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MUTUAL ACOUSTIC IMPEDANCE OF CIRCULAR MEMBRANES AND PLATES WITH
BESSEL AXIALLY-SYMMETRIC VIBRATION VELOCITY DISTRIBUTIONS
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In this paper the mutual impedance of circular membranes and circular
plates clamped at the circumference is analyzed. It was assumed that a Bessel
axially-symmetric vibration velocity distribution was predetermined on the
surface of the sources, and that the sources were placed in a rigid planar baffle.
The impedance was calculated by a method based on a Fourier representation
of the acoustic pressure. In view of the axially-symmetric vibration velocity
distribution, the acoustic pressure and the subsequent formulae for the mutual
impedance are given in the Hankel representation. As a result, the mutual
impedance can be expressed in the form of a single integral. Practically useful
formulae are derived for specific cases. The results of the calculation are also
shown graphically.

1. Introduction

Most of the planar acoustic sources that have a practical usefulness, are
characterized by a nonuniform vibration velocity distribution. The Bessel
vibration velocity distributions have a particular significance, since they are
suitable for an exact description of the problem of the vibration of a membrane
or of a circular plate clamped at the circumference.

The literature on the acoustic impedance of source with nonuniform vibra-
tion velocity distributions contains only a few items.

The problem of the mutual impedance of two elastic circular pistons vibrat-
ing in the flexural mode was investigated in 1964 by PorTer [5] and CHAN [1]
in 1967. They assumed that the vibration velocity distribution was axially-
symmetric and could be expressed by a power series in the radial variable.

The problem of the mutual impedance of two circular sources with non-
uniform axially-symmetric vibration velocity distributions, namely: gaussian,
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parabolic and Bessel distributions, was investigated by the author in papers
[6-10] in the 1970’s.

The problems presented in the present paper are connected with the mutual
impedance of circular membranes and circular plates clamped at the circum-
ference. It has been assumed in the calculation of the impedance that there is
a Bessel axially-symmetric vibration velocity distribution on the surface of
the sources, and that they are situated in ideal rigid:planar baiffles. The results
of the calculations are presented graphically.

Notation

The numbers in parentheses denote the formulae giving definition or application of
the symbol. '

@ — radius of the circle,

¢ — the wave velocity,

f — the vibration velocity distribution function,

H{' — a cylindrical Hankel function of the second kind of the pth order,
k"  — a spherical Hankel function of the second kind of the pth order (27),
i - V-1, -

Jn  — a cylindrical Bessel function of the nth order,

jm  — a spherical Bessel function of the mth order (24),

k — the wave number,

L, — the distance between the centres of sources 1 and 2,

N,, — a cylindrical Neumann funection of the mth order,

My, — & spherical Neumann function of the mth order (26),

Pz — the acoustic pressure generated by source 1 acting on source 2 (10),
Vi — the distance between two points on the two sources,

¥ — the radial variable in a polar coordinate system,

t — time,

U — a characteristic funetion of the source (15),

v — the vibration velocity of points of the source,

Y — the vibration velocity of the central point on the surface of the source,

W — a characteristic function of the source for an axially-symmetric vibration velocity
distribution (17),

Z;; — the mechanical self-impedance of one source,

Zj, — the mechanical mutual impedance of two sources (9),
6, — the normalised mutual resistance (11),

%12 — the normalised mutual reactance (11),

L3 — the normalised mutual impedance (11),

o — the denrity of the medium,

a — the area of the source,

w — the angular frequency.

2. Assumptions of the analysis

It is assumed that in an infinite ideal liquid medium of density o there
is an ideal rigid baffle at the plane z = 0, with a system N of sound sources.
The sources are assumed to be harmonically vibrating circular transducers,
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each of thickness # and radius @ (Fig. 1). The distance between the centra
points of sources 1 and 2 is

Ly = V(Xg—2,)2 4 (Y2 —4,)2 .

We can consider a transducer to be a vibrating circular plate of specified
thickness, rigidly clamped by its edge to the housing. For this reason we shall
take as the basis for assuming a suitable vibration velocity distribution on the
surface of the source, an exact mathematical solution of the problem of the
free vibration of a circular plate rigidly clamped at its edge.

