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In practice, there are acoustic horns designed for which the equation of
wave propagation has no exact solution of compact form. The need, therefore,
arises for approximate solutions. to be used. Accordingly, this investigation
sought optimum methods for an approximate solution of the wave equation
of a horn. It was assumed that the optimum method should combine the re-
quirement of relatively little time-consuming ecalculation and the possibility
of physical interpretation of the approximate formulae obtained. It was found
that the WKB approximation which is recommended in the literature and has
been taken directly from quantum mechanics, in general does not satisfy these
requirements, and in addition it cannot be used at all in some cases. Therefore,
another two approximate methods were developed and their properties analyzed.

1. Introduction

Acoustic wave propagation in horns is described by the well-known Webster
equation derived under the assumption of the existence of a plane, harmonic
wave that propagates without energy losess [5-9, 11, 15]. This equation, writ-
ten in the so-called reduced form [1] using the dimensionless variables, is

da:r
da?

+ [ =VulF =0, (1)

where F is a function defined by the sound pressure p and the cross-section area
of the horn § by the formula [12];

P = pV8, (2)
and a is the so-called dimensionless abscissa. When the axis of abscissae is the
geometrical axis of the horn, a can be expressed by the formula [12]

W=y (3)

©
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where #, is the coefficient of the divergence of the walls of the horn. The quantity
p is dimensionless frequency defined as the quotient of the absolute frequency
and of a constant fo [4]

S &
T
and f, = ¢/2mx,, where ¢ is the adiabatic wave propagation velocity. The func-

tion V ,, depends on the geometry of the horn and can be given by the so-called
dimensionless cross-section radius of the horn g by the formula

1 ae
¥n e

(@) ”E'&E??
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= = 6
e ]/ s, ’ (6)
where 8§, is the cross-section area at the in tlet of the horn.
The solution of equation (1) can be presented in the form [12]
F = Aeoxp+?, . “AD

where i is an imaginary unit and 4 and © are functions of the variable a satisfying
the equations [11, 12]

= (4

(5)

and e can be defined as [12]

e

BVt gy, (8)

A
24 o
= +F = 0. : (9)

The dashes in formulae (8) and (9) denote differentiation with respect to the
dimensionless abscissa a.

As a final result of considerations based on the reduced form of the Webster
equation (1) a general formula for the relative unit admittance of the horn g
can be derived [12]

' ﬁz;_”._(
M

F' 9‘
I 0 :

The horns most often considered in the literature were those for which the
exact solution of equations (8) and (9) could be achieved. When these equations
were to be solved in an approximate manner, however, the approximation known
in quantum mechanics was recommended, particulary the WKB (Wentzel, Kra-
mers, Brillouin) method [1, 3, 9, 10]. This resulted from the formal similarity
of equation (1) to the onedimensional Schrodinger equation independent of time.

(10)
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However, the approximate methods used so far in the theory of horns for
the solution of equation (1) most often lead to rather tedious calculations possi-
ble only when a computer was used and gave so complex approximate formulae
that they were hardly useful in physical interpretation. The aim of the present
investigation was to find more optimum approximate methods which eombine
little time-consuming calcul'ations with the requirements of physical interpre-
tation of expressions derived.

2. Discussion of the range of applicability of the WKB method in the theory of horns

The conditions and the range of applicability of the WKB approximation
in the theory of horns have to be analysed for two reasons. Firstly, as was men-
tioned in section 1, the WKB method is recommended for approximate solution
of the Webster equation in almost every paper on those horns for which the
wave equation has no exact solution [1, 3, 9, 10]. Secondly, in the present paper
this method will be a starting point for development of more optimum appro-
ximation methods.

In the WKB approximation t‘.he apprommate solution of equation (1) has the
form of (7), and A must be a slowly variable function of a. The requirement
of slow variation of 4 ,, permits the assumption that A" ~ 0, and accordingly
equation (8) can be simplified to the form

01 — K1, (11)
where the quantity K2 depends on the frequency and the geometry of the horn
K=y — V. (12)
It follows from (11) that
= [ Kda, (13)

%
where the variation range of the integration limits is restricted by the length

of the horn.
Moreover, equation (9) can be integrated directly, thus giving

A0’ = O, ~4{1d)

where the constant C is independent of a and can be only a function of the di-
mensionless frequency u.
Consideration of relation (11) in (14) gives

A——O— 15
R o
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Expression (15) shows that the requirement of slow variation of 4, is clo-
sely related to the requirement of slow variation of K ,. Thus, according to the
definition of K (cf. formula (12)) it can be stated that the WKB method can be
used at those frequencies and for horns of such geometry for which K, is
a slowly variable funection.

