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INFLUENCE OF RIBS ON THE ACOUSTIC BEHAVIOUR
OF PIANO RESONANT PLATES

U. MULLER

Institut fiir Musikinstrumentenbau (9657, Zwota GDR)

The eigenfrequencies and vibrational modes of a simply supported stiffened
rectangular plate are determined by means of perturbation method. Additional
eigenmodes are excited by the presence of ribs and the eigenfrequencies
are shifted. A qualitative evaluation of the influence of these additionally
excited modes on the sound radiated shows that under certain conditions the
ribs ean improve the sound radiation of a resonant plate.

Glossary of symbols

B — modulus of elasticity

h — plate thickness

o — DPoisson’s ratio

A3 — biharmonie operator

& — vibrational displacement of plate

0 — density of plate material

i — time

) — angular frequency

" — unit veetor in a normal direction

z, 9 — (Cartesian coordinates

a, b — plate dimensions in the z- and y- directions respectively
Ymn — eigenfunctions of the biharmonic operator
Oms — eigenfrequencies of the non-stiffened plate
i, k, m, n, v, 8 — integers

Eir — eigenfunctions of the stiffened plate

V,L — perturbation quantities

Seh(z,y) — switch funetion

d — thickness of the ribs

J — second order moment of the rib area

Sp — cross-sectional area of the ribs

Qunie  — coefficient

o — N-th approximation of the eigenfrequency of the stiffened plate vibrating in tire,

(4, k) mode
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wp(k) — eigenfrequency of the ribs vibrating in the (k) mode

hp — rib height

Lg — wave number of the acoustic field

i -f=-1

P — sound pressure

wip — velocity of the stiffened plate vibration, (i, k) mode

Uann — velocity of the unstiffened plate vibration, (m,n) mode

Pik — sound pressure generated by the stiffened plate, vibrating in the (¢, k) mode
Vmn — sound pressure generated by the unstiffened plate, vibrating in the (m, n) mode
r, %, @ — polar coordinates

or — density of air

< — sound velocity

ki — plate bending wave number

¥ — acoustic power radiated

8 — radiation efficiency

1. Introduction

A large number of methods for calculating the vibrational modes and
eigenfrequencies of stiffened plates have been published previously. Two papers
which are of special interest for the present purpose will be mentioned here:
Kirk [1] determined the natural frequencies of the first symmetric and the
first antisymmetric modes of a simply supported rectangular plate which is
reinforced by a single integral stiffener placed along one of its centre lines;
while KoviNsKAJA and NIKoForov [2] investigated the field of flexural waves
on an infinite point excited plate with two or three ribs.

There are also a large number of papers dealing with the interaction of
flexural waves on a stiffened plate with the acoustic field in the surrounding
Toom. MAIDANIK [3] used a statistical method for estimating the response
-of ribbed panels to acoustic excitation. RoMANOV [4] and [5] calculated the
sound radiation from an infinite stiffened plate which is excited by a stochastie
force between the ribs, and EVSEEV [6] discussed the sound radiation from
an infinite plate excited by a harmonie force. All these papers show the immense
mathematical difficulties which are connected with the theoretical treatment
of the vibrations of a stiffened plate, and the sound field generated by these
vibrations.

For this reason, simplifications have to be made, and these are determined
by the intended practical application of the results. In order to investigate
the acoustic behaviour of resonant plates in musical instruments, the eigen-
modes and eigenfrequencies of a rectangular simply supported stiffened plate
will be determined. The ribs are assumed to be parallel to one boundary of the
plate. Both assumptions: the simple boundary conditions and a simple arran-
gement of the ribs, are necessary to make the problem mathematically mana-
geable, without lengthy digital computation.
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2. Eigenmodes and eigenfrequencies of a stiffened plate

Flexural waves on a thin plate may be described by the differential equa-
tion
Eh? o¢
—— /A2 h— = 0.
121—oy Ti e
This equation is derived for instance in [7] and [8]. We confine the discus-
sion to sinusoidal time dependence. Thus differentiation with respect to time
may be replaced by -+ jo. This leads to

Eh?
12(1 —o?)
In order to determine the eigenmodes of a finite plate this differential
equation has to be solved with consideration of the boundary conditions.
In the case of a simply supported plate, the displacement and bending moment
are zero at the boundaries:

A2E —w?ph& = 0.

N

E= 0, ..and — = 0.