Yy

o P(r,B)

Fig. 1. The coordinate system assumed for the determination of the mutual impedance of
circular sources vibrating in a rigid planar baffle

It is known from vibration theory [3] that the transverse axially-symmetric
free vibration of a uniform circular plate of a thickness small compared to its
radius [2], for vibrations that are harmonic in time, can be described by the
equation

E(res 1) = Ly(re)e™ = [Ao o (kre) +BoI o (kry)]6*, (1)
where &(ry, t) is the displacement of points of the plate in the transverse direc-
tion, w is the angular frequency, ¢ is the time, i =V —1, k* = oV M /B, M is
the mass of the plate per unit area, B is the flexural rigidity of the plate and A,
and B, are constants. The special function which oeccurs here, I,(kr,) is a modi-
fied Bessel function of the first kind of the zeroth order, which can be described
as a Bessel function J, of imaginary argument [11], i.e. I,,(w) = i~™ o (10).

The boundary conditions for r, = a are the following:

1) the plate has zero displacements at the places of rigid clamping:

Lo(O0)lrpma = 0 (2)

2) and the plate cannot rotate:

—dy—oio(%) S5 =0. (3)



240 W. RDZANEK

For behaviour which is harmonic in time, the vibration velocity distri-
bution v(ry, t) = v(r,)¢', with consideration of relations (2) and (3), satisfies
the boundary conditions

v(7,) =0, “‘d_”('ro) =0,

rp=a d'rl) rp=0a

which lead to the so-called frequency equation:

Jo(ka)l,(ka)+J,(ka)Io(ka) = 0. (4)
The solution of the frequenecy equation is an infinite series in the quantity %:
k=kFk, for n =1,2,3,..., and one number y, = k,a corresponds to each
value of k,. The frequency of free vibration of the circular plate is
1 5
A e i

with yq, ¥2, 73 = 3.195...,6.306 ...,9.439 ..., being found for » =1,2, 3;
and, if » is sufficiently large, y, ~ nm.

In the case considered here, the Bessel vibration velocity distribution
for any point of the plate, thus for the points on the surface of the plate, has
the following form (Fig. 2):

"o Jo(¥n) ( Ty
PR J —]— 1 —I1- 6
0, (70) ?)On[ O(Yﬂ a) Io(y,) o\ Va = (6)
If, however, the vibration source is a circular membrane tensioned with
equal force over the whole circumference, then the axially-symmetric free
vibration velocity distribution is expressed by the formula (Fig. 2)

tu(r) = oo ) @

where g, is nth root of the equation
Jo(B,) = 0. (8)

In this equation 8,, f,, §; = 2.4048...,5.5201...,8.6537 ..., and, generally,
if n is sufficiently large [11], then 8, ~ nrm—n/4 ~ nw.

The calculation of the mechanical mutual impedance Z,, of two planar
sound source is carried out on the basis of the definition [5, 9]

1
Zyy = P> fpla(wm Yo) ¥ (o, Yo) oy, (9)
V91Y2 o
where
ikoe g
Praoo, o) = o [ 0(w,y)—do (10)

b |
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is the acoustic pressure generated by source 1 and acting on source 2, v, is the
vibration velocity distribution on the surface of source 1, v,, is the amplitude
of the vibration velocity of the centre point of source 1, v* is a quantity coupled

in a complex manner with », B = I/(..'r;—ac(,)z—i-(y'—y.,)2 is the distance from
the surface element do on source 1 to the point (z,, ¥,) on source 2.

Vo /Vy,

10 \.._1\5
W\ \
08 \ \
\
06

W\
[\
04 \

\
L\
02 -y
\FR e
‘\
0 \ \
\
-02 \\
Fig. 2. The plots of the function of the Bessel \
axial-symmetric vibration velocity distribution \
for the first three modes: n — 1, 2 and 3. The ~04
curves of distributions for a circular plate are n=3
plotted with a continuous line, the curves for _ 06 r. /a
a circular membrane with a discontinuous line 02 04 0.6 08 1.0