In the case when K2 > 0, from (7), (13) and (15) the solution of the wave
equation (1) can be written for the slowly var1able function K ,, in the form

7 =—-: ( fma) —_exp(—a dea) (16)

In the case, however, when Kn < 0, K is imaginary and formula (16) takes
the form 5

F = %f:exp(u!a xdd) +Vx exp( %fxda), (17)
where .
T (18)

After conversion it can be stated that a differential equation of the second
order satisfied exactly by the solutions of (16) and (17) has the form
KI 2 1 KIJ'
FIJ 2 STl R 5
T [K F ( K ) STV
Comparison of (19) with (1) (with consideration of formula (12)) shows that
the equation satisfied exactly by the approximate solution is different from the
reduced wave equation of a horn by the term
g 3 (K’ )“‘ 1K
YRR ST
and this term is subtracted from K2 This discovery suggests the subsequent
approximation in which 4 should be included as a correction, and that equation
(11) should have the following form

’ e ql/2
e [K*—}- d(K )2 —];K ] . (21)

]F i (19)

(20)

K 2 K

This leads, however, to considerable complexity of the subsequent formulae.

Expressions (16) and (17) can permit good approximation, however, when
the quantity 4 is small compared to K2. This remark permits quantitative for-
mulation of the application condition of the WKB approximation

3 Klz 1Kff
IV E) 2 X

<1. (22)
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On the basis of the foregoing argument in can be stated that in the case
of a horn (or a family of horns) of specific shape the usefulness of the WKB
method should be determined by the analysis of the function K, comple-
mented by examination of condition (22). When this analysis shows that the
function K, does not satisfy the requirement of slow variation, the WKB
method is inefficient, even when using very time-consuming approximations
(cf. formula (21)). Accordingly, the next section will give another method for
approximate solution of the wave equation (1), which can be used successtully
in this case, and which to the authors’ knowledge has not been used to date.

3. A method of linear approximation of the function V

It follows from formula (12) that the function K , for a given frequency u,
is determined by the function V , containing information about the geometry
of the horn (cf. formulae (5) and (6)). The approach proposed in this section,
consists in approximation of the function V, by a broken line. In this case
the horn is considered to be a multi-element one, where each element corres-
ponds to one section of the broken line. The number of sections depends on the
desired accuracy of approximation. It is interesting to note here that for horns
used in practice the function V,, behaves so regularly that the desired accuracy
of approximation can be achieved for a small number of sections of the broken
line.

Let us assume, as an example, that the funection V , has the form as in Fig. 1
and was approximated by a broken line of » sections, where n =1, 2, 3, ..., N.

Viard

2 Ty=0y 29
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Fig. 1. The approximation of the function ¥ by a broken line consisting of N sections

I
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One can consider the section corresponding to an arbitrary nth section of the
horn contained between the points e, , and a,. The function V , can be appro-
ximated over this section by a linear function of the form

Voo Kttty : (23)

e U

where ¢, is the coefficient of directivity of the line. It can be given by the for-
mula
6 = JonpVey (24)
a, —a, 1,
After consideration of (23) the reduced wave equation (1) for a € [a,_,, a,]
takes the form :

P +[p2 =V _,+0alF =0. (25)
Introduction of the abbreviation
SEL
b, = i ) (26)
s ¢

n

permits equat}on (25) to be written in the following form
F' e, (a+b)F =0, (27)

One can first consider the case u? > Via,_ps i-e. when the quantity b, is po-
sitive. In this case equation (27) can by way of successive transformations be
. reduced to the form of a Bessel equation. -
After the ingertion

¢ =, (a+b,), (28)
equation (27) takes the form
da:r
B 0.
g HEF =0 (29)
After introduction into equation (29) of :
P =§ly : (30)
and '
2
% = EE”’, - (31)

equation (29) can be transformed into a Bessel fu,nctmn of the standard form

a1 d'v 1
—— = . 2
du? 2 u du +[ (3u)_’]v- : (32)
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The solution of this equation is Bessel functions of order % [4, 7]
b AﬂJ§(u> : BnJ-’-étu)’ (83)

where A, and B, are constants.
Consideration of formulae (30), (31) and (33) gives

F = f"zlﬁnJﬁ(ﬂﬁw) +B,J _ &(%53"2)] : (34)

It can now be demonstrated that the solution of (34) for-b, > 0 can also be
obtained for &, < 0. ; !

It follows from formula (28) that when [b,| < ¢ we have &> 0 despite
a negative b, and the foregoing argument (formulae (28)-(34) are still valid).

