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THE FOUR-POLE PARAMETERS OF STRUCTURE-BORNE SOUND ISOLATORS
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A

Theoretical fundamentals are derived for measuring the four-pole para-
meters of vibration isolators at real loads. Since the dynamic properties of
rubber springs-depend on the initial load, the vibration forece and velocity are
measured on the isolator interfaces for a given initial load. Four-pole parameters
are determined for rubber springs and steel springs. The frequency characteri-
stics of the parameters, caleulated from the measured results, are compared
with the theoretical frequency characteristics. Furthermore, approximate
relations for the determination of the four- pole parameters are derived, and
verified by experiments. Practical application of the four-pole parameters of
vibration isolators is illustrated by examples in which calculations are performed
for: structure-borne sound wave isolation by longitudinally vibrating continua
and the excitation of structure-borne sound by machines.

Nomenclature*

— cross-sectional area

Uyys Uggy sy, g, — complex four-pole parameters,
E

&
&
&1s &1
& &,
N

oL,

f

fo

fi

b

16k, B

— elastic modulus,

— complex force,

— short-circuit force,

— ocomplex forces at the four-pole input,

— complex forces at the four-pole autput

— number of isolators,

— propagation gpeed of longitudinal waves,

— frequency,

— natural frequency ‘of the one-mass- -system (see Fig. 16).
— first natural continuum frequency of the isolators,
— complex admittance,

— modulus of admittance,

* In this article all complex quantities are expressed by Gothic letters.
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hp — floor admittance,

by — admittance of the test-foundation,

hy — admittance of isolators,

has — machine admittance,

k — wave propagation number,

i — length of a longitudinally vibrating continuum,

m — Inass, ¥

n — continuum compliance; spring elasticity in the frequency range without na-

tural continuum frequencies,

v — complex velocity,

b — rmg. value of velocity,

vp — velocity at the place of machine mounting,

vp — vertical velocity component at the test-foundation,
oM — velocity of the machine,

v;,0;,  — complex velocities at the four-pole input,

g, Uy — complex velocities at the four-pole output,

3 — loss factor,

A — wave length,

e — density,

w = 2nf — angular frequency.
1. Intreduction

Every longitudinally vibrating continuum has natural frequencies which
depend on its elastic properties and its mass. With a constant cross-section
the frequency f,, for example, at which acoustic waves are freely transmitted
by a structure-borne sound isolator due to natural resonance can be computed
from ; :

f=rst L e-1,23... (1)
nm

It is well-known that such natural continuum frequencies oceur also in the
rubber and steel springs which are used for structure-borne sound isolation.
Therefore, it does not suffice to know the spring compliance when computing
e.g. the structure-borne sound of buildings excited at high frequencies by ma-
chines with elastic supports. To be able to compute the vibration transmission
or isolation when structure-borne sound isolators are coupled with the other
vibrating structures (e.g. machine casing, supporting structure) one must know
the frequency-dependent four-pole parameters of the eontinunm and inciude
them in the computation.

In the following we should like to show how to measure the four-pole
parameters of structure-borne sound isolators in the acoustic frequency range
for real loads. In addition, the practical application of four-pole parameters
of springs is explained when computing both the structure-borne sound isolation
of a spring with a head mass, and the structure-borne sound excitation at the
place of mounting of elastically supported machines.
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2. Computation and measurement of the four-pole parameters of structure-borne sound
isolators

2.1. Theoretical frequency response of the four-pole parameters of springs.
We proceed from the wave equation for the wvelocity v(x) of a longitudinal
vibrating elastic continuum

0% v

o R ™

=0 (2)

The connection between the force F(x,t) and the velocity v(x, ) is as
follows
or

ov
—_— = —AF—.
ot ox (3)

Solving (2) for the case of harmonic excitation, we get the general solution
v(x) — Cycoshjk(l — ) + Co8inhjk (I — ). (4)

Considering the boundary conditions and notation according to Fig. 1
we obtain the following four-pole equations which connect the complex input
quantities §(0), 0(0) and the output quantities (1), o(l):

L)
l | x=(, v(l)
!
I
|
P
Sl /‘7&"“-;4
TS
|
At ——F x:0, vi0)
/
T
Fig. 1. Derivation of the four-pole parameters of a 1
longitudinally vibrating continuum Fro)

F(0) = coshjkl-F (1) + A—f—ﬁ sinhjkl-v (1),
(5)
(]

T AEBk

v(0) sin ikl - (1) + cos hjkl v (1).

