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LONG-TIME SPECTRA OF RADIO BROADCAST PROGRAMME SIGNALS*

DENES HUSZTY

Elektroakustikai Gyar, Budapest, Hungary

Long-time spectra of signals of different radio broadcast programmes
have been measured using the method of sample superposition (superposing
signals of statistically independent sections of programme signals, recorded on
tape, interpreted by ensembles with instruments of similar character). Spectra of
signals of different ensemble groups (set of ensembles of equal composition of
interpreters), having equal probabilities of occurrences, are caleulated. Using
programme policy statistics of three different transmitted programmes, the
probabilities of occurrence of different ensemble classes (sets of ensembles,
composed according to a rule) are calculated. Using these probabilities, the long-
-time-weighted spectra of the signals of three different radio programmes and
the averages of these spectra are computed. The values are only slightly depen-
dent on programme policy. A definition of the speectrally equivalent programme
signal and a network for forming it are given,

Introduction

The original aim of this work was to collect data published in the literature
in order to construct a network with the aid of which it would be possible to
simulate adequately the speectral properties of a long-time-average radio broad-
cast programme signal. Collecting the data, we found that there exists a consi-
derable amount of information concerning speech sounds, see e.g. [1]-[8],
and also concerning musical sounds, see e.g. [2], [9], [10]-[17], but the data
are insufficient for defining an artificial signal which has a power spectral density
gimilar to that of a long-time-averaged broadcast programme signal. We have
therefore conducted some work to obtain new data. This paper gives only
a brief introduction to the problem and some of the results achieved; a more
comprehensive review will appear elsewhere.

* Presented March 02. 1976, at the 53rd Convention of the Audio Engineering Society,
Zurich, Switzerland.
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The understanding of long-time-averaged spectra

It is evident that short-time statistical properties of the programme signal
depend mainly on two things:

(a) The kind of signal that is transmitted at the moment of the measure-
ment (e.g. speech or different musie pieces ete.).

(b) The kind of interpreters that are working together during the perfor-
mance (e.g. soloists with their given instruments or a symphonic orchestra,
etc.); more shortly: what is being played by whom. Therefore if meaningful
results of the short-time-statistical properties of the programme signal are to
be obtained, knowledge of this data is also needed.

In the case of the long-time-spectra of the programme signals there is
an additional problem: it is clear that these depend more or less on the program-
me policy of the broadeasting institution: a transmitted programme consisting
of serious music and another consisting of popular musie, must have very
clearly different spectral properties. Thus if we need a realistic picture of the
long-time speectral properties of an “average” radio broadcast programme
containing mixed programme items, measurements must be made over a time
interval long enough to ensure that different typical kinds of signals, generated
by different, typical kinds of interpreters oceur with typical frequencies.

1t is not difficult to see that it is practically impossible to make such
measurements because the time interval needed would be too long. We have
therefore chosen another way. Namely that if the spectral properties of typical
kinds of signals generated by typical kinds of interpreters are known, and
if the probabilities of occurrence of these signals over a long enough time are
known then we can calculate the long-time-spectral properties of the programme
signal. In other words: it is necessary to have an average over the programme
signals generated by sound sources of typical interpreters interpreting typical
kinds of programme items, weighted by the probabilities of occurrences of these
interpretations. This has been done in three steps as follows.

The theoretical background of the method

In order to obtain meaningful results some general assumptions have
been made for the signals measured [18]:

(a) The programme signals belonging to different programme items are
sample functions of separable, weakly stationary stochastic processes having
expected values equal to zero.

(b) These stochastic processes are completely independent and their power
spectral density funections exist.

(e) These stochastic processes satisfy all the assumptions necessary to
permit ergodicity of almost all of their first and second-order statistical pro-
perties, to be assumed.
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(d) The duration of measurements of the sample functions is long enough
to have a small statistical error but short enough to secure stationarity in the
weak sense. (For probabilistic concepts see e.g. [19].) We assume that the
programme signals considered fulfil all of these requirements. .