In numerical calenlations it is convenient to use the concept of the norma-
lised impedance
Zlﬂ
limZ,,

k—o

=l = 612+1:Z1z, (11)

where 0,,, x,, are, respectively, the normalised mutual resistance and normalised
mutual reactance between sources 1 and 2. For k — co we have p,, (@, y) =
= gevy(#, y), and then-formula (9) — we obtain

lim Zy, = o0 [ fi(@, y)do, (12)

k—>oc0 o

where v, (@, ¥) /vy, = fi(®, y) is a function of the vibration velocity distribution
on the surface of source 1.
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3. Integral formulae for mutual impedance

In order to facilitate the calculation of the surface integrals (9) and (10),
the term ¢~ *E/R can be represented by a double integral [9],

e—ikR i ? /24400 2w
f exp{ —iksind [(z —ay) c08 @+ (y — o) sing T} sinddddy

0 0

R 2n

(13)

with integration in the plane of the complex variable # = 6+ iy being perfor-
med along the real axis in the section (0, =/2) and on the ray (0, oo) parallel
to the imaginary axis.

The formula for the mutual impedance takes the form

m/2+t00 27
ock? )
2= f f U,(9, 9) U3 (9, p)sinddody, (14)
where f. 4
U®,¢) = [fo,y)exp{—iksind(zcosp-+ysing)}do (15)

is the so-called characteristic function of the sound source.

In the case of circular source (each of radius a) with axially-symmetric
vibration velocity distributions, we introduce local polar coordinate systems
(Fig. 1): o —a, = rcosf, y —y, = rsinf, @, —x, = ,C08f,, Yo—Ya = 78D f,.
After integration over the angular variables between the limitg (0, 2w), we
obtain an expression for the mutual mechanical impedance in the Hankel
representation [9],

m/24+dic0

Z1 — 2mook? f W (kasing) W* (kasind)J, (kl,,sind)sinddd,  (16)

where
a

W (kasind) = [ f(ro)do(krosind)rdr,. (17)
0
In the sound source are circular plates, on whose surfaces Bessel type (6)
vibration velocity distributions occur, then the normalized mutual impedance
[9] is equal to

/24100

& . (2 ka )2 f sinde  (kl,581n3)
== ¥ 4 2
i g [1 .- (ﬁ) sin‘ﬁ]
Yn

k 2
% [ J1(7n) Jo(kasind) — — sindJ, (ka sim‘})] d¢  (18)
Jo(72) oo - :
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and the normalising factor has the form

lim Z}, = 2raped i (y,). (19)

k—oo

However, when the sound source are circular membranes, we obtain [9]

” ( ka )2 FEL I (kasind)
TR s : La \2
& [1—(—“) sin%ﬂ‘]
B

lim ZY — na2ged?(8,). ' (21)

k—o0

5 o (klyu8ind) sinddd (20)

with

The expressions given here for the mutual impedance in the form of single
integrals, without using additional simplifying assumptions, can be numerically
evaluated only with the use of computers.

Considerable simplification can be achieved if ka =y, for a vibrating
plate, or ka = §, if membrane vibrations are considered.

Formula (20), which is an expression for the mutual impedance of sound
sources, is exact only when the sources are circular membranes. Thin circular
plates exhibit vibration of the same character (Fig. 2) with the exception
of slight deviations close to the edges where they are rigidly fixed to the housing.
Thus expression (20) can also be used as an approximate formula for the calcu-
lation of the mutual impedance in the case of thin circular plates.

For ka = f,,, the real component of the mutual impedance from formula (20)
takes [9] the form

(=]

i = D) weinln ), (22)

12

where
: 8
0o(Ba) = ?ﬁicfi(ﬁn),
. ; e ;
o’l(ﬁ“) 7 (%_) Jl(ﬁn)Jz(ﬁﬂ) . —gﬂzaJ?(ﬁn)s
F( _|__1_) ' (23)
a,(B,) —ﬁl ¢ 2 5‘ g g 11(Bn) I p—qi1(Bn)
PR T2 e & (@)Y p—g+1)! ]
and [11]

) E_]/ o Ty (). (24)
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The imaginary component of the mutual impedance is equal [9] to

0 p I :
A= = D) wwam (s 2), (25)
p=0
where [11]
Mo () = ]/%Nmﬂ(u) (26)

is a spherical Neumann function of the mth order. Using the definition for
a spherical Hankel function [4] of the second kind

B () = i () =iy, (1), (27)

the normalised mutual impedance of two circular membranes, for ka = §,,
can be written in the following way:

o0 ) ; l
i = Z(l‘i) ap(ﬁn)h;’(ﬁ@}})- (28)

n=0

In order to simplify numerical calculations using formulae (22), (25) or
(28), the values of the coefficients ¢,(f,) are grouped in Table 1.