When, however, |b,| > a, & is negative and equation (29) takes the form

a:r
as?

In this case, without changing (30) a substitution different from that in (30)
must be used

—¢F = 0. (35)

w= i |gP, (36)

This substitution permits (35) to be rewritten in the form of (32), and the
expression of F takes a form analogous to formula (34)

F = 51’2[AnJ§(~45«1513’2) +B"J—%(—i§|513"2)] : (37)

On the basis of the foregoing analysis it can be stated that the linearization
of the function ¥ ,, permits the wave equation (1) to be transformed to the form
of a Bessel equation (32) and thus the function F can be given by the known
tabulated Bessel functions [4, 7].

Subsequently, using relations (28), (31) and (34) in the general relation (10)
a formula can be derived for the admittance* of the nth element of the horn
considered for &> 0. After transformations in which the recursive formulae
for derivatives of cylindrical functions need be included [7], it can be stated
that the expression for the unitary relative admittance of the nth element of
the horn for & > 0 has the form :

i Vﬁn(a+bﬂ) [J,_ﬁtﬁ_DnJ&(m] S Q' (38)
i J%m} +D ﬂJ—%tu) . @ '

ﬁﬂ:

* The notion of admittance is used here instead of impedance, since this permits simpler
mathematical expressions and from the point of view of the final results both notiorns can be
used equally well.
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The constant D, = B, [A, which occurs in formula (38) can be determined
from the boundary condition at the outlet of the nth element

Ala bV el b ol
—— n\ “%n n mgt(un) n %m,ﬁ € @y

i ——"t = Re(f,, )+Jm(ﬂn )y (39)
7 J%mﬂ) -{-—DRJ_%‘,HR) Oa, On+1 on+1/9

where, from (28) and (31),
b T e s el
uﬂ e ‘éﬁl/cn(aw,‘_'_bn)s! (40)

and f,  is the inlet admittance of the (n+1)th element of the horn.

The admittance of the other elements of the horn can be represented similarly
as for the nth elements, e.g. the inlet acoustic admittance of the whole horn
can be given by the formula for the inlet acoustic admittance of the first ele-
ment

G Vo |9 _gup = Do o) _( &') l’ an
* J%tuoﬁ +D1J-—%<uom ¢ /a=n
where, from (28) and (31)
R
wo = g Vol (42)

In practice B, is calculated in several stages, from the outlet to the inlet.
First the inlet admittance of the end element must be determined, considering
it as the load of the outlet of the previous element. Subsequently the inlet admit-
tance of this element ete. must be calculated.

Now the case when & = 0 (¥ = 0) will be considered. It follows from for-
mula (28) that this case occurs when b, is negative and satisfies the equation

@ = [b,|. (43)

. After expansion of the functions J joo and J _ $aw into series [7] and trans-

formations, formula (38) within the limits for # = 0 takes the form

| eearr(3)
AL = g (44)
u DRP(%) 0 |

where I' is an Euler function [2, 4].
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When (a-b,) in formula (28) is negative the case & < 0 occurs. In this case
expresgion (36) must be inserted into formula (38) instead of % and it must be

considered that Ve,(a-+b,) is an imaginary number. This gives

8 zi _ﬂ/cnla+T"|[J*‘g‘(“'iﬁ‘[ﬂs!zld_*D"J%(—’&[ﬂa/z)] “&gi (45)
n U J%‘(“%I*‘l”)+D”J”§(“§|5|m -l

The approximation in the present section leads as a rule to considerable
simplification of caleulations, compared to the WKB approximation, since it
permits the admittance of a horn (i.e. also its impedance) to be determined from
the known tabulated Bessel functions [4]. In addition, when compared with
the WKB method it has the essential advantage that it can be used in the case
when K, is not slowly variable.

4. Approximation of the zeroth order

Approximation of the zeroth order can be used practically in estimation
of the properties of horns when high accuracy is not necessary. It is assumed
in this approximation that A = const. It follows then from equation (9) that @’
must be constant, and thus @ is a linear function of a.

At the same time, in view of that from equation (8) 4 is constant, the appli-
cation of definition (12) gives 3

0'? = K2 = congt. (46)

Thus K must take a constant value independent of «. This value will be
given below as K.

It can be suggested that K should be defined as the square root of the mean
value of the function K}, in the interval [0, ;] eorrespondmg to the length
of the horn. This gives

i i ale :
& i [—— f K’da] ; (47)
a; ",
It follows from (46) that knowing K the phase @ can be calculated
0 = Ka. (48)

Thus, solution (7) of the reduced wave equation (1) will in this approxima-
tion have the form :

F = A exp(iKa) 4 Azexp(—iKa), (49)

where the first term of the sum in formula (49) corresponds to the wave tra-
velling from the inlet to the outlet of the horn, while the second term corres-
ponds to the reflected wave.