We should emphasize that according to these assumptions we are consi-
dering the programme signal measurable over a long time, as a linear sum of
sample functions of different stochastic processes, stationary in the weak sense
and ergodie in their first and second-order properties. This means that we give,
for example, to the speech waves of the different speakers, different sample
funections, and these sample functions belong to different stochastic processes.
The procedure used is the same for musie, also. This point of view has a signi-
ficance of a fundamental character and differs clearly from that used tacitly
in the literature where for example speech, as a whole, has been considered
as one stochastic proeess and the speech waves of individual speakers as sample
functions of this process.

As a consequence of these assumptions it can be shown [18] that the sum
of sample funetions of equal length has the same first and second-order statis-
tical properties (expected values, autocorrelation functions, powers, power
spectral distributions) as a sample of a signal whose consecutive parts are
the said sample functions added. This signal is then no other than the real
programme signal having a total length that of the summands. Thus it does
not matter whether the summing is performed mathematically or physically,
by which we mean the simultaneous observation — measurement — of a set
of sample functions of equal duration, belonging to different stochastic proce-
sses, i.e. belonging to different parts of programme signals of different programme
items of equal length.

1t is clear that each sample function has been generated by an ensemble,
i.c. the nonempty set of interpreters coworking in generating the programme
signal, corresponding to a given programme item. Consequently, each ensem-
ble — which can be a single speaker or a large symphonic orchestra — has
its typical sound generating instruments. These instruments are by no means
identical but are similar in their sound generating properties as ensembles
with the same composition of interpreters. We have thus defined an ensemble
group as the set of ensembles having a nominally equal composition of inter-
preters. This “equality” cannot be seen too strictly: each symphonic orchestra
is to be regarded belonging to the same ensemble group, in spite of a different
composition in practice. If we now choose, for each ensemble of an ensemble
group, different but typical programme material to be interpreted by their
sound generating mechanisms, then the statistical properties of the simultane-
ously observed sample functions will be typical for the group.

Using this train of thought we can achieve data for each of the different
ensemble groups. Now let us construct an upper level: we define a nonempty
set of different ensemble groups as an ensemble class where the composition
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of the class follows a rule. This rule cannot be similar to those of the groups;
it is better if we define it more or less according to the programme statistics
available. The concept, shown by Table I, seems to be self explanatory. The
statistical properties of a given ensemble class can be now calculated using
the above mentioned assumptions simply by adding the sample functions.
It should be noted that additivity is valid only for the expected values, the
autocorrelation funections and the spectral properties but by no means for,
for example, the long-time-averaged peak factor of the programme signal,
which can be only measured. Although there is a possibility of estimating the
least upper limit. ‘

Thereafter if we have the statisties of the occurrence of different items
in the programme transmitted, characterising the programme policy of the
broadeast institution, we can calculate the weighted averages of the data of
cach ensemble classe, where the weights are the probabilities of occurrence
of each ensemble classe in the statistics, collected over a long enough time
interval.

It should be mentioned that the simultaneous observation i.e. the measu-
rement of a set of superposed sample functions using sounds from different
speakers was originated intuitively by TArNOGCzY [6]. Probably because of the
lack of a sufficient theoretical basis he was of the opinion that this method,
called by him the “speech chorus method”, can only be used for speech sounds
[11]. It is however clear that it is by no means necessary to restriet this ingenious
method, which may perhaps better be called the “method of sample super-
position”, to speech sounds alone.

Method of measurement

In order to produce the superposed samples, i.e. to construct the programme
signal of an ensemble group, we have chosen, for each group, six different
two-minute long samples of typical programme items recorded on studio tapes.
These six samples were subsequently simultaneously copied onto a single
tape, using six studio tape recorders and a studio mixing desk, as shown in
Fig. la.

This sixfold record has been cut into four equal parts. After simultaneous
copying of these parts the record contained the superposition of 24 samples
of practically independent programme signals. This record of 7' = 30 s duration
was regarded as the programme signal of the ensemble group considered. A value
of T = 30 s was chosen for the length because musical phrases have approxi-
mately this length or less. The sound generated by this record is like a noise;
it is not possible to hear any kind of melody.

