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Stealth in military sonars applications may be ensured through the use of low power signals making
them difficult to intercept by the enemy. In recent years, silent sonar design has been investigated by the
Department of Marine Electronic Systems of the Gdansk University of Technology. This article provides
an analysis of how an intercept sonar operated by the enemy can detect silent sonar signals. To that
end a theoretical intercept sonar model was developed with formulas that can numerically determine the
intercept ranges of silent sonar sounding signals. This was tested for a variety of applications and water
salinities. Because they are also presented in charts, the results can be used to compare the intercept
ranges of silent sonar and traditional pulse sonar.
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1. Introduction

Sonars and echo sounders emit sounding signals
which may be detected by intercept passive sonar
on board military ships (Boyd et al., 1961; Fried-
man, 2006; Thales-Safare, 2012), as well as ship-
ping noise (Grelowska et al., 2013; Kozaczka,
Grelowska, 2004; Kozaczka et al., 2007; Koza-
czka, Grelowska, 2011). Once detected, sounding
signals give away the potential presence of an enemy
ship in the area under surveillance which is an obvious
risk to the sonar’s carrier. To reduce this risk sound-
ing signals must be made more difficult to detect. This
can be achieved by using less powerful signals and wide
spectrum continuous signals (Fuller, 1990; Skolnik,
2008). If equipped with these features, the sonar is
called silent sonar or low probability of intercept sonar
(LPI sonar) (Marszal, Salamon, 2012; 2013; Sala-
mon et al., 2011;Willett et al., 2004).
The basic criterion that a silent sonar design must

meet is that its operation will be comparable to that of
its classic counterpart. Analyses and simulation tests
have shown that this is possible with a significantly
reduced sounding signal power (Marszal, 2014;
Marszal, Salamon, 2013; Salamon, Marszal,
2013). As a result, the sounding signal detection
distance will certainly be shorter for intercept sonar.

The distance over which intercept sonars can detect
sounding signals depends not only on their power but
also on their, parameters (i.e. shape of autocorrelation
function, directivity pattern and so on) and acoustic
wave propagation in the body of water (Salamon,
Marszal, 2013; Marszal, 1992).
In the article we will present the results of theo-

retical analysis and simulation tests of how the pa-
rameters of silent sonar sounding signals impact in-
tercept sonar detection and, by the same token, the
intercept distance. To that end we are going to use
a model of intercept sonar using envelope detection,
energy detection and energy spectral density analysis
While they are known methods of detection, we will
study them for how they can receive an untypical con-
tinuous signal emitted by silent sonar.We will leave out
Doppler effect on silent sonar operation (Marszal,
2014; Marszal, Salamon, 2012), due to its insignif-
icance for intercept sonar sounding signal detection.

2. General description of the problem

Sonar range estimation is commonly conducted
by solving the range equation in logarithmic form
(Hodges, 2010; Salamon, 2006;Urick, 1996). It was
also used for the intercept sonar under the assump-
tion that it detects typical sounding pulses of sonar
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(Thales-Safare, 2012;Waite, 2002). By using range
equations, we are going to show which parameters of
silent sonar and intercept sonar are decisive for the
relation between the ranges of both sonars.
The compact form of the sonar range equation can

be written as:

SNR = EL−NL [dB], (1)

where SNR is the minimal input signal-to-noise ratio
which ensures that the detection conditions are as as-
sumed with detection occurring at receiver input EL –
the level of the acoustic signal received (i.e. the echo
signal in the case of active sonar), and NL – ambient
noise level.
The EL level is described with the formula:

EL = 20log
ps√
2p1

, (2)

where ps is the amplitude of acoustic pressure of a
wave perpendicularly incident on the surface of sonar
receiving transducer and p1 = 1 µPa is the RMS value
of the reference pressure.
The NL noise level can be expressed as:

NL = 10 log
σ

p21

2
= 10log

N1B

p21

= 10log
N1

p21/B1

+ 10log
B

B1
, (3)

where σ2 is the variance of noise acoustic pressure on
the receiving transducer surface measured in the re-
ceiver bandwidth B, while N1 is the spectral density
of noise intensity, and B1 = 1 Hz.
The expression:

SPL = 10log
N1

p21/B1

(4)

is called ambient noise spectrum level and its values
that change with the frequency and propagation con-
ditions at sea can be found in the literature (Hodges,
2010; Salamon, 2006; Urick, 1996).
Silent sonar echo level ELs is equal to:

ELs = SL− 2TLs + TS, (5)

where SL is the silent sonar transmitter’s source level,
2TLs are the maximal transmission losses along the
transmitter – target – receiver line which will ensure
the minimal assumed input echo signal-to-noise ratio
TS is the target strength of the object under observa-
tion.
The level of the acoustic signal at the passive in-

tercept sonar input ELi is:

ELi = SL− TLi, (6)

where TLi are the maximal transmission losses be-
tween the silent sonar and intercept sonar, which will
ensure the minimal intercept signal-to-noise ratio.

Using formulas (1), (5) and (6) we can determine
the difference between the maximal transmission losses
which still sustain detection for both silent and inter-
cept sonar. It is:

2TLs−TLi=(SNRi−SNRs)+(NLi−NLs)+TS, (7)

where the s index is used to denote silent sonar values
and index i – those of the intercept sonar.
The value of the input minimal signal-to-noise ra-

tio SNR should ensure the assumed probability of de-
tection and false alarm. The signal-to-noise ratio at re-
ceiver output which will guarantee such probabilities is
called detection threshold DT. The difference between
the output and input signal-to-noise ratio depends on
the type of detection and can be increased as a result
of signal processing in the receiver (processing gain –
PG) and array directivity (array gain – AG).
Silent sonar and intercept sonar operate under the

same propagation conditions and receive the same
sounding signal whether reflected from the target or
a direct one. Therefore we can assume that the noise
spectrum level in both systems is identical and using
formulas (3) and (4) formula (7) can be written as:

2TLs−TLi=(SNRi−SNRs)+10log

(
Bi

Bs

)
+TS. (8)

The difference between transmission losses in an
unlimited medium is equal to:

2TLs − TLi = 20 log

(
R2

rR1

)
+ α (2R− r) , (9)

where R is the range of silent sonar r – the range of
intercept sonar, R1 = 1 m, and α [dB/m] – sound ab-
sorption coefficient in water. For the assumed range R
or r this equation can be solved numerically.
In subsequent chapters we will determine the min-

imal SNRs values for silent sonar and SNRi for inter-
cept sonar with envelope detection, energy detection
and spectral analysis.