We adopted the form of the four-pole equations with the coefficients U,
of the chain matrix which are used in references [2, 5, 6] and [7] and others
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to - characterize the wvibration -isolators: ¢ P :
§(0) = L FD) +Lan (), 0(0) = A, F(1) + Wy (1). (6)

According to [1] the materla,l damping can be descrlbed appronmately
by a complex wave propagation number

a» 2 7 . 7
sty [y p el s 2 TR W
d OL( i3) ( ] 2) "
The four-pole equations (5) now take the following form:
AEk

§(0) cosh(g +j) ol —£(1+j;’)sinh(-;’l+j)koz F(0)
i sy st ¥ e

v(0) ABL, (1 32)sxnh(2+j)kal cosh(a —I-j) kol (1)

(8)

When the damping is very small ( ~ 0) then the four-pole matrix becomes:

in k,l
coskyl jom 81: l"
ey 0
=1 kg ®)
jon coskyl
Teol

Independent of the material damping, one obtains the following approxi-
mations at low frequencies from equation (8):

Wy =Wy, 1, Up ~jom, Ay ~ jon, (10)

with ,, characterizing the mass impedance of the continuum and 9, characteri-
zing the spring admittance.

The natural frequencies of longitudinal vibrating continua are at k,l
= vn according to eq. (1). At these frequencies the parameters %, and Uy,
have minima or — with the material damping disappearing — zeros, respeeti-
vely. At the half frequencies 3»f, (i.e. kol = »-w/2) the parameters 2U,, and A,,
show minima or zergs.

The four-pole parameters were determined for springs with different ma-
terial damping. The frequency characteristics are plotted in Fig. 6 to 12 for
comparison with the measured results and discussed in section 2.4.

2.2. Fundamentals for the measurement of the four-pole parameters of
springs. Several proposals for the measurement of the four-pole parameters
of vibration isolators have already been described [6-9].

The disadvantage of these methods, however, is that the four-pole para-
meters of the springs cannot be determined under a real load. For example,
the method described in [6, 8] requires two measurements (with the static
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load of the spring ~ 0 N or < 200 N). Thus it is not possible to carry out an
exact determination of the load-dependent vibration characteristics, in parti-
cular, of rubber springs.

We therefore developed a measuring method permitting measurement of the
four-pole parameters of vibration isolators at static loads which correspond
to practical cases of isolators. These parameters will be different for different
static loads applied in the experiment. This method is necessarily more compli-
cated than the methods described in [6-9] and those used for determining the
four-pole parameters of networks in electrical engineering, because the “no-load”
case (i.e. when static load is equal to zero) will not be used in the measurements.

In the initial state of the four-pole which is to be measured, the following
relations for the input and output quantities will be valid (see Fig. 2):

Fr = Uy Fa+ Wpo0y, 03 = Wy Fy + Wno0s. (11)
- | i ¥
ra—— | ————0
b, ‘ », l e L‘vz 6}

a) initial state

B &
o :
b, -D,’ ‘ - ‘ .‘DZ' 52

Fig. 2. Derivation of the measuring method
for the determination of four-pole parame-

: s
Som of vibration isolators b ) reversal of the isolator in the test arrangement

After reversal of the isolator (which is generally asymmetric) in the test
arrangement we obtain

&= 91223};"*‘3[12”_;: 0 = ﬂalgfil‘ Ay 05 $paf (12)
We took into consideration that due to the reciprocity theorem
Wy Wag — Wy oWy =1, - 145 (13)

