—,u§, dal. (13)
0

It can be seen from Fig. 1 that the size of the barrier increases with decrea-
sing frequency, since the barrier becomes increasingly higher and wider. This is
accompanied by an increase in the integral in formula (13) and accordingly
a decrease in the transmission, coefficient I),. Below the lower threshold freque-
ney, the barrier no longer changes its width which is a;, but its height continues
to increase with decreasing u. This causes a further increase in the value of
the integral in formula (13) and decrease in the transmission coefficient D,.
It should be noted that this coefficient is, in this case, different from zero, which
means that even below the lower threshold frequency power transmission by
the horn is possible. This transmission vanishes completely for u < u,., only
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Fig. 2. The “geometric barrier” of the horn for waves at frequencies u < gy, when V(a) i8 not
a monotonic function
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when the horn is a waveguide of infinite length, since in this case a; tends to
infinity and the value of the integral in formula (13) also becomes infinitely
- large, resulting in the coefficient D, taking a value of zero.

In the case where V, is an increasing function, analogous considerations
can be made. The more general version, where Vi(ay'is a continunous function,
but is not monotonie, does not contribute any new elements to the problem
under consideration and only requires more development in terms of calculation.
Thus, for example, for the funetion V (a shown in Fig. 2 it has to be considered in
evaluating formula (13) that the “geometric” barrier of the horn for a wave
of frequency u, occurs not only in the interval [0, a,], but also in the interval

[an, a.].

3. Blurred cut-off frequency of hyperbolic horns of annular cross section

In order to illustrate the general considerations in section 2 one can discuss
the phenomenon of the blurred cut-off frequency for the.famﬂy of hyperbolie
horns of annular cross section.

74

Fig. 3. The contours of the walls in some hyperbolic horns of annular eross section
\

Fig. 3 shows that each horn in this family is formed by two surfaces of
rotation which arise as a-result of rétation around the Ox axis of the curves
defined by the equations

d, h,
i) = ?u + ?0 (cosha+Tsinha), (14)
de h’o

&5 = 5 — 5 (cosha +Tsinha), . (15)
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where d, is the central diameter of the annular channel of the horn, and &, is
the width of the channel of the horn at the inlet. The constant T defines the
shape of the profile of the walls of the horn. For the family of waveguides
considered here this constant lies in the interval [0, cc). For T' = 0 the horn
has a catenoidal profile, and an exponential one for T = 1. The profile of the
horn takes other shapes for other values of T', one of which is shown as an example
by the dashed line in Fig. 3. _

It follows from geometrical considerations that the area of the cross section 8
of the family of waveguides under discussion is defined by the formula

8 = 8,(cosha+Tsinha), (16)
where 4
By = wdygh, (A7)

is the area of the inlet of the horn. ;
The horns of the form (16) have not been discussed to date in the literature,
although they have been used in practice, e.g. in axial dynamic flow genera-
tors [4].
The expression for the function V,, can be obtained from formulae (6),
(16) and (9)

(18)

ditig X ( sinh a +7 cosha )2

BT cosha +Tsinha

The behaviour of the function _V(a)& for different values of the parameter T
is shown in Fig. 4.

It follows from Fig. 4 that the character of the variability of V,, suggests
a division of the family of the horns T [0, o] into two classes: T[0, 1) and T(1,
o). The function V, decreases for the former and increases for the latter
tending asymptotically to a value of 1 /4. Only one of the family of horns discussed
here — the horn T = 1 with an exponential profile — has a constant value of
V(e) €qual to 1/4. According to section 1 the cut-off frequency of the horn is not
blurred and is, from (7) and (9), given by

1 g 27
“sf:l/z ET > s

Further consideration will begin with the class of horns T'[0, 1). The formula
for the cut-off frequency of these horns can be obtained from (7), (9) and (18).
It has the form ;

Yy ol
g ]/; ——tgh*(a+0), (20)
4
where 2 is an abbreviation for

Q =artghT. (21)
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Fig. 4. The behaviour of the function ¥, for the family of hyperbolic horns with a cross
sectional shape in the form of a circular ring

Insertion into (20) of the dimensionless abscissa of the inlet (a = 0) and
the outlet (¢ = a;) of horn gives, according to (10) and (11), the upper and lower
threshold frequencies for the horns 7 [0, 1),

L. T
Hgr1 = E = —4'—” (22)

I £
T ]/; — tgh*(q +9). (23)

In the case when the dimensionless length of the horn g, is so large that the
hyperbolic tangent in formula (23) can, to a good approximation, be taken
as equal to unity, formula (23) can be written in the simpler form

]/Tl ; (24)
et s YRR
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The same value is obtained here as in the particular case of the horn ' =1
(cf. formula (19)). It should be noted, however, that an equality of the dimension-
less frequencies does not signify the equality of their absolute values, since the
horns with different profiles most frequently have differing coefficients of the
divergence of the walls, ,, which leads (cf. formula (5)) to differences in the
values of the constant f,. This constant which was ‘introduced when pz was
defined (formmula (4)) must be considered in the conversion of the dimensionless
frequencies into absolute frequencies and vice versa.