The spectral properties of this record have been analysed for rms and peak
power using setup shown in Fig. 1b, first over the whole audio frequency range
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Fig. 1. a. Arrangement used for reconstructing the programme signal of an ensemble group.
b. Arrangement used for measuring the programme signal of an ensemble group
I — 1st tape recorder STM 200/b, 2 1st line amplifier, 3 — kth tape recorder STM 200/b, 4 — kth line amplifier
4 — summing amplifier, 6§ — tape recorder STM/b (in a)) or STM 10 (in b)), 7 — 6th tape recorder STM 200/b*
§ — 6th line amplifier, 9 — programme level meter, 10 — input transformator B-Kj T1 0001, 11 — 1/3 oct.”
filter B-Kj 2112, 12 — level recorder B-Kj 2305

and thereafter in 26 different 1/3 octave bands, beginning at 50 Hz. The level
recorder has been used as an integrating instrument, with a 50 dB potentiometer
using 50 dB potentiometer-range, and a 20 Hz lower limiting frequency setting.
The writing speed was 2 mm/s. These settings oorrosponded to an effective
averaging time of approx. 12s [20].

Evaluation of the results

The results of the measurements have been evaluated as level differences
referred to the long-time averaged rms voltage level of the unfiltered signal.
The level of this has been chosen as the 0 dB reference level. In each case we
have calculated 20 logK, = L,—L,, where K is the long-time-averaged peak
factor and L, is the long-time-averaged peak voltage level referred to L, — 0 dB.
Then, using the measured results, we have evaluated the values of L,(f,.),
L,(f,) and 20logK,(f,) where f,(m =1,2,...,26) are the mid-band fre-
quencies of the 1/3 octave filters, beginning at f, = 50 Hz.

Using these data we have ecalculated the values 10 logN,[A(f;,)] and
10 log N, [n(f;,)]- The former is essentially N,[n(f;,)] the normalized power
spectral distribution, expressed in dB, as a function of the frequency f,(n
=1,2,...,26). The latter is then 10 log {1 —N,;[n(f;,)]}, also expressed in dB,
as a funetion of the frequency f,,(n =1, 2, ..., 26). Identifying f,, and f,,
as the last and first mid-band frequencies respectively of a low pass or high
pass filter, composed of 1/3 filters with ideal cut-off, 10 log N;[n(f,,)], and
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10 log N, [n(f;,)] give the proportions of the normalized power, expressed
in dB, in the frequency band occupied by these filters.

We have also caleulated logf,, the first spectral moment of the normalized
power spectral distribution as a function of logf, and also of,, 7, the variance,
belonging to this normalized power spectral distribution. f, gives the frequency
whose neighbour contains most of the power, while of,, characterizes the
“peakiness” of the normalized power spectral density, expressed as a function
of the logarithm of the frequency. Our results show that the normalized power
spectral density, as a funection of logf, has almost a gaussian shape. Using
this assumption the extension of the normalized power speectral density, i.e.
the frequency range Af = fuy —fara = 2k010es,, Where k is a nonnegative
number, contains approx. 68°/, of the total power if £ = 1, and approx. 99°/,
of the total power if k = 3. Therefore Af = f 4 —fa3a = 6010g7, gives approxi-
mately the full frequency range occupied by the spectrum of the programme
signal considered. Thereafter we have caleculated »,, frequency-weighted average
of the normalized power spectral density; small values give correspondingly
peaked spectral densities as a function of logf.
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Fig. 2 a, b. Long-time-averaged statistical properties of the programme signal of the ensemble
group ¢ = 3, ¥y = 2: pop group

Some results measured

. In order to demonstrate some of the results achieved Figs. 2a and 2b show
the long-time-averaged statistical properties of the ensemble group: a pop
ensemble, ¥ = 3, ¥y = 2. This was one of the ensemble groups whose spectrum
occupies the broadest frequency band. As Fig. 2a shows, L,(f,,), the long-time-
-averaged rms level, shows only a variation of about 5dB — as a function
of f,, the mid-band frequency of the 1/3 octave bands considered — over the
range from 63 Hz to 3 kHz. Most of the power — indicated by Fig. 2b — lies
near the first spectral moment f, = 457.2 Hz. The frequeney band occupied
is very large: Af = fu35 —fusa ~ 22 kHz.