3. Design, principle of operation and parameters

of silent sonar

As we continue the analysis we are going to use
a simplified silent sonar model whose block diagram is
shown in Fig. 1. What it does not include are those ele-
ments of modern sonar that have no direct influence on
detection conditions and in particular the beamformer,
a common application in the majority of modern mil-
itary sonar.
Silent sonar may use a variety of sounding sig-

nals with narrow autocorrelation functions (Marszal,
Salamon, 2013). The reason why we are going to use
a signal with linear frequency modulation, is because
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Fig. 1. Silent sonar block diagram.

other signals have similar properties for detection pur-
poses and can be used to reduce the negative impact
of Doppler effect on silent sonar operation.
Let us assume that silent sonar emits periodically

repeated sounding signals with pressure ps s(t), linear
frequency modulation (LFM) with carrier frequency
f0, duration Ts and spectral bandwidth Bs. Within a
single period the signal is described with the following
formula:

s(t) = sin

[
2π

(
f0 −

Bs

2
+

Bs

Ts
t

)
t

]
, t ∈ (0, Ts). (10)

Figure 2 shows how signal frequency changes in the
function of time; its amplitude spectrum is shown in
Fig. 3.

Fig. 2. Frequency of LFM signal.

Fig. 3. Amplitude spectrum of LFM signal (f0 = 10 kHz,
Bs = 2 kHz and Ts = 10 s).

The amplitude of emitted signal acoustic pressure
at distance R1 = 1 m from the transmitting array on
the axis of its beam is pt. Incident perpendicularly on
the receiving array is a wave with pressure amplitude
ps, reflected from a motionless target which is at dis-
tance R on the axis of the transmitting and receiving
beam. The sonar’s flat receiving array is built fromMs

identical omnidirectional hydrophones, equally spaced
on a rectangular surface every half wavelength for fre-
quency f0. While this assumption helps formally with
the analysis, it does not necessarily provide the real
number of receiving channels. It is, however, explicit in
determining the size of the array versus the wavelength
of frequency f0, and its directivity. Let us assume sim-
ply, that the profile of a signal at the output of each
hydrophone is a delayed copy of a sounding signal. The
hydrophones also pick up the acoustic noise of the sea
which in the Bs frequency band may be considered
as white Gaussian noise with spectral level SPL. Elec-
trical signals from all hydrophones are added and the
summary signal following filtration in a lowpass filter
with upper cut-off frequency fs/2 is sampled at fre-
quency fs and converted into a discreet digital signal
x(n), where n is the sample number. Signal detection
is performed in a digital matched filter to signal s(n),
achieved in the frequency domain.
Signal x(n) is the sum of useful signal xs(n) and

noise xn(n). Matched filtration is described with algo-
rithm:

y(n) = F−1 {X(k) · S∗(k)} , (11)

where X(k) = F {x(n)} and S(k) = F {s(n)} are
Fourier transforms of the signal received and trans-
mitted, respectively. Transform S(k) is calculated once
and stored in the processor’s memory. Transform X(k)
is calculated in each subsequent period Ts and all of
these periods include the operations described in for-
mula (11).
Because x(n) = xs(n) + xn(n), we have:

y(n) = F−1 {Xs(k) · S∗(k)}

+F−1 {Xn(k) · S∗(k)} = ys(n)+yn(n), (12)

where Xs(k) = F {xs(n)} and Xn(k) = F {xn(n)}.
Let us first determine signal ys(n) by assuming that

as assumed above the acoustic wave is perpendicularly
incident on the array. As a consequence, there are no
time shifts between the signals at hydrophone outputs.
At adder output signal amplitude increases Ms times
and is equal to psMs. At output of analogue to digital
converter we get a periodical digital signal which we
will write down as:

xs(n) = Msps [s(n− ns) + s(n− ns −Ns)

+ . . .+ s(n− ns −mNs)] , (13)

where ns describes echo signal delay equal to ns
∼=

2Rsfs/c (c – sound speed in water). The duration of
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the sounding signal expressed with the number of sam-
ples is Ns = Tsfs, and m is the period’s number.
If signal duration x(n) is equal to signal duration

s(n), the theorem of a shift in the time domain holds
even though signal x(n) includes fragments of adjacent
periods (Bracewell, 2000). Formulas (11) and (12)
show that:

ys(n) = Mspsrss(n− ns), (14)

where rss(n) is the auto-correlation function of signal
s(n), equal to:

rss(n) = F−1
{
|S(k)|2

}
. (15)

The above relations occur for all subsequent periods of
the sounding signal
The correlation function (20) takes on the maximal

value for n = ns, equal to the signal’s energy. Signal
power s(n) jest equal to 1/2, and so we have:

ys(ns) = MspsNs/2. (16)

Let us now determine the statistical parameters of
noise at matched filer output. The variance of noise re-
ceived by a single hydrophone in frequency band fs/2
is equal to N1 · fs/2. When the receiver’s bandwidth
is relatively narrow and the spaces between the hy-
drophones are equal to half the wavelength with fre-
quency f0, the noises at array hydrophone outputs are
uncorrelated. Once they are added and converted into
digital form we get samples of white Gaussian noise
xn(n) whose variance is equal to:

σ2
M = MsN1Ns/2Ts. (17)

Noise variance yn(n) at matched filter output can
be determined from Parseval’s theorem (Bracewell,
2000) and it is equal to:

σ2 = Nsσ
2
M/2. (18)

The signal-to-noise ratio DTs at matched filter output
is a consequence of formulas (1), (16), (17) and (18).
It is equal to:

DT s = 10log
[ys(ns)]

2

σ2
= 10log

(
Ms

p2sNs

N1fs

)

= 10log

(
Ms

p2sTs

N1

)
= 10log

(
Ms

2Es

N1

)
, (19)

where Es is the energy of the signal received by a
single array element. This is an extended form of
a known formula which describes the signal-to-noise ra-
tio at matched filter output (McDonough, Whalen,
1995), and takes account of the sonar array effect.
The above formula shows that the desired signal-to-

noise ratio can be maintained by reducing the sounding
signal power (and at the same time, the amplitude of
the signal received) and by proportionally increasing
its duration Ts.

