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MUTUAL ACOUSTIC IMPEDANCE OF CYLINDRICAL SOURCES FOR A SPECIFIC CASE
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Higher Pedagogical School (65-069 Zielona Gora)

The paper analyzes the imaginary component of the mutual impedence
of two pulsating eylindrical rings placed on an infinitely long and stiff circular
eylinder. The specific case of the radius of the cylinder being considerably shor-
ter than the wave lengths of the acoustic waves radiated is considered. The
imaginary component of the mutual impedence was ecaleculated using the
HirererT transformation, based on the approximate expression for the real
component of the mutual impedance given by Rosry. Compared to earlier
results the formulae have a simple form, and are thus convenient for numerical
caleulations. These calculations are illustrated graphically.

1. Iniroduction

In the consideration of the acoustical properties of a system of sources,
significant interaction between sources should, in general be included. The
theoretical calculation of these interactions consists in the evaluation of the
mutual impedance of the sources.

It appears that the number of papers on the mutual acoustical interactions
of eylindrical sources is relatively smaill.

An exact expression for the mutual acoustic impedance of a radiating
system of cylindrical sources placed on the surface of an mfmltely long and
stiff cireular cylinder, was given by Robey [10]. He assumed that the sources
of the acoustic field consist of pulsating cylindrical rings of finite length. He
used a Green’s function for the calculation of the impedance. On account of
the axial symmetry of the radiating sources he used a Green’s function in & cylin-
drical coordinate system which is independent of the angular variation. For
sources on a cylinder whose diameter is short compared to the wave length,
he obtained an approximate formula for the mutual resistance.

The acoustic pressure and the mutual radiation impedance of rectangular
pistons placed on the surface of a stiff and infinitely long circular cylinder has
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been investigated by GREENSPON and SHERMAN [2]. The pressure distribution
on the baffle and the surface of the sources was obtained using the Neumann
boundary condition problem in a cylindrical coordinate system. The know-
ledge of the pressure distribution was used to determine the mutual impedance
of the two sources. They showed that the expression for the mutual impedance
of two rectangular pistons becomes in the limiting case the same as the formula
for the mutual impedance between two rings, which was given by Robey.

In paper [8] RpzANEK and WYRZYKOWSKI investigated the radiation
of a system of slits of finite length placed symmetrically on the surface of a stiff
circular cylinder. In order to derive the formulae for the mutual impedance
of two slits they used the Green’s function method, with dependence on all
three cylindrical variables [7].

The problem of the mutual reactance of two pulsating cylindrical rings
placed on a common cylindrical baffle was considered by Greenspon [1] and
TrowMPsON [12]. Referring to Robey’s investigations, they caleulated the mutual
reactance of two sources with the assumption that the sources are placed on
the surface of a cylinder whose diameter is shorter than the acoustic wave
length. The final approximate formulae obtained for the mutual reactance were
expressed by a single integral and an infinite series containing the axial funection,
which in the case of numerical calculations requires the use of a digital computer.

The use of the Hilbert transformation in the solution of the present problem
permitted the final formulae in this paper to be obtained in a form more conve-
nient for the performance of numerical calculations. The approximate expression
for the real component of the mutual impedance, given by Robey, was assumed
as the starting point. In addition to the trigonometric functions, only integral
sines occur in this expression. Using the known real component of the mutual
impedance, the imaginary component of the mutual impedance was calculated
and expressed in terms of trigonometric functions and integral cosines. The
numerical calculations are also illustrated graphically.