Figs. 3a and 3b show the results obtained for the ensemble group: grand
piano, # - 4,y = 3. This has one of the most peaked spectra among the ensemble
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Fig. 3 a, b. Long-time-averaged statistical properties of the programme signal of the ensemble
group = = 4, y = 3: grand piano

groups considered, as can be seen from Table I. The extension of the normalized
power spectral density shown by Af, Af = fuu —fusa ~ 3400 Hz, is considerably
narrower than that of the pop group. :

The question arises whether or not the data achieved for a given group
is really characteristic of the properties of the group considered? In some
cases ‘the measurements were repeated using other programme materials for
composing the programme signal of the group. The results were quite similar:
there being no more than 2 dB deviation in the levels obtained. This shows
that the method of “sample superposition” is useful and adequate for obtaining
characteristic results. ;

In order to show why broad spreadings in the results obtained for different
ensemble groups exist, the reader is referred to see Figs. 4a and 4b, where iy Bl
denotes the interval oeccupied by the characteristics considered. We should
mention that this large spreading has been caused mostly by the very different
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Fig. 4 a, b. Intervals of long-time-averaged statistical properties of the programme signals.
of all the ensemble groups considered (see Table 1)



132 D. HUSZTY

properties of different ensemble groups of the ensemble class @ = 4: soloist.
These figures show that it is really meaningless to regard programme signals
belonging to different ensemble classes, as different realizations, i.e. sample
funections of a single stochastic process. This data shows that we cannot consider
speech or music waves as a single stochastic process, but each speech or music
signal should be considered as a different realization — different sample —
«of differing stochastic processes.

As a consequence of the above train of thought there is a need to group
the data once more. This grouping is equivalent to another superpositioning
but this can be made only mathematically. Therefore we should mention that
the data previously discussed was the result of measurements; the data which
will be shown subsequently is the result of computation.

Selected computed results

As a result of the assumptions made, we can calculate the programme
-signal of each ensemble class. The necessity for this can be seen in Figs. Ha
and b5b, which show the intervals occupied by the different data obtained for
the different ensemble groups # = 1, 2, 3, 4 of the ensemble class x = 3 (small
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Fig. 5 a, b. Intervals of long-time-averaged statistical properties of the programme signals
of ensemble groups of the ensemble class x = 3: small ensembles
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Fig. 6 a, b. Long-time-averaged statistical properties of the programme signal of the ensemble
class # = 3: small ensembles
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Table 1. Scheme of ensemble classes and groups

Name of Lnsunble

z | class EN group
1 | Large orchestrasf 1 | Symphonic orchestra
i i 2 | Military and concert band
| {3 | nght music 01chestrh
2 | Chamber music | 1 Strmg orchestra
| orchestras 2 | Wind orchestra e
3 Small ensembles 1 Danco “orchestra with and

~ without singer
| 2 ‘ Pop group
, | Jazz ensemble
| Folk onsemble

1

| Violin

| Violoncello
! Grand piano
| Cemballon
Organ

Soloists

6 ‘ Violin with grand piano

7 | Wind instr. with grand piano
| 8 | Singer with grand piano

1

2

.mmwta-|pu

5. . Stage ensembles

| i Ensemble for opera

\ Ensemble for operette

6 '§I_Mlxnd smgmg
' choirs | {

Voices =y Ma.le véiécj FEELs
I 2 | Female voice
' 3 | Radio drama

ensembles, see Table 1). The data shown in these figures should be considered
typical of the spreading of data for the ensemble groups of a given ensemble
class. The results of computations for the ensemble class: small ensembles,
& = 3, are shown in Figs. 6a, b. Although calculation of the long-time-averaged
peak powers L,, L,(f,) and peak factors K, , K,(f,) is strictly not possible,
we have calculated these by summing valuos of. the different groups of the
class considered on a linear basis, i.e. we have added the peak powers of the
programme signals of different ensemble groups of the ensemble class. These
values are indexed by dp. The maximum peak powers and peak factors are
marked by = before the abbreviations. Other marks have the same meaning
as before. Fig. 6b shows that the first spectral moment of the programme signal
of this ensemble class is at f, ~ 425 Hz and the frequency band occupied by
the spectrum of the programme signal of this class is approximately Af
A~ 12.26 Hz.