5 — Archives of Acoustics 3/81
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It can be noted that when K2 < 0 formula (49) takes the form
_ F = Ajexp(ja)+A4,exp(—7Fa), (50)
where
E = —iz. (51)

The present section can be concluded with formulae for the admittance of the
horn in the zeroth approximation. Formulae (49) and (50) in the general form
of (10) can be used for this purpose. The present consideration is limited to the
most frequent case when the wave reflected from the outlet of the horn is ne-
glected. This is the case of the so-called horn of infinite length [5, 8, 12, 15].
Accordingly the second term of the sum can be neglected in formulae (49) and (50)
and the formula for admittance, (10), takes for K2 > ¢ the form

e o
e oL (52)
Iad s e
In turn, for K2< 0
—ig i
=" 2 -2, (53)
Iz b e
and for the boundary case K2 = 0
T: !
p=—2-, . (54)
B oo _

The formulae obtained for the admittance have a similar form to the rela-
tions used generally in the literature for waveguides of a constant value of K
[8, 9, 12]. It follows therefore that the approximation given in this section lies
essentially in the substitution for a horn for which K is a function of position,
by a hypothetical horn of a constant, i.e. averaged, value of K. This procedure
can give satisfactory results only when the properties of the horn as a whole
are of interest. This is the most frequent case in practice where as a rule only
the frequency response of the inlet impedance of a horn is analysed. However,
the application of the approximation of the zeroth order for study of phenomena
occurring inside a waveguide is in the authors’ opinion a useless attempt.

5. A numerical example

The object of calculations illustrating as an example the results of the fo-
regoing considerations was a horn of catenoidal profile and annular cross-section
whose area is defined by the formule

8, = §,cosha. (65)
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Considerations in [13, 14] showed that the wave equation for a horn of this
geometry has no exact solution in a compact form. An analysis of the usefulness
of the WKB approximation, made according to section 2 shows that the funec-
tion K, cannot be considered as slowly variable, while the coefficient y (cf.
formula (22)) reaches the value of several score percent. In this case the appro-
ximate methods proposed in the present paper were used. Fig. 2 shows the re-

Re(ﬁa)]’
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0

Fig. 2. The real part of the relative unit inlet admittance of a catenoidal horn of annular

eross-section
— — — — the approximation of the zeroth order, the approximation of the function Va by a broken line

sults caleulated for the real part of the inlet admittance of the horn type under
consideration, with the dimensions: the width of the inlet ring — 1.5-10-3 m,
the length — 15-10-2 m, the diameter of the outlet — 2-10- m.

The calculations were made with neglecting the effect of the wave reflected
from the outlet. The continuous line in Fig. 2 shows the results obtained when
the method of linear approximation of the funection V. Was used, while the
dashed line represents the calculations in the approximation of the zeroth order.
It can be seen that in the case of the horn under consideration the approximation
of the zeroth order gives satisfactory results, compared with the much more
exact approximation by the linearization of the function V. since the devia-
tion does not exceed 15 percent.

6. Conclusions

The WKB approximation recommended in the acoustical literature for
approximate solution of the equation of wave propagation in horns [1,-3,.9, 107,
can be used above all for qualitative analysis of the transmission properties
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of horns in the cut-off frequency region. Its use in numerical caleulations is,
however, limited, since it cannot be applied in the case of horns for which K ,
does not satisfy the requirement of slow variation. In addition, even in its appli-
cability range, the WKB method may give very complicated formulae preven-
ting their physical interpretation and good for computer calculations only.

When compared with the WKB method, the approximation proposed in the
present paper, which consists in approximation of the function V,, by a broken
line, has the essential advantage that it can also be used in the case when K,
is not slowly wvariable. In addition this approximation tends to be less time-
consuming and more exact than the WKB method.

The approximation of the zeroth order can find increasingly wide applica-
tion in practice, above all due to the simplicity of calculations. It follows from
the numerical example given above that in some cases this approximation is
little worse in terms of accuracy than the more time-consuming approximation
consisting in substitution of a broken line for V ,. The essential fault of the ze-
roth order approximation, which is the lack of the possibility of analysis of
phenomena oceuring inside the horn, is from the practical point of view not
very essential, since it is particularly the inlet impendance of the waveguide
as a whole that is of interest in the calculations of acoustic systems.
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