The relationships for the determination of the chain matrix parameters
follow from equations (11)-(13): gt

& _ 3
o=t Bt - (14)
. ARV 4

B
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&e 0, :
=By gy 15
22 31 + 81 12y ( )
g e (16)
32 2
D
A,y 2%% —0_2%22- (17)

If a vibration isolator behaves approximately like an ideal spring in a given
frequency range (i.e. no natural continuum frequencies occur), then the input
and output forces are nearly equal: §, ~ &,. In addition § = &, and §, — &
is valid for symmetric isolators. Thus it follows that outside the natural con-
tinuum frequencies the numbers in the numerator of the expression for A
according to eq. (14) will be approximately equal, which makes the numerical
computation of ,, unstable.

By comparison with the results of practical investigations of steel and rubber
springs it has been verified that the measured results of the parameter 90,
deviate greatly from the expected theoretical frequency characteristic (see also
section 2.4). Although the parameter %,, is included in equations (15)-(17) for
the determination of the other four-pole parameters, it has been shown that the
frequency responses of the parameters %,,, %A,, and A,, which were computed
according to equation (8) and those determined from measurements according
to equations (15)-(17), coincide well (section 2.4).

Thus it becomes obvious that at least outside the natural continuum fre-
quencies the following approximations for symmetrical springs are possible:

&1
m:11 o =Q‘[22f
3. (18)
—iBEuaii st :
it s e

The justification of relationships (18) and (19) is discussed in section 2.4.

2.3. Measurement of the four-pole parameters of different springs. The
test objects for the measurement of the four-pole parameters are summarised
in Table 1.

Figures 3 and 4 show the test arrangement. An electrodynamic exciter
serves as a vibration source. The static load was measured with the help of
a KWH 200 type semiconducting force transducer (manufacturer: VEB Robo-
tron Messelektronik Dresden). To measure the exciting forces and velocities
according to Fig. 3, we used quartz load-cells and piezoelectric pick-ups. The
mechanical measuring chain was installed in a sectional steel frame so as to
apply any static load up to 1 kN with the help of a regulating screw,
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Table 1. Test objects for the determination of the four-pole para-

meters
First natural
continuum
: Mass | Compliance| frequency Loss
Bpring Sype [kg] [s2-kg-1] computed factor
from eq. (1)
[Hz]
Steel spring (No.
25 spring from
P50/125 Type Vi-
bration Isolator 0.08 7.1.10-% 210 10-4
of VEB Schwin- d
gungsisolatorenbau
Radebeul)
Prismatic rubber
spring 0.560 3-10-8 1220 0.1
(27 % 27 x 63 mm?)

- adjustment scraw
for static load

+
-t|- elastic intermediate
piece

|—t- test object
load cell -{- || accelerometer
—1— plate holding the

acceleration pick-up

_ EsE|21 B
exciter | rubber holder
]

| elastic intermediate
piece

g

KHH2004 100

7 A 5 7 S

Fig. 3. Test arrangement for the determination of the four-pole parameters of vibration
isolators

4 — Archives of Acoustics 4/30
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Fig. 4. Test arrangement for the measurement of the four-pole parameters of springs
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It must be mentioned that it was not possible to measure the forces imme-
diately at the boundary surfaces of the investigated springs, because additional
masses (such as pressure plates, vibration pick-ups) were brought in between
the electromechanical transducers of the load-cells and the test object. Consi-
dering Fig. 5 the measured forces F,, and F,, were corrected by in-phase
substraction and addition of the mass forces. The measurement of the phase —
angles was made by use of an RFT phase-detector.

a0 % 5

m I{ 9 | testobject | ¥ ¢I m

m

Fig. 5. Correction of the measured forces in Gz &y - joy m
the determination of the four-pole parameters 3
of vibration isolators 2% “om+jW0z M

2.4. Comparison of the four-pole parameters of different spring types deter-
mined in the experiments and with those found by computation. Figures 6 to 8
show the comparison between the fou¥-pole parameters of the steel spring which
were computed according to equation (9) and those obtained from measure-
ment. The measurement results conld be obtained from exact relationships
in equations (14) to (17) as well as from the approximations (18) and (19).
When comparing the exact calculation and the approximation of the parameters
determined by the measurements, we find good agreement regarding the moduli
as well as the phase angles of the four-pole parameters %,,, %y, and Ay, . Thus,
it has been shown that approximations (18) and (19) are applicable not only
outside the resonance frequencies.