We have also caleulated data belonging to each of the ensemble classes
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of Table 1. The differences between the data from the ensemble classes were
then considerably smaller than the data from different ensemble groups as
a consequence of the averaging, but large enough to indicate that they are
characteristic of the properties of the programme signal of the ensemble class
considered.

The weighted programme signal

The next step was the collection of the statistical data on the occurrences
of different programme items in different radio broadcast programmes. Data
was found [21] for different quarters of different years, denoted by k. Naturally,
this data had been originally collected for an other purpose, so that it was
necessary to perform some transformation before using it. The method of trans-
formation and the method of calculation of the probability ,W,, of the occurrence
of a given ensemble class in a given quarter of year k, are shown in Table 2.
This validates our method of grouping ensemble groups into ensemble classes
according to the classification in Table 1.

Table 2. Method of caleulation of Wy, the probability
of occurrence of different encemble clasges in a given
quarter of a year k

(programme time of symphonic music + military
1 or concert bands + light music 4 1/3 of the
presentation of popular education) - (full pro-
gramme time)~!

(programme time of chamber music + 1/3 of
2 | the presentation of popular education) - (full
programme time) !

(programme time of dance music 4+ pop music
3 + jazz music -+ folk musi¢c + morning musical
programmes) - (full programme time)—!

{(programme time of solos + songs) - (full pro-
gramme time)—!

(programme time of operas - operettas + p[ﬁ?ﬂ
5 of them + 1/3 of the presentation of popular
| education) - (full programme time)—!

Mixed sfnging choirs ey
6 (programme time of choruses 4 mass songs) x
% (full programme time)~!

6
Tl A=W
x=1

s




135

LONG-TIME SPECTRA

There were only two sorts of programmes which were somewhat outside
our method of grouping, namely the presentation of popular education and
morning musical programmes. However, the second dealt with music, played
by large or chamber orchestras, or by some kind of stage ensembles, inter-
connected with some speech of much shorter duration. We have therefore
divided this programme time into three equal parts and these have then been
added to the programme times of the above mentioned ensemble classes. The
morning musical programmes correspond in their contents — apart form the
short periods of speech connecting the music — with those of the pieces inter-
preted by small ensembles.

In Hungary three different radio programmes are broadcast. Taking this
in account we have collected data and have calculated the weighted long-time-
spectral properties for each of these different radio broadeast programmes
and also their averages. Fig. 7 shows the probability of oceurrence of the diffe-

e | _W=026 &= 0022
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B2 g S ig 0T e 28 32k
Vouh 0,06 6= 0013
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0 “ ] $85m 16+ 1201+ 26128132
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Fig. 7. Rounded probabilities of occurrences of O 1§ 5 6 20 2% 28 32
different ensemble classes, ,W;, as a function of o
the quarter year k, beginning at 1965. The data el N ;
is the average from three different programmes. .
W are averages over k and ,o are the standard MW
deviations of the occurrences , W, averaged over gf; w03 6= 0,037 T

the three different programmes, of the ensemble . P SR e ;
olash o -5 i BTN NG AP 200 3R

rent ensemble classes, ,W;, @ =1,...,7, as a function of k, the index for
a quarter of a year, beginnning at 1965. This data is the result of an averaging
over the probabilities of occurrences of the three different programmes. Fig. 7
shows o, the standard deviations of occurrence of each of the ensemble classes
of these programmes, and time averaged data. It is clear that the probability
of occurrence of different ensemble classes is quite uniform as a function of
k, i.e. time, showing stability of the programme policy of the broadcast insti-
tution.
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It is also interesting to analyse the mean values ,W and standard deviations
,0 of probability of occurrence of the different ensemble classes in the different
transmitted programmes, as shown in Table ITI. The last column of the table
gives the averages of the three different transmitted programmes, which
are also shown in Fig. 7. The deviations between the mean probabilities ,W
obtained for the different programmes are not too severe.