By transforming formula (19) we get:

DT s = 10log

(
Ms

p2sTsBs

N1Bs

)
= 10 log

p2s
2N1Bs

+10logMs + 10log(2BsTs). (20)

The expressions above are denoted as:

SNRs = 10 log
p2s

2N1Bs
,

AGs = 10logMs, (21)

PGs = 10log(2BsTs)

and the result is the relation we aimed to obtain:
SNRs = DTs − AGs − PGs, which is found in for-
mula (8).
The detection threshold DTs = 10 log ds is deter-

mined from operating curves of receiver ROC, for the
assumed probabilities of detection PD and false alarm
PFA (McDonough, Whalen, 1995).
A programme was used to simulate the operation of

silent sonar as shown in Fig. 1 and to numerically de-
termine the signals at its output. Sonar emits a sound-
ing signal with carrier frequency f0 = 10 kHz, spec-
tral width Bs = 2 kHz and duration Ts = 10 s, whose
echo is received by a receiving transducer built from
Ms = 100 hydrophones and sampled with frequency
fs = 4 · f0. The spectral noise level in frequency f0
for sea state 4 is SPL=50 dB (Urick, 1996). We as-
sume that PDs = 0.84 and PFA1 = 3.2 10−5 and
from ROC curves we read that DTs = 14 dB. For-
mulas (21) show that AGs = 20 dB, PGs = 46 dB,
and NLs = 83 dB. The above analysis shows that the
minimal input signal-to-noise ratio SNRs = −52 dB,
and formula (1) shows that ELs = 31 dB. We use
formula (2) to determine the amplitude of pressure
ps = 50 µPa. The variance of noise received by the
hydrophones is N1fs/2 = 2 · 109.
Figure 4 shows an example of a signal coming from

a target which is Rs = 3 km away from the sonar. The
total of 40 000 tests helped arrive at the distribution of
the density of noise probability p(yn) and the sum of

Fig. 4. Example of signal at matched filter output
(f0 = 10 kHz, fs = 40 kHz, Bs = 2 kHz, Ts = 10 s).
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signal and noise p(y) = p(yn + ys). Distribution p(yn)
was determined for a randomly selected sample ys(n),
while distribution p(y) – was for sample y(ns) for which
function ys (n) reaches its maximum.
Figure 5 shows the distributions of probability den-

sity 99p(yn) and p(y), normalised for σ, and the theo-
retical Gaussian probability density distributions with
parameters determined from formulas (16) and (18).

Fig. 5. Distribution of probability density of noise and
signal with noise (theoretical – red line, simulation –

black line).

The results of the simulations are consistent with the
theoretical calculations. Because Ns = Tsfs = 4 · 105,
formula (16) yields ys(ns) = 103. Using formula (18)
we have σ = 200, and use it to determine ds =
ys(ns)/σ = 5. Calculated analytically from formula
(19) and determined in a simulation, the output signal-
to-noise ratio is equal to DTs = 20 logds = 14 dB.
When the detection threshold yt = ys(ns) − σ = 800
we obtain the above stated values of PDs and PFAs.
If the probability of a single noise sample exceed-

ing the threshold is PFA1, then the probability of
the threshold being exceeded within time Ts increases
significantly and reaches 1. The average number of
times the thresholds are exceeded can be estimated
as Ns · PFA1

∼= 13 as confirmed in simulation results.
Because noise exceeds the threshold very seldom,

detection performance does not suffer. These instances
occur by chance and can be easily distinguished from
echo signal occurring in the same (or almost the same)
moment of time. The sonar monitor displays echo sig-
nals as regular lines while noise signals occur sporad-
ically at accidental distances. As a consequence, the
above stated value of DTs = 14 dB can be considered
an acceptable minimal signal-to-noise ratio at matched
filter output.

4. Sounding signal detection in intercept sonar

4.1. Intercept sonar

Modern intercept sonars are highly developed de-
vices which ensure optimal detection of pulse sig-

nals emitted by sonar (Boyd et al., 1961; Fried-
man, 2006; Koteswara, Rao, 2006; Pace, 2009;
Roshen et al., 2009a; 2009b; Sreedavy et al., 2009;
Thales-Safare, 2012; Ward, Stevenson, 2000).
They also help with identifying the received sonar
signal bearing, tracking, measuring the operating fre-
quency, LOFAR and DEMON type spectral analysis,
etc. For the purposes of this analysis we will only
look at the possibility of detecting a silent sonar sig-
nal by a hypothetical intercept sonar equipped with
envelope detector, energy detector and spectrum ana-
lyser.
Figure 6 shows the model of intercept sonar dis-

cussed further in the article. With an omnidirectional
beam pattern in the horizontal plane, the sonar ar-
ray consists ofMi hydrophones spaced equally along a
vertical straight line. Incident on the array is a plane
wave with effective pressure pi, emitted by the silent
sonar transmitter. By analogy to silent sonar, the sig-
nals from the hydrophones are added and the summary
signal is filtered in an anti-aliasing lowpass filter with
upper cut-off frequency fi/2. The signal from filter out-
put is sampled at frequency fi and transformed in the
analogue to digital converter ADC into a digital signal
x(n).

Fig. 6. Block diagram of intercept sonar.

By analogy to the silent sonar receiver, signal x(n)
is the sum of sounding signal xs(n) and noise xn(n).
The amplitude of the sounding signal isMipi. Because
intercept sonar receives noise in a broad frequency
band and the distances between the hydrophones are
constant, the degree of correlation between the hy-
drophone output noises cannot be determined in ad-
vance. Let us accept then that the noises are uncor-
related which is an optimistic assumption from the
perspective of intercept sonar and a pessimistic one
if seen from the perspective of silent sonar. Noise vari-
ance xn(n) is in this case MiN1fi/2.
Signal z(n) is processed in three detectors. They

are the envelope detector, energy detector and the de-
tector which determines energy spectral density. The
decision that a sounding signal has been detected is
made at detector outputs and assumes the probability
of a correct decision PDi and false alarm PFAi.
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4.2. Envelope detector

The envelope detector is designed to receive vary-
ing amplitude signals and pulse signals in conventional
sonar. Because the sounding signal is continuous and
has a constant amplitude, the envelope detector will
only be useful if the bandpass filter meets some addi-
tional criteria The band of the filter must wholly or
partly fit into the spectrum of the sounding signal and
its width Bi must be lower than that of spectrum B
of the sounding signal. If these conditions are met the
signal at bandpass filter output xf (n) is a pulse and
periodical signal, has the sounding signal’s period and
may undergo envelope detection. A signal like that is
shown in Fig. 7.

Fig. 7. Signal at bandpass filter output (T = 10 s,
f0 = 10 kHz, B = 2 kHz, Bi = 0.4 kHz).

At the output of Hilbert transform we get signal
xf (n) and its quadrature component xq(n). Subse-
quent operations are described with formula:

y(n) =
√
x2
f (n) + x2

q(n). (22)

This is the envelope of a sounding signal after narrow-
band filtration as exemplified in Fig. 8.

Fig. 8. Signal envelope from Fig. 7.

If all that is detected is noise, the stochastic
process yn(n) is described with Rayleigh distribu-
tion (Papoulis, 2002). Figure 9 shows a computer-

generated distribution in an envelope detection simu-
lation and a theoretical Rayleigh distribution.

Fig. 9. Distribution of noise probability density at envelope
detector output (theoretical – red line, simulation – black
line) (T = 10 s, f0 = 10 kHz, B = 2 kHz, Bi = 0.4 kHz,

SPL = 50 dB, Mi = 10).