Table 1. The expansion coefficients o, (8,) calculated according to formula (23)

n Ty ! 1 T3 } O3 ‘ Oy 1 ]

1| 0.77932 0.32410 0.17557 0.09282 0.03327 ' 0.02073
2| 1.76398 0.31955 |—0.28180 |—0.46808 |—0.01840 | 0.39125
“3| 2.75907 0.31883 | —0.58845 |—0.54459 0.34325 1.09679
4| 3.75670 0.31859 |—0.86487 | —0.56872 0.65486 | 1.35270
5| 4.75530 0.31849 |—1.13017 |—0.57930 0.03842 ’ 1.47003

5. Impedance in specific cases

In the cases where ka < f, or ka < y,, the analysis of the acoustic mutual
interaction is considerably simpler since approximate formulae can then be
used. _

For (kaly,)* <1 we assume the following simplifications in formula (18):

ka \* “ f -2
I Il S S R
Y Yn

The normalised mutual impedance of two vibrating circular plates can
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then be reduced [9] to the form

[ a\? 2
- S

Pp=0 12
() % x (2) 2 Y (2)
+ |10 — {4 )W)+ () (245 )2+ 5 ) M0 |}, @0)
12 12

where

ka\* T'(p+13) F2(r)) N Jglka)d,_,(ka)
b, =[2— p , 30
v ( yn) e T S gty s
ka\ D(p+3) Ji(ra) \1 s (ka)J,q(Ka)
= —{2— ’ 30b
o=l )7 Tor) &0 4l (p—a)! e
I'ip+3) q+1(ka’) p— q+1(ka)
d = 4 : 30¢)
(;un) i Z p—g)! e

q=0

1f kay, < 1, then in formula (30) we need consider only the term containing
the coefficient b,,, neglecting the terms which contain the coefficients ¢, and d,,.

Then
Do? a
s Z ( lm) b (ilys). (31)

The calculations of the mutual impedance are less complicated if the sound
sources are vibrating circular membranes. In this case for (ka/f,)* €1 we

obtain
T.‘ »
1= () v, (32)
p=0
where
A Bn J1ly n)]
b, = ab a, =2 (33)
% - I:Yn Jo(Vn)

For the first successive Bessel modes (n = 1 2 and 3) the coefficients a,
are equal to: a, = 0.7724 ..., @, = 1.2969 ..., ag = 1.4997 ..., while lima, = 2.

From relations (31)-(33) we obtain e
{)2 o ancig (34)

for ka < y, and (ka)* < B2. This means that for the first Bessel mode the mutual
impedance of the plates is smaller than the mutual impedance of the membranes.
However, for the second and higher modes the mutual impedance of the plates
is smaller than that of the membranes.

If we assume that ka < 1, then in formulae (31) and (32) we consider
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. only the element of the zeroth order (p = 0), neglecting the remainihg elements
as small quantities of higher orders‘ We then obtain

sm(klm) _cos (klys)
D zap
a, [ o+ ] (35)
sin(kly,) . cos(k 2)] g
_BM 12 1
G [ e T, (39
where the quantities _
o k 2 2 k
6, g(zi) M, oM 2( “) (37)
yn Ju(?n) ﬁn

are the expressions for normalised self-resistances, provided ka <1.

6. The analysis of the results

In the numerical examples, the mutual impedance of the two kinds of
source was considered:

a) circular membranes,

b) circular plates rigidly clamped at the circumference.

The impedance was calculated for Bessel axially-symmetric vibration
velocity distributions shown, using formulae (7) in the case of the membranes,
and formula (6) for plates. s

If ka > 1, the approximate formulae (35)-(36) can be used. In practice,
this approximation is valid if ka < 0.2. .

The calculation of the mutual 1mpedance on the basis of formula (30)

r (32) involves a relative error of less than 59, it ka < 1/3y,, 1/30,.

In the case of the frequencies of resonance, i.e. for ka = f,, formula (28)
is convenient for the calculation of the mutual impedance of the membranes.

