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ACOUSTIC IMPEDANCE OF AN ISOTROPIC MEDIUM FOR RAYLEIGH WAVES
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Institute of Physics, Silesian Polytechnic (44-100 Gliwice)

The acoustic impedance of an isotropiec non-piezoelectric medium has
been determined for Rayleigh waves. The numerical values of this impedance
are very different from the values of the impedance of the medium for a plane
bulk wave.

1. Introduction

Analytical solutions of the problems of elastic surface wave propagation
are known only for a limited number of half space configurations (Lamb, 1904),
and for the simple layered media (Ewing at al. 1957). The problems connected
with wave propagation on the surface of a bounded medium containing step
discontinuities are complex in so far as it is difficult to give analytical expres-
sions deseribing the behaviour of Rayleigh waves in these cases. Only the solu-
tions for a single discontinuity (Tuan, 1974) are known. Nevertheless the problem
is important in view of the wider application of systems with surface wave
containing wave-guide discontinuities in such electronic devices as resonators,
bandpass filters, code filters ete.

The properties of complex wave-guides can be easily examined with the
use of equivalent circuits. The quantity characterizing a wave-guide medium
is the acoustic impedance. The conditions of surface acoustic wave propagation
of the Rayleigh type differ from those of plane bulk waves. The characteristic
impedance of the medium for this type of wave differs from the analogous
quantity for bulk waves.

In this paper, the acoustic impedance of Rayleigh waves in an isotropie,
non-piezoelectric medium has been determined.

2. The acoustic impedance of Rayleigh waves in a plane surface layer (x; — 0)

Let us assume that the wave propagates in the @, direction, in the T10g
plane. The «, axis is directed towards the centre of the medium which is isotropic
and non-piezoelectric. The component displacements of particles in the medium
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from the state of equilibrium will take the form [1]:
u, = [Aike ™ —fBe 3] ¢fkx1— 0
4y =0, (1)
Uy = [ —ade™ "% —Bike P2a]¢m1—h)
where a, f are decay constants,
@ = —alal, B =F¥—old, 2)
a, and a, are the velocities of the bulk longitudinal and transverse waves respec-
tively, o is the angular frequency, and & is the Rayleigh wave number.
Using the condition of the stress vanishing on the free surface of the medium
(1],
g =0, (3)
we shall express amplitude B by amplitude 4 in formulae (1). The components
of stress acting in the medium will have the form:

T, =01u+0s, T;=05, T3=0;3+0s5. (4)
In the case of a thin layer (z; —0)
T, = oy, T, = 0y, T, =0. (5)

Denoting the stress tensor by the strain tensor for the isotropic medium
(2],
0y = 2peg;+ Adyep, (6)
where
5 _{1 for 1 =4,
= 0 _for i #j,

and A, p are the Lame coefficients, we obtain:

2 . oKt 1.
1'1:—(2;4+A)Ak2[1— af ]e""”1+1Aa2[1— ]e"“”l,

k2 + ﬁﬂ kz + ﬁz
2k 2 .
ﬂqufP_Eﬁﬁl_Wb‘vf%nﬂm (7)
Ta == 0 .
The components of the velocity vector for particles in the medium are:
d 2
v, = Uy erkiails [1__ zaﬁz]eika:l,
dt 2-'32-0 k + ﬁ
du 3 '
%S et (8)
at gm0
dug . 2K 0
o e = 1— i
Vg ¢ Aiwa [ e ] e
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Denoting the components of the acoustic impedance vector of the medium
in the @, direction as

I.
Zai=__la ?;:172:35 (9)
Uy
we obtain
2 A A1l — 2
Zal e Ju': _ v [ ('U/al) ] , (10)

@2 — (v]ay) —2 ]/1 = ('ZT) ']/1 B (%)2

Zay, - oo, Zaz =0,

where v is the Rayleigh wave velocity.
In the case of a bulk longitudinal wave (v = a,), the impedance Za, takes
the form

2u-+ 4
Za, = 275 = 7, (11a)

ay

whereas for a bulk transverse wave (v = a,) we have

2
P +—)“—[1~(i"’;)], (11b)

Ay ag a4

where Z,, is the acoustic impedance for a bulk wave in the unbounded medium.
Formula (10) shows that value of the impedance medium for a Rayleigh
wave is greater than the impedance of the same medium for a bulk wave.
Limiting the medium to a half-space has a bearing on the propagation
of the bulk transverse wave (Za, > Z,,), although it has no influence on the
behaviour of the longitudinal wave (Za, = Z,y;).

3. Acoustic impedance of Rayleigh waves in an elastic, isotropic half-space

Let us widen our reasoning, taking into account the fact that a surface
wave of the Rayleigh type propagates in a certain layer at the surface of the
elastic half-space. In this case the stress components have the form

Ty = A{A(& — &) —2p (& +ifs) e "7,
Ty = AA(E, —&y)e™ %, (12)

Ty = A{2u(& —i&) + (& — £y 870,
where

2k 2ap B +a
R v S == Lo (o] L
(13)
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while the components of the particle velocity vector in the medium will be
the following:

Aw =
R Ll — 3+1Mc1
v, T Eqe
v, =0, (14)
Aiw

5164 arg+ikey 3

@3:

Applying formulae (12) and (14) we obtain a medium impedance in the z,
direction:

A+2u A& —i2uk,

Za, = — —s

v vé;
Zay — 0, (15)
Zas = {9M§s+’&[(2#+1) 1 — 46T}

The components of the acoustic impedance vector of the medium become
complex when wave penetration inside the medium is considered. The imagi-
nary part of the acoustic impedance represents those modes which do not
propagate in the medium [3].

For the bulk longitudinal and transverse waves, the formulae denoting
the medium impedance in the x, direction (Za,) are identical to formulae (11)
arrived at in section 2, whereas in the z,, direction, the impedance for the
longitudinal waves is infinitely great, while for the transverse waves it has
a purely imaginary value.

In the case of CdS, the characteristic impedance for the bulk waves Zay,; =
= 56-10° Q, whereas for the surface waves formulae (15) give the fol]owmg
values of the impedance components:

|Za,| =97-10°Q, |Za,| = 12-10°Q.

4. Conclusions

Introducing a medium acoustic impedance for surface waves is essential,
since the numerical values of this impedance differ considerably from the
medium impedance values for the two-dimensional bulk waves. In addition,
the acoustic impedance determined for Rayleigh waves has an complex form,
which points to different propagating conditions for the Rayleigh modes com-
pared to the bulk modes in an unbounded medium.
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