The mean value of the distribution is:

E[yn(n)] =

√
π

2
MiN1Bi (23)

and its variance:

σ2
n =

(
2− π

2

)
MiN1Bi. (24)

When a sinusoidal signal with narrowband Gaussian
noise is received the process y(n) is described with the
Rice distribution (Papoulis, 2002). When the signal-
to-noise ratio is relatively high the distribution ap-
proaches Gaussian distribution as shown in Fig. 10.
The black line describes the simulation-generated dis-
tribution with the red line illustrating the theoretical
Gaussian distribution.

Fig. 10. Distribution (theoretical – red line, simulation
– black line) of probability density of signal with noise

(pi = 10 mPa).

The mean value of the distribution is approxi-
mately:

E [y(n)] = Mipi (25)

and its variance:

σ2 = MiN1Bi. (26)
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The output signal-to-noise ratio is defined as:

DT i = 10log
{E [y(n)]− E [yn(n)]}2

σ2
, (27)

which after substituting relations (24) and (25) gives:

DT i = 20log

{
E[y(n)]

σ
−
√

π

2

}
. (28)

The signal-to-noise ratio value we are looking for
may be determined numerically. As an example, for
the data used to make Fig. 9 and Fig. 10, we have
E[y(n)]/σ = 5, and then DT i = 11.5 dB. If the detec-
tion threshold is set for yt = 4σ then the probability
of detection is PD i = 0.84. The probability of a false
alarm PFAi can be determined from the Rayleigh cu-
mulative distribution function (Papoulis, 2002), as:

PFA1=exp

[
− (4σ)

2

2σ2
n

]
=exp

(
− 16

4− π

)
=8 · 10−9. (29)

This probability relates to a single noise line which
means that the probability of the threshold being ex-
ceeded in time T = 10 s and sampling frequency fi =
40 kHz is about 3·10−3. By reducing the output signal-
to-noise ratio down to DTi = 8.8 dB (E[y(n)]/σ = 4)
and maintaining PDi we increase the probability of a
false alarm to PFAi = 2.8·10−5 and the probable num-
ber of times the threshold will be exceeded yt = 3σ,
increases to about 11. With no a priori data about the
signal received, we should assume a higher value of the
output signal-to-noise ratio. Hence we have:

10log25 = 10log
E[y(n)]

2

σ2
= 10 log

p2i
2N1Bi

+10logMi + 3 dB. (30)

The above equation for DTi = 11.5 dB can be written
in the form of:

SNRi = DT i −AGi − 0.5 dB, (31)

whereAGi = 10 logMi. For DTi = 8.8 dB the constant
factor in the above formula is +0.2 dB.
By inserting DTi = 11.5 dB, AGi = 10 dB into

formula (31) we get SNRi = 1 dB.

4.3. Energy detector

We begin by determining signal ys at energy detec-
tor output with no noise. Assuming that the spectrum
of the signal received fits within the filter bandwidth
of width Bi, we get:

ys = M2
i p

2
i

Nr∑

n=1

[s2(n) + s2(n−Ns) + · · · ]. (32)

The sum in the above formula is equal to the energy
of signal s(n), hence, we have:

ys = M2
i p

2
iNi/2, (33)

whereNi = Ti·fi is the number of added signal samples
in time Ti.
Let us now move on to determine the stochastic pa-

rameters of noise at energy detector output. It is gen-
erally impossible to determine noise variances at adder
output if we lack data about how the hydrophones are
spaced and if the filter bandwidth is big. Let us assume
approximately that the noise is uncorrelated, and then
their variance at bandpass filter output is equal to:

σ2
i = MiN1Bi. (34)

Noise with this variance is squared and added. Noise
samples can be treated as a random variable with nor-
mal distribution. As you know, the sum of squares of
such a random variable has a chi-squared distribution
(Papoulis, 2002). As stated in the central limit theo-
rem, a distribution with a high number of added vari-
ables approaches normal distribution. The mean value
of noise at adder output is:

E[yn] = Niσ
2
i (35)

and its variance is equal to:

σ2
n =

1

TiBi
N2

i σ
4
i . (36)

Figure 11 shows the distribution of probability den-
sity of random variable yn, as determined in the sim-
ulation. Plotted on the chart is the theoretical nor-
mal distribution with parameters determined from the
formulas above. The same figure shows the distribu-
tion of random variable y, when noise is added to
the sounding signal at sonar input. The calculation is
made for a silent sonar sounding signal and noise with

Fig. 11. Distributions of noise probability density at energy
detector output.
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a spectral noise level as stated above SPL = 50 dB.
It was assumed that the number of array elements is
Mi = 10, listening time Ti = 5 s, and sampling fre-
quency fi = 100 kHz. It was also assumed that the
filter’s mid-channel frequency is f0 = 10 kHz, and its
bandwidth Bi = 10 kHz. As a result, the filter’s band-
width covers the entire spectrum of the silent sonar
signal and half of its energy during the listening phase.
It was assumed that the amplitude of the signal’s pres-
sure is pi = 1.9 mPa. With these parameters in place
the distribution of random variable y is not much dif-
ferent from Gaussian distribution. The respective chart
is plotted over a curve, the result of 10 000 simulated
detector operations.
The distribution of the signal and noise sum has a

mean value equal to E[y] = E[yn] + ys and its vari-
ance is:

σ2 = σ2
n + 4σ2

i ys = σ2
n

(
1 + 4

Bi

fi

ys
E[yn]

)
(37)

and is approximately equal to σ2
n, because ys ≪ E[yn]

and Bi < fi.
By using relations (27), (33), (35) and (37) we get

the output signal-to-noise ratio in this form:

DT i = 10log
{E[y]− E[y2]}2

σ2
= 10 log

(ys
σ

)2

= 10log[M2
i

(
p2i

2N1Bi

)2

BiTi]. (38)

We find the logarithm and we get:

1

2
DT

i
= 10 logMi+10 log

(
p2i

2N1Bi

)
+5log(BiTi). (39)

Using the designation from formula (21) we have:

SNRi = 10 log

(
p2i

2N1Bi

)
,

AGi = 10logMi, (40)

PGi = 5log(BiTi).

Formula (39) shows that the input signal-to-noise ratio
is equal to:

SNRi =
1

2
DT

i
−AGi − PGi. (41)

Given the data we used to make Fig. 11 we have:DTi =
20 log(ys/σ) = 20 log 4 = 12 dB, AGi = 10 dB, PGi =
5 log(5 ·104) = 23.5 dB. The input signal-to-noise ratio
is then equal to SNRi = −27.5 dB. With the detection
threshold equal to yt = E[y] − σ we have PDi = 0.84
and PFAi = 1.3 · 10−3.
One could say that the DTi value we assumed is

sufficient or even too high because PFAi relates in this
case to the entire time the signal is added, so it could be

much higher. By the same token the required signal-to-
noise ratio could be lower, if the spectral noise density
were known and did not change during listening. In
practice these conditions are difficult to meet because
spectral density of noise can only be measured (identify
E[yn] value) in the absence of silent sonar signal, which
in this case is continuous.
To understand the effects of misestimating the

spectral density of noise on detection conditions, let
us assume that in the example above spectral density
of noise increased by 1% or decreased by 1%. The ef-
fects of the changes are shown in Fig. 12 and Fig. 13.
The black line represents the distributions of proba-
bility density for the above example and the blue line
shows the distributions after spectral density of noise
has changed.