For a rectangular plate with boundaries at * =0 and # =a and y = 0
and ¥ = b we can write these equations as

Eh? [ o & &

12(1 —o?) ¢ a3

p20y? oy

&-—Olf.L':O orx =a,ory =0,ory =b; 825/(’m2—01fy =0 e y==lp
gtEioy: =0 i o =0, 0r gy =g
The solution of this eigenvalue equation is

: 'nmﬂ w&,inﬂnq
= ——8In— .| S
pe i Fah Tt I
(O v as Dy M % =1,2,3,...) (2)

with eigenvalues

Ert  [[m=\* [nx)?
Dy = = S e T (3)
12¢0(1 —0?) a b
The ribs influence the plate vibrations by virtue of their stiffness and
inertial mass. Since, however, these are assumed to be small compared with
the stiffness and inertia of the plate itself, the use of a perturbation method

is justified. The differential equation for a stiffened plate may then be written
as '

Eh?
SACEY + L) ohwy | &, = 0. 4
[12(1 02) (1 ) oh u.]‘sm 0 (4)
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V&, is the stiffness force and Lphw,;&,; — the inertial mass force of the
ribs which act on the plate. For ribs parallel to the y-axis we have
BJ ot N
V =—8ch(x) — and L =—28ch(x).
d oy oh
Sch(x) is a switch funetion with a values of 1 at the places where there are
ribs and 0 elsewhere.
The eigenfunctions y,,, of the plate differential equation (1) form a system
of normalized orthogonal functions. It is therefore possible to find the solution
of equation (4) in terms of a series:

S = Zwmnamnik' (5)
m,n

According to the assumptions of perturbation method all the terms except
that with v, are small. This is identical with the statement that a stiffened
plate vibrates essentially like the corresponding unstiffened plate, but with
some small amplitude vibration of additionally excited eigenmodes, i.e. for
every approximation N, aft), = 1. The other coefficients a,,,; are calculated
by means of an iteration method which is performed by inserting the series (5)
into the differential equation (4) of the stiffened plate:

(0)2 al¥-1
+2 ikrs rsiA

(¥ - 6
Wiy = N=1) 2 (6)
< 1 + Z L;krs rsik )
N-—1 N 2 a@d=1(N~-1
..2 Vmwrva’g-ﬂk ) — ( ; S‘ anrfc railk " ;
e 5 -
a"nmik RN et 2 R, et S TR | (")
U wm

with
a b a b
V-mn.rs i ffwmﬂvw”dmdy) anrs == ffwnmL")Drsdmdy'
00 0 0

The method is started in the zeroth approximation with

)
Wyp; = Wy

o _J1 form=4iand n==r,
muik 10 otherwise.

We note that in the zeroth approximation, the eigenfrequencies and vibra-
tional modes of a stiffened and an unstiffened plate are the same. Insertion
of the zeroth approximation into equation (6) yields the eigenfrequencies of
the stiffened plate in the first approximation, and this inserted in turn into
equation (7) yields the coefficients a,,,; in the first approximation. Using the
first approximation and equations (6) and (7) we may obtain the second one
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and so on. If some of the eigenmodes of the differential equation (1) of the
plate are degenerate, i.e. they have the same eigenfrequency, some of the coeffi-
cients a,,,; become infinite, and the series (5) diverges. The problem may be
made manageable by using linear combinations of the degenerate modes in
such a manner that the corresponding V., and L,,; become zero and the
diverging terms are eliminated.

Let us assume that the ribs are situated at #, and their thickness is small
compared with the flexural wave length, so that we hawve

ZEJ
Vianrs = - ( ) y%m ,sin Ewa- &

28 mm o7

R . = T

Lnys = - y sin o ,8in e WA
»

where

{1 for # =4

iy :
#s ¢ 0 ‘otherwise.

The first approximation is then written as

w3l

i 3 ’
2SR e
1+ sin — x,
ah Z a
28, | EJ [k= mw iw
L A Tsay I ‘l) - R . N. gl # 6
() sin @, sin a,0.,
(1) ah [ oSp ( b ) = ] v @ a s
o)), = ———— o s

mn — @ik

Using the cigenfrequency equation of the ribs,
EJ [ kr
bt =2 (4%)

Q’SR

the first approximation is written as

2 ] a - 2
olIF (ﬂ) e e 1) — o ),

ik Wiy .
Sp i
E4=—E Misin i o
Al = (sm a .r,)

i SR AN e 0)?
iz = PR _w(1J2 (@g(k) — W)
mn
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From the equations it can be seen that eigenfrequencies are shifted by the
ribs and additional eigenmodes are excited. The vibration amplitude of these
additionally excited modes is much smaller than that of the original mode
(in which the plate would vibrate if it had no ribs).

If the eigenfrequencies of the ribs for a given y-component kz/b of the
flexural wave number are smaller than the corresponding eigenfrequencies ;.
of the unribbed plate, the eigenfrequencies w{ of the ribbed plates are smaller
than those of the unribbed one, and the interaction of ribs and plate is mass
controlled. For higher rib eigenfrequencies, the eigenfrequencies of the ribbed
plate are higher than those of the unribbed one, and the interaction is stiffness
controlled. If an eigenfrequency of the plate is equal to the corresponding eigen-

o d
N =
Q;

£
o0l t- ~ Sg=d-hg
i
OAs1
06

0,781

a

Fig. 1. The distribution of ribs on the plate
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Tig. 2. Eigenfrequency of mode (6,6) Fig. 3. Coefficients a,,,; for

mode (i, k) = 6,6 (for n + 6,
Wi = 0)



PIANO RESONANT PLATES 153

frequency of the ribs, the frequency shift (and the amplitudes of the additionally
excited modes) become zero.