If ka » y,, B,, the real component of the normalized mutual impedance
is close to unity; the imaginary component, however, is close to zero.

In the other cases, when the approximations cannot be used, or when
great exactness of results is required, the calculation can be performed using
computers on the basis of the integral formulae (18) and (20).

The practical formulae for numerical calculations of the self-impedance
of one membrane or one plate, can be obtained from the integral formulae (18)
and (20). This problem was analyzed in reference [9].

On the basis of the results obtained from the investigation of the problem
of the mutual impedance of the Bessel axially-symmetric modes of vibrating
circular plates, clamped at the circumference, or vibrating circular membranes,
the following conclusions can be formulated:

1. The mutual impedance of two sound sources depends predominantly
on the distance l,, between the central points of the sources.
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The real and imaginary components of the mutual impedance oscillate
around a value of zero, i.e. take extreme values that are alternately positive
and negative, where the oscillations decay as the distance between the sources
increases (Fig. 3). The curves of the mutual resistance are shifted relative to
the reactance curves (Figs. 3-5). When the linear dimensions of the sources
are smaller than the acoustic wavelength, then the mutual impedance depends
on the distance I, through the function e ~#kls kT, 7~ where k = 2x/A. This
regularity is valid in the case of the mutual reactance with an additional assump-
tion that 1, > 0.

612‘ '1-1'2

02

01
Fig. 3. The normalised mutual impe- 0 / /r><\ .
dance of two vibrating circular mem- / / \i)é// \__

branes for the first axial-symmetric
Bessel mode (m = 0, n = 1), depend-  *0.1
ing on the parameter ki, for
ka = 2.2
ki
6 8 0 <12 oW 1B "

Curve 1 — resistance, curve 2 — reactance

2. The mutual impedance for a given distance between sources and given
sizes of sources, is an oscillating function of frequency, oscillating about a value
of zero.

The extreme values of the mutual impedance of vibrating circular plates
or vibrating circular membranes, occur for values of ka close, respectively,
to y, or f, (Figs. 4 and 5).

In the case of higher Bessel functions, i.e. when = is sufficiently large, the
approximation f, ~y, ~n=n gives us the simple relation wi ~2a in placé
of (2x/2) ~ af, and (2n/A)a ~y,. It also seems characteristic that the acoustic
interaction decays rapidly for wavelengths only slightly different from the
value 2a/n. For example, for the fifth axially-symmetric Bessel mode (n = 5,
A~ 2a/[5), the largest acoustic interaction occurs for a narrow range of wavelen-
gths which are only slightly different from-the value 4 = 2a/5. Outside this
narrow radiation band, the acoustic interaction decays violently.

3. The form of the vibration velocity distribution on the surface of the
sources affects the size and behaviour of the variation in the mutual impedance.

For given source size and separation the acoustic interaction becomes
greater, as the active surfaces of the sources become greater.

The highest values of the mutual impedance occur for the first mode
(Fig. 4), for successively higher Bessel modes (cf. Figs. 4 and 5) the extreme
values become lower and are shifted towards shorter wavelength. This property
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can be clearly seen for the second and higher Bessel modes, for which the ele-
ments of the surface of the source (circular rings) vibrate with opposite phases.
This is conditioned by the size of the active area of the sources, which becomes
smaller with higher order Bessel modes.

4. Increasing the sizes of sources can be used to obtain an increase in the
extreme values of the mutual resistance and reactance.

The limited range of variation in this quantity should be considered in
the investigation of the dependence of the mutual impedance on the linear
dimensions of the sources. For example, for circular sources (each of the radius a),
with the centre points of the sources separated by [,,, the condition 0 < 2a < I,,
oceurs.

For a given distance between the sound sources and given wave number
k = 2n[A, provided the linear dimensions of the sources are smaller than the
wavelength 1, the mutual impedance depends only on quantities used for
characterizing each source individually. If, in addition, the shapes of and the
vibration velocity distributions on the two source are the same, the mutual
impedance depends on the self — resistance of one source (cf. formulae (35)
and (36)).

I wish to express my gratitude to Prof. Stefan CzARNECKI for assistance
in the scientific research and the suggestion of the problem investigated here.
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