Fig. 12. Effect of an increase in noise spectral density.

Fig. 13. Effect of a decrease in noise spectral density.

As you can see in Fig. 12, an increase in spectral
density of noise increases detection probability and the
probability of false alarm. As spectral density of noise
continues to increase slightly PFAi quickly approaches
unity. As shown in Fig. 13 a reduction in spectral den-
sity of noise causes PDi and PFAi to go down to nearly
a zero. In both cases a slight change in noise level like
this deteriorates detection conditions to an unaccept-
able level.
To prevent this effect from happening, DTi must

be raised high enough for PDi not to drop below the
assumed value, and for PFAi not to exceed the accept-
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able level. To determine the desired DTi let us assume
that spectral density of noise changes by ±qN1. For-
mulas (34) and (35) show that when noise level in-
creases its mean value is (1+ q)E[yn] and (1− q)E[yn]
when it drops. The change in its variance is so small,
amounting to (1 + q)2σ2

n and (1 − q)2σ2
n respectively

(formula (37)) that it is of no practical significance.
Let us assume that detection occurs when threshold
yt is exceeded. In addition let us assume that mini-
mal value PDi

∼= 0.84, and that the maximal value
PFAi = 1.3 · 10−3. The first assumption is met when
yt = E[yn]+ysσ, and the second when yt = E[yn]+3σ.
For a growing mean value of noise, the detection
threshold at which PFAi has the desired value is yt =
E[yn](1+q)+3σ. When the mean value of noise drops,
the desired value PDi is ensured for threshold yt =
E[yn](1− q)+ ysσ. By solving these equations, we get:

ys = 2qE[yn] + 4σ. (42)

The above relation shows that the minimal value of
the detection threshold is:

DT i = 20log
ys
σ

= 20log

[
2q

E[yn]

σ
+ 4

]

= 20log
[
2q
√
TiBi + 4

]
. (43)

Please note that when q = 0 we get DTi = 12 dB,
which is the value achieved in the example illustrated
in Fig. 11. Because spectral density of noise fluctu-
ates, the detection threshold must be increased as
well as the input signal-to-noise ratio. As an example,
when SPL changes by 1 dB (q = 0.25), for Ti = 5 s
and Bi = 10 kHz, the required detection threshold is
DTi = 41.2 dB, which causes the input signal-to-noise
ratio to increase SNRi = −12.9 dB.
Analogous fluctuations of noise levels in silent sonar

do not cause any significant deterioration of detection
conditions. A lower spectral density of noise N1 in-
creases PDs which is good and reduces PFAs, and
when it is higher – PDs goes down slightly and the
increase in PFAs is minor as well.

4.4. Spectral analysis

Initial signal processing in this system is performed
just as in intercept sonar with envelope detection and
energy detection. Afterwards a calculation is made of
discreet Fourier transform X(k), and then of energy
spectral density Y (k) = |X(k)|2.
Subsequent figures show the characteristic shapes

energy spectral density of the sounding signal from
silent sonar without noise. Because the duration of
the signal is not known, in intercept sonar the listen-
ing time is usually different from that period. Energy
spectral density as shown in Fig. 14 is characteristic
of cases when observation time Ti is lower than pe-
riod Ts and fits into it entirely. In other situations the

spectrum of the signal received consists of its separate
fragments as exemplified in Fig. 15 and Fig. 16. All
the energy spectral density charts were made for the
following data: f0 = 10 kHz, T = 10 s, pi = 0.1 mPa,
Mi = 10, fi = 40 kHz.

Fig. 14. Energy spectral density (Ti = 5 s).

Fig. 15. Energy spectral density (Ti = 6 s, range
of observation in two periods).

Fig. 16. Energy spectral density (Ti = 15 s).

Further in the analysis we will only consider a case
when Fourier transform is calculated in time inter-
val Ti fitting into a single sounding signal period T ,
(Fig. 14). Please note: this assumption is not always
met for shorter range silent sonar. Figure 17 shows en-
ergy spectral density when a sounding signal with pres-
sure pi = 50 mPa is received with noise whose spectral
density is N1 = 10−7 (re 1 Pa). The calculations were
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Fig. 17. Energy spectral density of signal with noise.

made based on data from Fig. 14. The input signal-to-
noise ratio in the band fi/2 is SNRi = −22 dB.
To calculate the necessary values in the range equa-

tion, we will take the same steps as in the previous
sections.
Figure 18 shows the probability density distribu-

tions of the height of energy spectral density lines
for noise. As you can see, the distribution we have
obtained in the numerical experiment is no differ-
ent from the theoretical exponential distribution. Fig-
ure 19 shows the experimental probability density dis-

Fig. 18. Probability density distribution of the height of
energy spectral density lines of noise (theoretical – red line,

simulation – black line).

Fig. 19. Probability density distribution of the height of
energy spectral density lines of signal with noise SNRi:

a) 22 dB, b) 16 dB, c) 12 dB.

tributions of the height of energy spectral density lines
for a signal received with noise. All the charts were
made for noise whose probability density distribution
was shown in Fig. 18. The amplitude of the received
sounding signal is the parameter, in other words, the
input signal-to-noise ratio SNRi.
The probability density distribution of the height of

energy spectral density lines for white noise is exponen-
tial and its mean value is equal to standard deviation
σ, which is:

E[Yn] = σ =
1

2
M

i
N1f

2
i Ti. (44)

The mean value of the height of energy spectral density
lines of a signal without noise is equal to:

E[Ys] =
1

4
M2

i p
2
i f

2
i

Ts

Bs
(45)

and of a signal with noise, it is the sum of the mean
values, namely:

E[Y ] = E[Ys] + E[Yn]. (46)

The variance of the distribution in question is approx-
imately equal to:

σ2
y
∼= σ2 + 2σE[Ys]. (47)

Formulas (44), (45) and (46) show that output signal-
to-noise ratio defined in formula (27) is:

DT i = 10log
E[Ys]

2

σ2
= 20log

1

2

Mip
2
iTs

N1BsTi

= 20log
Mip

2
iTsfi

(N1fi)(2BsTi)
. (48)

Please note that a possibly low output signal-to-noise
ratio is what works best for silent sonar. To achieve this
the signal generated should have a high Bs/Ts ratio.
Intercept sonar, on the other hand, prefers a short ob-
servation time Ti. This, however, will generate narrow
fragments of the sounding signal spectrum appearing
on different frequencies in the subsequent observation
periods which may impede their visual detection.
After we find the logarithm and set the designa-

tions:

SNRi = 10 log

(
p2i

N1fi

)
,

AGi = 10logMi, (49)

PGi = 10log

(
fiT s

2BsTi

)
,

we can calculate the input signal-to-noise ratio for the
spectral analysis case using the formula (41).
While it is theoretically possible to determine the

minimal output signal-to-noise ratio DTi from the as-
sumed detection probability PDi and acceptable prob-
ability of false alarm PFAi using the usual procedure,
it does not offer any practical benefits. The mean value
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of the height of energy spectral density lines described
with formula (45) depends on unknown parameters of
the signal received Ts and Bs. In addition, threshold
detection does not yield clear-cut results. Probabili-
ties PDi and PFAi determined from probability dis-
tributions shown in Fig. 18 and Fig. 19 only apply to
individual spectral lines, which means that the prob-
abilities referring to the entire time of observation Ti

depend on the number of spectral lines. Determining
the probability of false alarm is explicit because the
number of noise spectral lines is constant. Detection
probability, on the other hand, cannot be determined
if we do not know in advance the spectral width of the
signal received.
Figure 17 shows that visual observation of the spec-

trum, in particular on presentations with waterfall his-
tory records makes it fairly easy to distinguish the
spectrum of the signal from the background of noise
spectrum even if the output signal-to-noise ratio is low
(in Fig. 17 DTi = 2 dB). This is not only because indi-
vidual spectral lines are higher, but because they are
concentrated in a specific frequency band. This kind of
concentration can be clearly seen in the running sum
of spectral lines height less the trend line, namely:

Z(n) =

n∑

k=1

Y (k)− βn, n = 1, 2, . . ., Ni, (50)

where Ni = fiTi and

β =

Ni∑
n=1

{
n

[
n∑

k=1

Y (k)

]}

Ni∑
n=1

n2

. (51)

Figure 20 shows function Z(f) determined from the
spectrum in Fig. 17. As you can see, signal detection is
much more likely here as opposed to direct observation
of the signal’s energy spectral density.

Fig. 20. Running sum of spectral lines height with trend
removed (SNRi = −22 dB).

As a consequence, the input signal-to-noise ratio
may be reduced as illustrated in Fig. 21 and Fig. 22.
Figure 21 shows the energy spectral density for the
sounding signal’s parameters and the receiver from

Fig. 21. Energy spectral density of signal with noise
for SNRi = −32 dB.

Fig. 22. Running sum of spectral lines height with trend
removed (SNRi = −32 dB).

Fig. 17. The input signal-to-noise ratio is reduced by
10 dB to reach SNRi = −32 dB. The output signal-to-
noise ratio went down from +2 dB to −18 dB, which
is a direct result of formula (50).
The output signal-to-noise ratio of the process Z(n)

is defined as DTi = 20 log(∆Z/σz). Amplitude ∆Z for
the signal alone shown in Fig. 20, is equal to:

∆Z = E[Ys]BiTi. (52)

The variance of noise can be determined from the em-
pirically obtained approximate formula:

σ2
z
∼= 1

16
σ
2

fiTi. (53)

Using formulas (45) and (46) we get:

DT i = 10 log
∆Z2

σ2
z

= 10 log

[
4

(
Mip

2
i

N1fi

)2

Tifi

]
. (54)

By denoting:

SNRi = 10 log

(
p2i

N1fi

)
,

AGi = 10logMi, (55)

PGi = 5 log(4Tifi).
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we determine once again the components found in for-
mulas (41).
In the example shown in Fig. 22, the output signal-

to-noise ratio is DTi ∼= 15 dB which makes it easy to
distinguish from noise. The assumption in the exam-
ple is that Ti = 5 s, fi = 40 kHz and Mi = 10, and
from there that AGi = 10 dB and PGi = 29.5 dB.
Formula (41) gives SNRi = 7.5− 10− 29.5 = −32 dB.
The same value of the input signal-to-noise ratio was
arrived at in the simulation by assuming that pi =
1.6 mPa, SPL = −7 dB/re 1 Pa and bandwidth fi/2 =
20 kHz.

5. Intercept sonar and silent sonar ranges

The range of intercept sonar r means the maximal
distance to silent sonar at which the intercept sonar
detects the silent sonar’s sounding signal. The crite-
rion of sounding signal detection is the minimal output
signal-to-noise ratio DTi which is usually determined
from assumed probabilities of detection PDi and false
alarm PFAi.
The range of silent sonar R is the maximal target

distance with target strength TS, at which the silent
sonar detects the echo signal from the target with as-
sumed probability of detection PDs and false alarm
PFAs.
The relation between the two ranges is described in

formulas (8) and (9) and is the result of the difference
in input signal-to-noise ratios SNRs and SNRi, band-
widths Bs and Bi in the receivers of both systems and
target strength TS. The input signal-to-noise ratio is a
function of the sounding signal’s parameters, receiver
parameters and the detection method applied. And so
by using formulas (21), (31), (41) and (55) consecu-
tively after elementary transformations, we have:

• for intercept sonar with envelope detection

2TLs − TLi = (DTi −DTs) + 10 log
Ms

Mi

+10 log(BiTs) + TS + 2.5 dB, (56)

• for intercept sonar with energy detection

2TLs − TLi =

(
1

2
DTi −DT s

)
+ 10 log

Ms

Mi

+5 log(BiT
2
s /T i) + TS + 3 dB, (57)

Table 1. Parameters of silent sonar.

Carrier
frequency

DTs
Number of array
elements

Period of sounding
signal

Signal spectral
width

Absorption coefficient α

Ocean Baltic Fresh water

f0 [kHz] [dB] Ms Ts [s] Bs [kHz] [dB/km] [dB/km] [dB/km]

10 14 400 20 2 0.98 0.25 0.034

40 14 400 5 8 11.2 2.7 0.58

100 14 400 2 20 34.0 9.5 3.64

• for intercept sonar with spectral analysis

2TLs − TLi =

(
1

2
DTi −DT s

)
+ 10 log

Ms

Mi

+5 log(T 2
s fi/Ti) + TS − 3 dB. (58)