Notation
a — the radius of the eylinder
& — the wave propagation velocity
Ci(z) — the integral cosine (21)
i =y
In — cylindrical Bessel function of the mth order
k — wave number
K,  — cylindrical MacDonald funection of the nth order
l — half the source length
lys  — the distance between the surface centres of the mth and the sth sources
N, — eylindrical Neumann funection of the nth order
Pms — acoustic pressure from the sth source, acting on the mth source

v — the normal component of the particle velocity
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T — the complex conjugate of the complex particle velocity v
Vg — the amplitude of the particle velocity

Si(x) — theintegral sine (17)

Zms — the mutual mechanical impedence between the sth and the mth sources
0,,s — relative acoustic resistance (4)

6, — relative acoustic resistance of sources vibrating in phase
¥ms — relative acoustic reactance (4)

7 — relative acoustic reactance of sources vibrating in phase
{ms — relative acoustic impedance (3)

" — the initial phase of the particle velocity at the mth source

e — the density of the medium

a — the surface area

2. Assumptions of the analysis

It is assumed that there is a system of N harmonically vibrating sound
sources in & liquid medium on the surface of an infinitely long circular cylinder
of radius a, which acts as an ideal stiff baffle. The sound sources are pulsating
rings of the cylinder (pistons in the shape of cylindrical rings), each having
a length 21, and radius a (Fig. 1). The areas of the sources are equal and are
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Fig. 1. Rings vibrating on the surface of a circular cylinder

o, = 0, = ¢ = 4mal. The distance between the surface centres of the mth and
sth sources is I,,. It is assumed that all the points of the source vibrate in
phase with a constant amplitude in the radial direction, with a shift of the phase
of vibration occuring between individual extended sources. The normal compo-
nent of the amplitude of the particle velocity (the radial component) of the
mth source is equal to

Uy = Vo6 Om (1)

where v, is the amplitude of the particle velocity for the initial phase on the mth
source, o,,, equal to zero.
The mechanical mutual impedance of the sth and mth sources is [6]

1 : -
B ) f Pt do, (2)
dm

ms
Vos Vom
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where p,,, is the sound pressure from the sth source acting on the mth source,
while v}, is the complex conjugate of the particle velocity v,. From relation
(1) Do = Vom = Vom = V-

Relating the mechanical impedance to the characteristic resistance of
the medium, o¢, and the area ofthe source, o, we obtain the relative acoustice
impedance

Cma = Bms +1 Ams s (3)
where quantities
Re(Z,,) Im(Z,,)
e, — - B oo 4
ms oca y  Xms oco (4)

are the mutunal resistance and the mutual reactance, respectively.

3. Solution of the problem

Exact expressions for the mutual acoustic impedance of two sound sources
under the given assumptions, can be written in the following way [2, 9,10]:

/2

Ops = €08(3,— 8,,) [ ABcos (kly,sind)dd —
1:,’20 -]
—sin(d,—d,,)|[ [ ACcos(M,, sin®)dd+ [ +DBcos(k,, coshy)dy],  (5)
0 0
/2

Zoms = S0 (8,—8,,) [ ABcos (Rl sin#)d 9+
0

2 0

+008(8,— 8,) | [ ACcos(kl,,sind)dd+ [ DEcos(kEmcoshw)dw];
0 0

Using the following notation:
2  sin?(klsin )
mkl sin®9

2 1
" wka cosd[J(kacosd)+ N (kacosd)]

A =

?

J o (kacos?)J, (kacosd) + Ny(kacosd) N, (kacosd)
Ji (kacos?d) + N3 (kacosd)

2 sin?*(klcoshy)
7kl cos h*y

B - Ko (kasinhyp)

K, (kasinhy)’

0 =

_D=
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where k= 27w /2 is the wave number, JJ,, represents a Bessel function, K, — a Mac-
Donald function, and N, — a Neumann function (of the nth order in each case)
[4, 13].

In the calculation of the mutual impedance from (5) and (6), when ka < 1,
it is convenient to use the properties of cylindrical funetions which have simple
expressions for values of the argument. Thus the factors (8) and (9) can be redu-
ced to expressions containing elementary functions, and subsequently the
integrals over the range (0, w=/2) which occur in formulae (5) and (6), (see
[9, 10, 12]), can be calculated. This property cannot be applied to the factor (11)
which contains MacDonald functions with the argument kasinhy, since inte-
gration over the variable » in formulae (5) and (6) is over the infinite limits
(0, o) (see [1]). ;

To avoid the difficulty of the calculation of the integral over infinite limits
(0, o), another method will be used. Formulae (5) and (6) can be written in
the following way:

@ms = CO8 ( 63 e am) @?ns — sin ( 6.9 T ém) x;]ns? (12)
Xms = Sin(as““ am)@;]ns+eos(as— 6#:)%?713! (13)
where
/2
Ohs = [ ABcos(kl,,sind)dd, (14)
0
/2 o0
Py f ACcos (Kl sind)dd+ f DE cos(kl, coshy)dy. (15)
0 0

The quantities @), and ), represent the expressions for the mutual impe-
dance of the cylindrical sources obtained under the assumption that 8, = §,,
and thus that the sources are vibrating in phase.