Using these mean values, ,W, we have calculated the weighted averages
of the programme signals of different ensemble classes, on a linear basis for
each transmitted programme, called the programme signal of transmitted
programme 1, 2, or 3, by adding the probability — weighted powers. The
weights here physically correspond to power gains. It is interesting to note
that in spite of the fact that the differences between the spectral values obtained
for the three different programmes are not larger than 2 dB, as shown in Figs.
8a, 8b, there are considerable differences between the frequency ranges occupied
by these three different programmes:

1st programme : Af; ~ 6.9kHz, f, ~ 4562 Hz;
2nd programme : Af, ~ 9.0 kHz, f =~ 470 Hz;
3rd programme : Af, ~ 10 kHz, f,~ 512 Hz.
Average of 14243 programmes : fooan 9.2 kHz, fo, .., ~ 477 Hz.
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Fig. 8 a, b. Intervals of long-time-averaged statistical properties of programme signals

weighted by ,W, the rounded mean probability of occurrence of different ensemble classes,

averaged over the three different transmitted programmes. Values of the weights are given.
in Table III
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Fig. 9 a, b. Statistical properties of the long-time-averaged programme signal
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Taking the data of Table 3 into consideration we can say generally that.
the bandwidth Af of a programme signal is particularly dependent on the
probability of musie occurring rather than speech, i.e. of the ratio ;W (1 —. W)k
The smaller this ratio is, approximately, the wider will be the bandwidth Af.
There is also another interesting consequence: a diminution of this ratio causes.
a growth of the first spectral moment f,.

Thus it is evidently possible to define a hypothetical programme in which
the probability of the occurrence of different ensemble classes are the averages
of the values obtained for these three different programmes. The mean values.
of these averages are given in the last column of Table 3. Using these average

Table 3. Rounded mean probabilities, W, and stan-
dard deviations .o, of the occurrence Wy, of different
ensemble classes in different transmitted programmes

W Marks of transmitted programmes

x° No.l | No.2 | No.3 | Averages
s |‘ 020 ‘ 026 0.31 | 0.2
@ | 0043 1 0.039 0.035 0.022
oW | 0.03 | 0.04 0.12 . 0.06
40 0.0064 | 0.0096 0.028 | 0.013
W 0.23 ‘ 0.21 == 00 0.19
a0 0.052 | 0.047 0.035 0.032
W 0.02 0.03 0.06 0.04
0 | 0.005 | 0.0044 0.016 | 0.0065
sW | 010 0.11 . 0.18 0.13
50 0.014 | 0015 | 0.3 0.054
oV 0.01 - 0.0l 0.02 0.01
o | 00025 |  0.003 0.011 0.0035
W | 041 | 034 0.16 l 0.31
70 | 0036 ‘ 0.041 0.054 | 0.037

values for weights, we have calculated the weighted long-time-averaged statis-
tical properties in the same manner as discussed above. The results are shown
in Figs. 9a, 9b. These are really averages in all respects because we have first.
averaged in a given ensemble group, using 24 independent samples of the
programme signals, characteristic of the ensemble group considered; then
we have averaged data between ensemble groups and thereafter we have weigh-
ted these averaged values with an averaged programme statistics where the
last averaging procedure has been made using data from 34 quarter years
and from three different transmitted programmes. Our procedure therefore
justifies calling the data obtained the long-time programme signal.

We should mention that calculating the weighted average values, regar-
ding the probability of occurrence of different ensemble classes. as equal, we
obtain results having only small (one or two dB) differences. from the values.
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weighted by the different or by the average programme statisties. Thus in
general most of the spectral properties of the long-time-averaged programme
signal are quite insensitive to the probability of occurrence of our ensemble
classes. This is clearly a consequence of our using a considerable number of
ensemble classes.