The derivation of the last relation takes into account
the fact that noise band Bi in formula (8) is equal to
fi/2.
Silent sonar will benefit from a possibly high value

of the left side of the above equations. This can be
achieved by increasing the number Ms of array ele-
ments (reducing beam width) and extending the pe-
riod Ts of the sounding signal. While the spectrum
width Bs of the sounding signal has no direct impact
on the relation between the range of the two sonars,
keeping it high is good for silent sonar range resolu-
tion. It also means that a wide band must be used in
intercept sonar, which increases the difference between
transmission losses.
The range of intercept sonar can be extended (the

left side of the above equations can be reduced) by
increasing the number Mi of array elements, although
there is a limitation due to the desired and high beam
width. What also works well is a low band width of
Bi and long observation time Ti. There are, however,
some limitations, because band Bi must overlap with
band Bs of the sounding signal.
The relations between intercept sonar and silent

sonar ranges can be determined through a numeri-
cal solution of Eqs. (9) and (56), (57) and (58) for
specific parameters of both systems and for a known
absorption coefficient (Ainslie, 1998), found in for-
mula (9). Presented below are examples of such solu-
tions which help arrive at more general conclusions.
To that end we are going to investigate three classes of
silent sonar, namely long-range sonar with operating
frequency f0 = 10 kHz, medium-range sonar with op-
erating frequency f0 = 40 kHz and short-range sonar
with operating frequency f0 = 100 kHz. We will also
assume that each sonar has an array whose square sur-
face consists of Ms = 20 × 20 = 400 elements spaced
equally every half wavelength for frequency f0. The ar-
ray’s beam width is 5◦ in both sections. Table 1 gives
these and other silent sonar parameters The tables also
includes the values of logarithmic absorption coeffi-
cient in the ocean, Baltic and fresh water for the sonar
operating frequencies as stated above.
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The parameters of intercept sonar were selected ar-
bitrarily under the assumption that the sonar can re-
ceive signals in a specific number of channels with fixed
frequency bands. It was assumed that for envelope de-
tection band width Bi = 0.5·Bs, for energy detection
Bi = 4 ·Bs, and for spectral analysis Bi = 0.5 ·fi. It
was assumed that sampling frequency fi = 400 kHz,
and observation time is Ti = 10 s. The sonar has a ver-
tical linear array consisting ofMi = 10 elements which
ensures a certain noise reduction depending on the lis-
tening band and the spacing between its elements.
It was assumed that the long-range sonar range

applies to target detection that has target strength
TS = 0 dB, medium-range – TS = −10 dB and short
range – TS = −20 dB. Using the above data and val-
ues DTi derived in the previous section from formu-
las (56), (57) and (58), the differences in transmission
losses were calculated and put in Table 2.

Table 2. Difference in transmission losses 2TLs−TLi [dB]
for silent sonar with parameters as defined in Table 1.

Carrier
frequency

Envelope
detection

Energy
detection

Spectral
analysis

DTi = 11.5 dB DTi = 41.2 dB DTi = 15 dB

10 kHz 59.0 53.1 42.5

40 kHz 49.0 40.1 26.2

100 kHz 39.0 28.1 12.5

What makes silent sonar useful is the extended dis-
tance r, at which the intercept sonar detects sound-
ing signals from pulse sonar which emit “ping” con-
stant frequency signals or “chirp” signals with lin-
ear frequency change. In these sonars envelope detec-
tion was applied when receiving “ping” signals and
matched filtration when receiving “chirp” signals. As
regards “chirp” signals it was assumed that in pulse
sonar pulse duration is 40 times shorter than given
in Table 1. Formulas (56), (57) and (58) show that
transmission loss differences 2TLs−TLi are now 16 dB
lower than shown in Table 2. The values for the “ping”
signal were calculated from formula (8) by inserting
SNRs = DTs10 log(Ms)−0.5 dB (DTs = 11.5 dB) and
using relations (31), (41) and (55) which refer to inter-
cept sonar. Table 3 gives the parameters for which the
calculations were made and their results. It was also
assumed that Ti = 10 s, and fi = 400 kHz.

Table 3. Difference in transmission losses 2TLs−TLi [dB] for pulse sonar with “ping” and “chirp” type signals.

Carrier
frequency

Ts

[s]
Bs

[kHz]
Bi

[kHz]

“chirp” “ping”

Envelope
detection

Energy
detection

Spectral
analysis

Envelope
detection

Energy
detection

Spectral
analysis

10 kHz 0.5 0.4 1 43.0 37.1 28.5 20.0 9.6 3.5

40 kHz 0.1 1.6 4 33.0 24.1 10.2 10.0 −3.4 −12.5

100 kHz 0.05 4 10 23.0 12.1 −3.5 2.2 −13.2 −24.3

The figures below show the intercept sonar range
rin the function of silent sonar range R. To compare,
each figure comes with another figure with analogous
charts for pulse sonar emitting “ping” and “chirp” sig-
nals. The figures are grouped into sonar classes with
identical distances for the individual classes to help
with comparing the results. The relevant parameters
are given in the Tables above.
Four consecutive figures are for the long-range

sonar (f0 = 10 kHz). Figure 23 shows the ranges of
intercept sonar receiving silent sonar sounding signals
in oceanic water and receiving pulse sonar sounding
signals under the same conditions in Fig. 24. Analo-
gous relations for sonar performance in the Baltic are
given in Fig. 25 and Fig. 26. These and other figures
use the letter a to mark the range of intercept sonar
with spectral analysis, the letter b – with energy detec-

Fig. 23. Intercept ranges of long-range silent sonar in
the ocean (a – spectral analysis b – energy detection,

c – envelope detection).

Fig. 24. Intercept ranges of long-range pulse sonar in
the ocean (solid line – “ping” signal, dotted line –

“chirp” signal).
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Fig. 25. Intercept ranges of long-range silent sonar
in the Baltic.

Fig. 26. Intercept ranges of long-range pulse sonar
in the Baltic.

tion, and the letter c – with envelope detection. Pulse
sonar figures use a solid line to mark the ranges of
intercept sonar receiving “ping” sounding signals and
a dotted line to mark “chirp” sounding signals.
The following general conclusions can be drawn

from the figures:

• Irrespective of the detection method used in inter-
cept sonar, it always detects silent sonar sounding
signals from a shorter distance than it does pulse
sonar sounding signals.

• Spectral analysis helps to achieve longer intercept
ranges in the case of both silent sonar and pulse
sonar sounding signals.

• The ranges of intercept sonar are much longer in
low salinity water, e.g. in the Baltic, than in the
ocean due to lower absorption.

The next four figures show the ranges of inter-
cept sonar receiving echo signals from medium-range
sonars. Because they operate at a higher frequency,
absorption is stronger which leads to shorter ranges
as opposed to low frequency sonar. To take account
of this fact the ranges of silent sonar, pulse sonar and
intercept sonar were reduced
When we analyse this group of figures we can see

that the general conclusions on long-range sonar apply
to medium-range sonar as well. In addition, it should
be noted that an increase in absorption reduces slightly

Fig. 27. Intercept ranges of medium-range silent sonar
in the ocean.

Fig. 28. Intercept ranges of medium-range pulse sonar
in the ocean.

Fig. 29. Intercept ranges of medium-range silent sonar
in the Baltic.