Formulae (22) and (23) indicate that the upper and lower dimensionless
threshold frequencies are less than unity for the family of the horns T [0,1).
Thus it can be seen from (4) that both the absolute upper threshold frequency
ferr = Menfo, and the absolute lower threshold frequency fpm = fgw fo are, for
these horns, always lower than f;. This fact differentiates these horns distinetly
from the Salmon family of horns, that are similar to them in terms of geometry,
‘[6], but whose cut-off frequency is not blurred and is equal to the constant f,.
Moreover, it can be seen from formulae (22) and (23) that the width of the
blurred interval of the cut-off frequency [fg, fgn], for a horn of a given length
depends on the parameter T which characterizes the shape of the profile of the
horn. The horn T = 0 has the most blurred cut-off frequency.

In order to investigate the phenomena for values of T higher than unity one
“needs consider the family of horns 7' (1, o). In this case, after consideration
of formulae (7), (9), (18) one obtains the formula for the cut-off frequency

bl -

o s ]/u——etghz(aivsz), (25)
2 4
where 2 is'an abbreviation for
v, guas ey S (26
= srtgh |- ] )
The threshold frequencies can be found from relation (25) using (10) and (11)
. ; 11 - ' ‘

Pgrr = l/-é—u Ictgh’!} 3 (27)

R 1 5 f ~
Yo = ]/—2—~ T ctgh(a+2) . (28)

It can be noted that in the case analyzed here, contrary to the sitnation
for horns of the class T [0, 1), s is lower than pg,. Thus the magnitude of
fige1» Which for the horns T' [0, 1) played the role of the upper threshold frequency,
now becomes the lower threshold frequency, while u,., changes conversely. Both
these quantities decrease with increasing T'. It follows from formulae (26) and

(27) that for T' = 1/5, the lower threshold frequency g, is equal to zero, while the
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upper threshold frequency pg,, is equal to zero for 7' — T, which satisfies the
equation

-~ {

ctgh [a, +artgh (ﬂh—)] =5 34 (29)

T 3

In order to determine T, from formula (29) it is necessary to find first the

relation of the quantities o and 7' from relation (16). After manipulation one
obtaing

l : 8 A
i 0 hiA

where S,:, is the area of the outlet of the horn.
Insertion of (30) into (29) leads to .

T ]/(g—‘:)aa : (31)

A negative number is obtained under the square root sign in formula (25)

- for I' > T, which signifies an imaginary value of Hgp- Since an imaginary value

of the cut-off frequency would be physically meaningless, it must therefore be

concluded that for T' > T, the horn transmits all the frequencies of the wave. .
Finally it is possible to give a numerical example which shows the depen-

dence of the absolute upper and lower threshold frequencies on the parameter T,

for a horn of specified dimensions (cf. Fig. 5). " .

for [Hz) -
1200 T

1000

i i )

/

600

400 \‘ . e

200 \\

: X
o1 D5 o W oirdae 2 5 10 20 504% T

Fig. 5. The dependence of the upper and lower threshold frequency on the value of T for
specific diameters of the inlet and the outlet, and a specific length of the horn
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It was assumed for the calculations for Fig. 5 that, irrespective of the
<hange in the shape of the profile T, the sizes of the inlet and the outlet of the
horn and its length are constant and given by:

— the width of the channel of the horn at the inlet &, = 1.5:10-3 m;

— the central diameter of the annular channel of the horn dy = 10-* m;
— the radius of the outlet of the horn %, = 10-* m;

— the length of the horn I = 1.5-10- m.

Fig. 5 thus shows a special case of the results of the general considerations
of this section for the family of hyperbolic horns with annular cross section.
It can be seen that with increasing 7' in the interval (0, 1), the blurred interval
of the cut-off frequency becomes narrower and at the same time the upper and
lower threshold frequencies decrease. The upper threshold frequency decreases
more rapidly and accordingly, for T' = 1, f, = fy,. For T > 1 the threshold
frequencies change places: f,,, is now the lower and f,, the upper threshold
frequency. Both f,,, and f,,, tend, in this case, to zero with increasing 7'. The lo-

wer threshold frequency f,,, reaches a value of zero for T — l/é_, while the upper
threshold frequency f,, does so for T' = T, where T, is defined by formula (31).
For I' > T the horn should transmit all the frequencies of the waves propagating
in it.

4. Conclusions

The phenomenon of the blurred cut-off frequency oceurs in horns for which
the function V ,, in the propagation equation (12) does not take a constant
value. These horns are used in practice. For specific dimensions of the horn (the
diameter of the inlet and of the outlet, and the length) the blurred cut-off
frequency depends on the profile of the walls of the waveguide.

The equation of wave propagation in the horn has an analogous form to
a onedimensional Schrodinger equation in quantum mechanics. Because of
this formal analogy, the blurred cut-off frequency of the horn and its transmi-
ssion properties in the blurred interval can be determined only by way of dis-
cussion and not by solving the propagation equation.
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