The calculation of the coefficients a,,,,; shows that if the ribs are equi-
distant only a few modes are additionally excited, and most of the a,,,;;, become
zero. In the case of nonequidistant ribs a large number of modes is excited.

The eigenfrequency o!) and the coefficients a!l), of the plate shown
in Fig. 1 are given in Figs. 2 and 3 for the (6,6) mode for different rib heights..
It can be seen that for h;, < 9 mm theribs act like an additional mass. The eigen-
frequency is lower than that of the corresponding unribbed plate, the coefficients.
@, ¢ are positive for even m, and negative for odd m. For hy > 9 mm the
ribs act like an additional stiffness. The eigenfrequency is larger than that of
the corresponding unribbed plate, and the coefficients a,.q are positive for
odd m and negative for even m.

3. Sound radiation

The acoustic wave radiated by a baffled panel can be found from Rayleigh’s:
integral. The acoustic pressure in the farfield produced by a harmonically
vibrating plate can be obtained from the integral

Jksr

dx
P:k( b, 9)= —jksore ff’”f«:r. , y)exp [—J (—‘) 7 (ﬁy )] dxdy, (3)

where
a = kgasindecosyp, -
p = kgbsindsing,

r, # and g are the polar coordinates of the field point and wj, is the surface
velocity distribution which, in our case, may be written in terms of the series

u;k = sz YunPmnix = Zumn ‘mnil; *
m,n
- The sum represents the vibrational modes of the plate from which the
velocity distribution is obtained by differentiation with respect to time (in case
of harmonic vibration this means multiplication by jm). Thus the sound pressure:
may be expressed in terms of a series

p-:'k 5 2 Prun@pnirs
m,n

where p,, is the sound pressure generated by the velocity distribution u,,,,
which is the welocity distribution of a harmonically vibrating unstiffened
plate in the (m, n) mode. The sound pressure field of a stiffened plate vibrating
harmonically in the (¢, k) mode is the superposition of the sound pressure
fields of the corresponding unstiffened plate vibrating in several modes (m, n)
with amplitudes a,,,; at the same frequency w.
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The radiated power may be calculated from the formula

P, ::f ]p"‘i‘ r2sin ddddy,

P f ‘p"“ r2sin ddddgp -+

*
2:‘! /2 2 pmnpr,sa‘-mnika"rsik

% [ f neFimn) . risinddddp+
“‘ 3 OLG

L

i w2 [pm nl mnzk

+ f f ’“*“’* risin ddody, (9)

where pJ, is the complex conjugate of p,,. The first term represents the power
which would be radiated by the corresponding unstiffened plate vibrating
in the (i, k) mode, and the third term represents the power radiated by the
additionally excited modes. The second term results from the interaction of
the different modes.

The influence of the ribs on the sound radiated by a stiffened plate may
be understood by investigating the second and third terms of [9]. For this
purpose the results obtained by WALLACE [9], who analyzed the radiation
resistance of a rectangular panel, are very useful. Wallace studied the energy
radiated by a mode of a harmonically vibrating simply supported panel, in
the farfield.

For high frequencies, if kg/k; > 1, the radiation efficiency § is equals
to one. For low frequencies, if kg/ky < 1, when m and # are both odd integers,
the radiation efficiency is proportional to the square of the ratio of the corres-
ponding wave numbers, 8 ~ (kg/kz)*, when m is odd and » is even or, vice
versa, 8~ (kg/kg)!, and, when m and n are both even integers, 8 ~ (kg/k)°.

Since a,,,; < 1 for n # i and » = k the ribs can have a substantial influ-
«ence only when the mode in which the unstiffened plate would vibrate radiates
«comparatively little energy and the additionally excited modes have a rela-
tively high radiation efficiency. For example, for modes with both indices
even, the first term of equation (9) is small, and the second has a dominating
influence, for kg/ky <1, if modes with one or both indices odd are excited. If,
for odd m,

it Cikike = Pnnie > 0y
‘that is if the plate ribs interaction is stiffness controlled (h;, > 9 mm in our

example), the ribs enhance the radiation of sound in modes which originally
had a small radiation efficiency.
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If, for odd m,

Cni Vigie = Opmnir < 0

i.e. if the plate ribs interaction is mass controlled (&, < 9 mm in our example),
the ribs diminish the radiation of sound in modes with a small radiation effi-

cieney.

4. Conclusions

Ribs cause an ecigenfrequeney shift. Ribs of small height diminish the
plate eigenfrequencies, while ribs of large height increase the ecigenfrequencies.
In the first case the plate ribs interaction is mass controlled, and in the second
one stiffness controlled. In addition, the ribs modify the sound radiation of
the plate, in particular for those modes which originally have a low radiation
efficiency (modes with both indices even and to some extent modes with one
index even and one index odd in the low-frequency region, kg/kp < 1). Ribs
of small height diminish sound radiation, ribs of large height enlarge the sound
radiation in these modes. However, this effect is significant only in the case of
nonequidistant ribs. Thus it is possible, in principle, to equalize the frequency
response of the plate by adjusting the heights and spacings of the ribs.
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