Fig. 30. Intercept ranges of medium-range pulse sonar
in the Baltic.
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the effects of silent sonar and pulse sonar parameters
on intercept sonar ranges.
The next six figures cover short-range sonar. Be-

cause such a sonar is also used in inland fresh water
the relevant ranges are also included.
The above series of figures confirms the conclusion

regarding the strong effect absorption has on detec-
tion ranges of signals emitted by both silent sonar
and pulse sonar. The most important conclusion is
also verified which is that silent sonar sounding pulses
are always detected by intercept sonar from a distance
which is shorter than in the case of comparable pulse
sonars.

Fig. 31. Intercept ranges of short-range silent sonar
in the ocean.

Fig. 32. Intercept ranges of short-range pulse sonar
in the ocean.

Fig. 33. Intercept ranges of short-range silent sonar
in the Baltic.

Fig. 34. Intercept ranges of short-range pulse sonar
in the Baltic.

Fig. 35. Intercept ranges of short-range silent sonar
in inland waters.

Fig. 36. Intercept ranges of short-range pulse sonar
in inland waters.

6. Summary

Our analysis of the silent sonar CWFM sounding
signal intercept range shows that silent sonar applica-
tion makes sense where stealth is required. Derived for
the purposes of the analysis, the formulas help numer-
ically analyse the efficiency and stealth of operation
of new designs of silent sonar. They also help with
optimising the parameters of silent sonar for specific
applications.
On the other hand, the methods and relations de-

scribed in the article can also be helpful with designing
and optimising signal processing methods in intercept
sonar.



230 Archives of Acoustics – Volume 39, Number 2, 2014

References

1. Ainslie M.A., McColm J.G. (1998), A Simplified
Formula for Viscous and Chemical Absorption in Sea
Water, Journal of the Acoustical Society of America,
103, 3, 1671–1672.

2. Boyd J.A., Harris D.B., King D.D., Welch H.W.
(1961), Electronic Countermeasures, Section 23.5: In-
terception, Institute of Science and Technology of The
University of Michigan for the U.S. Army Signal Corps
under Contract DA-36-039 SC-71204.

3. Bracewell R.N. (2000), The Fourier Transform and
its Applications, (Third Edition), McGraw-Hill.

4. Friedman N. (2006), The Naval Institute Guide to
World Naval Weapon Systems, Naval Institute Press.

5. Fuller K.L. (1990), To See and not Be Seen, IEE
Proceedings-F , 137, 1, 1–10.

6. Grelowska G., Kozaczka E., Kozaczka S., Szym-
czak W. (2013), Underwater Noise Generated by a
Small Ship in the Shallow Sea, Archives of Acoustics,
38, 3, 351–356.

7. Hodges R.P. (2010), Underwater Acoustics: Analysis,
Design and Performance of Sonar, John Wiley & Sons,
Ltd.

8. Koteswara Rao S. (2006), Pseudo Linear Kalman
Filter For Underwater Target Location Using Inter-
cept Sonar Measurements, Proceedings of IEEE/ION
PLANS, San Diego, 1036–1039.

9. Kozaczka E., Grelowska G. (2004), Shipping noise,
Archives of Acoustics, 29, 2, 169–176.

10. Kozaczka E., Domagalski J., Grelowska G.,
Gloza I. (2007), Identification of hydro-acoustic waves
emitted from floating units during mooring tests, Polish
Maritime Research, 14, 4, 54, 40–46.

11. Kozaczka E., Grelowska G. (2011), Shipping low
frequency noise and its propagation in shallow water,
Acta Physica Polonica A, 119, 6A, 1009–1012.

12. McDonough R.N., Whalen A.D. (1995), Detection
of Signals in Noise, (Second Edition), Academic Press.

13. Marszal J. (2014), Experimental Study of Silent
Sonar, Archives of Acoustics, 39, 1, 103–115.

14. Marszal J., Salamon R. (2012), Distance Measure-
ment Errors in Silent FM-CW Sonar with Matched Fil-
tering, Metrology and Measurement Systems, XIX, 2,
321–332.

15. Marszal J., Salamon R. (2013), Silent Sonar for
Maritime Security Applications, Proceedings of Meet-
ings on Acoustics, Acoustics Society of America, 2013,
17, 070082.

16. Marszal J. (1992), Directivity Pattern of Active
Sonars with Wideband Signals, Acoustical Imaging,
Vol. 19, Plenum Press Springer, 915–919.

17. Neilson R.O. (1991), Sonar Signal Processing, Artech
House.

18. Pace P.E. (2009), Detecting and Classifying Low
Probability of Intercept Radar, 2 ed., Artech House.

19. Papoulis A. (2002), Probability, Random Variables
and Stochastic Processes, (Fourth Edition), McGraw-
Hill.

20. Roshen J., Tessamma T., Unnikrishnan A. (2009a),
Fractional Fourier Transform Based Chirp Detector
Versus Some Conventional Detectors, International
Symposium on Ocean Electronics (SYMPOL), Cochin
India, 56–65.

21. Roshen J., Unnikrishnan A., Tessamma T. (2009b),
Applications of Fractional Fourier Transform in Sonar
Signal Processing, IETE Journal of Research, 55, 1,
16–27.

22. Salamon R. (2006), Sonar Systems [in Polish],
Gdańskie Towarzystwo Naukowe, Gdańsk.

23. Salamon R., Marszal J., Schmidt J., Rudnicki M.
(2011), Silent Sonar with Matched Filtration. Hydroa-
coustics, Vol. 14, Gdańsk, 199–208.

24. Salamon R., Marszal J. (2013), Estimating Inter-
cept Range of Silent Sonar, [in:] Hydroacoustics of
Shallow Water, E. Kozaczka, G. Grelowska [Eds.],
Polish Academy of Sciences Institute of Fundamental
Technological Research Warszawa, 139–158.

25. Skolnik M. (2008), Radar Handbook, (Third Edition),
McGraw-Hill Professional.

26. Sreedavy E.N., Pradeepa R., Felix V.P. (2009),
A Novel Algorithm for Intercept Sonar Signal Detector,
International Symposium on Ocean Electronics (SYM-
POL), Cochin India, 3–8.

27. Thales-Safare (2012), VELOX-M8 Passive Intercept
Sonar, http://www.thales-safare.com/pdf/VELOX-
M8%20Oct2012L.pdf.

28. Urick R.J. (1996), Principles of Underwater Sound,
(Third Edition), Peninsula Pub.

29. Waite A.D. (2002), Sonar for practising engineers,
(Third Edition), John Wiley&Sons.

30. Ward M.K., Stevenson M. (2000), Sonar Signal De-
tection and Classification using Artificial Neural Net-
works, Canadian Conference on Electrical and Com-
puter Engineering, Vol. 2, Halifax, 717–721.

31. Willett P., Reinert J., Lynch R. (2004), LPI
Waveforms for Active Sonar?, IEEE Aerospace Con-
ference Proceedings, 2237–2248.