The real component of the mutual impedance 0;,,, when ka < 1 andl,,, > 21,
is known and is [10].

O = Ul + 20 TSI O+ 2001 [l — 218 s — 201

klms

Si(klms)-—sin%leos(klm)}, (16)

where [3]

Si () :f i (17)

The imaginary component of the mutual impedance %),, is found by a Hilbert
transformation [5], [6], using the known real part of the mutual impedance (16).
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The Hilbert’s transform, in the notation assumed here, is written as

+00
1 Ohs ()
s (1) :?.i =g (18)
where we take the principal value of the integral. Observing that the real part
of the mutual impedance @}, in (16) is an even function of the wave number Fk,
the transformation (18) can be reduced to the form

ok @,
2ty =25 [ Omld) g, (19)

3_ 2
Ty k

To calculate the integral in formula (19), we refer to reference [11]; we
have

(=]

ySi(ay) pEsagr
f el ~ 5 Ci(ka) (20)

0

for a > 0 and k > 0, where [3]

Ci(a) = f f%s—tdt. ‘ (21)

To show that

- sin?(ay)cos (by) Tl :
f g W =g tin*(ka)sin(i), (22)

the equality
: 1 3] I
sin?(ay)cos (by) = 3 cos (by) — =2 cos(b-+2a)y — 5 cos(b—2a)y (23)

and [11] formula

oo

cos (by) g
R e 'b 24
f iy dy o7 sin (kb), (24)

0

for b > 0 and %k > 0, should be used. Inserting (20), (22), (23) and (24) into (19)
we obtain

Los = il {% (% (Lns -+ 20)1Ci [k (Ls +21) ] + % [k (bs — 20) ] CL [ (T, — 20) ] —
—-%klms(}i(klm)—f—sinz(kl)sin(klm)} (25)

for kl,, > 0, l,, > 2l, which is the expression for the imaginary part of the
mutual impedance of the sources for small values of the parameter ka(ka < 1).
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If 1,, = 21, i.e. when the sources are contiguous (see Fig. 1), we obtain

e, = % (k181 (4kl) — KISi(2k1) — sin® (k1) cos (2k1)] (26)
and

7 - % [%1Ci (4%1) — k1Ci (2 k1) + sin® (k1) sin (241)]. (27)

4. Conclusion

The calculation of the mutual acoustic reactance of two pulsating eylin-
drical rings on a stiff circular cylinder, performed using a Hilbert transform
gives a formula which is simple in form. The formula permits the analysis
of the acoustic interactions between cylindrical sources to be performed for
small values of the parameter ka.

From formulae (16) and (25) the mutual impedance of cylindrical rings
vibrating in phase can be calculated. The knowledge of the impedance permits
the mutual impedance to be determined in the more general case when the
sources do not vibrate in phase. Formulae (12) and (13) can be used for this
purpose. The formulae for the mutual impedance take a particularly simple
form when the sources are contiguous.

The dependencies of the mutual acoustic impedance on kI and kl,,, as
calculated from the formulae given in the present paper, are plotted in Figs. 2
and 3.
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Fig. 2. The plot of the mutual impedance of two contiguous rings (l,,s = 2I), against the
parameter kl = 2xl/4
curve I — resistance, curve 2 — reactance. It is assumed that a/l = 0.1
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Fig. 3. The plot of the mutual impedance against the parameter kly,s = (27/4)lps
curve 1 — resistance, curve 2 — reactance. It is assumed that kl = 1, a/l = 0.1
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