Spectrally equivalent programme signal

It is now possible to construct a spectrally equivalent programme signal,
by which we mean the output of a linear, passive or active network fed by ran-
dom noise of gaussian probability distribution and of constant power spectral
«density in the frequency range of at least 31.5 Mz-16,000 Hz, where the fre-
quency response of the network corresponds within close limits to the power
spectral density of the long-time-averaged programme signal.

We have therefore calculated L,(f), the power spectral density level of
the long-time programme signal integrated power density level L,(f,), shown
in Fig. 9a, simply by subtracting 10 log Af,,, where Af, is the power band-
width of the 1/3 octave bandwidth filter of mid-band frequency S In: order
to obtain a filter as simple as possible, we have chosen for the tolerance limits
of the speetral density function, the upper and lower curves drawn by the
thin lines of Fig. 10. The calculated power spectral dénsity level L,(f) lies
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Fig. 10. Tolerance band of the spectrally equivalent programme signal. The curve drawn
with a thick line is the power spectral density of a white noise signal weighted by the network
of Fig. 11

approximately in the middle of this tolerance band. The curve drawn with
4 thick line on this figure shows the measured frequeney response of the network
shown in Fig. 11. Our tolerance band appears to be broad enough to have
@ simple network but also narrow enough to obtain practically a close approxi-
mation to the speetral density level of the long-time programme signal. The
output of the network, fed by white noise, measured by using an 1/3 octave
band-pass filter of Briiel & Kjaer Type 2112 is shown in Fig. 11. The results
obtained for the 1/3 octave band levels in the bands from 63 Hz to 12.5 klz



LONG-TIME SPECTRA 139

had midfrequency deviations of no more than 2 dB, referred to the levels L,(f,.),
shown in Fig. 9. Taking into consideration that the tolerance band of Fig. 10
contains all the results obtained for the three different programmes, as well
as for the case of an equally weighted case, there seems to be no reason to make
this tolerance band narrower.

Fig. 11. A weighting network, fed by white noise, to obtain the spectrally equivalent programme
signal. All component values are of tolerances of +1°/,. The power spectral density of the
output signal of the network is shown by Fig. 10, thick line

Discussion

It is very interesting to compare our result expressed as a power speectral
level to those existing in the literature. Fig. 12 shows (with a thick ecurve)
our results and the thin lines are the proposed limits of the tolerance band.
We have drawn data published in [13], Fig. 5, for two different programmes,
measured and calculated taking into account the daily statistics of different
kinds of programmes. Fig. 12 also shows the results of [14] Fig. 9. These have
been obtained by measuring representative samples of normal broadecasting
programme items (classical and light musie, jazz and speech) having a duration
proportional to their relative occurrence in the daily transmitted programme.

As Fig. 18 shows there is satisfactory agreement between the different
results in the frequency range of 50 Hz-3 kIlz but outside this range, the data
shows quite large deviations (particularly that taken from [14], Fig. 9). This
is very probably due to the small nummer of programme items as well as to
the measurement and evaluation procedures used. The data given by [13],
Fig. 5, shows, over the whole frequency range for which it has been published,
i.e. from 40 Hz-8 kHz, good agreement with our data.

Unfortunately we have not found any other data published in the litera-
ture. Our results, and the data presented concerning the spectrally equivalent
programme signal seem therefore to provide a solid base for future investi-
gations.
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Fig. 12. L.(f,), the long-time-averaged power spectral level of the long-time programme

signal, integrated in 1/3 octave bands of mid-band frequencies of Lo(fm), the long-time-

averaged power spectrum level of the long-time programme signal, both referred to &5

the long-time-averaged power of the unfiltered long-time programme signal. Points and
circles are results of other investigations (see text)

% — data for transmitted programme No, 1, @ — data for another transmitted programme No, 2 Both are
averaged for one day, After [12], Fig. 5, O — data of a transmitted programme signal, caleulated for a year.
After [14], Fig. 9. The thin curves border the tolerance band proposed for the spectrally equivalent programme

signal
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