The experimental measurement results and the theoretleal computatmna]
results of the steel spring four-pole parameters do not show wide deviations
regarding their essential characteristics. According to approximations (10)
the frequency characteristics of the parameters |%;,| and [%U,,| for f < 100 Hz
come close to the straight lines of the mass impedance of the spring or the spring
admittance. The first natural continuum frequency of the steel spring (m = 80 g,
o= 7.1-107° §2-kg™') as determined from equation (1) lies at f, = 210Hz.
The first and second minimum of the measured frequency response of the
parameters |U,;| and |Wy,| lie — as can be expected from equation (9) — at
3f and }f,. In the measured frequency response of |W,;| evident minima appear
with the necessary 180° jump in the phase angle in the investigated frequency
range up to 1000 Hz at

f =% Sl UL
mmn
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To interpret the increase of maxima in the frequency response of ||
we computed the theoretical response for different loss factors according to
equation (8). The results were plotted in Fig. 9 to be compared with the measured
frequency response of |%,,|. One finds that the increase in maxima of |U,,]
can be explained by a higher loss factor. At the same time the question is left
open as to why there are still evident minima between the increasing maxima
in the curve determined from measured results which do not appear in the
theoretical results. Probably a damping law is concerned, which is unknown
a8 yet, and which should be considered in the theoretical determination of the
f.our-pt;le parameters of steel springs.

/;'?1 5
ol
[skg™'] i
2 A~
i
w0’ 7
v /
5 7 §
= A
T
,’s'zl | £ L ".,
# ' - ﬁ il
5 | | dn ol
?
|
2 [ i
102 501 Dl 5 10° ftHD
300° T T
P | { v
- ERL 5s 1 E.i B H
| | N A1
240° i 1 i
210° | '
180° ?
150° J‘;
Fig. 8. Four-pole parameter Uy of a s ;
No. 25 steel spring i
— — — theoretical curve using eq. (9), x— ——x 90°
computed from measured data using eq. (17), 50°
O——0 approximation using eq. (19), —- — the- .
oretical spring admittance 30° - 7 , 1
(n=7.1-10"5g2-kg—! = 5 e 2 5 10° f[Hz]
g77)

The parameter |[U,,| in which one expects the same frequency response
as in || according to equation (9) shows only allusively a i-egulamity in the
position of the minima. The reason for this difference between the computed
and the measured values lies in the difficulties occurring in the determination
of [A,,| from the measured values as has been mentioned already in section 2.2,
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1%/

[shg] % /

v

w"’l 2 2 %
28N 3 §-§-2 5 0 }im

Fig. 9. Computation of the four-pole parametfer %y of a No. 35 steel spring from theory and
measured data

X— ——x computed from measured data; theoretical curves using eq. (8), — — — 1 =0.01, —+ — 9 =0.1,~———4=0.3,
theoretical spring admittance (n = 7.1-10—3 s2.kg—1)

With the prismatic rubber spring (see Fig. 10 to 12) there is good agreement
between the frequency responses of the moduli and phase angles of the four-pole
parameters 2U;,, A, and A, which were obtained both exactly from the measured
values according to equations (15)-(17), or approximately from equations (18)
and (19).

The deviation of the measured values from the theoretical values computed
using equation (8) remains small for all 4 parameters if a loss factor of 4 = 0.1
is assumed over the whole of the investigated frequency range. Obviously, the
approximations expected for low frequencies according to equation (10) are
fulfilled.

3. Examples of the application of the four-pole parameters of structure-borne sound iselators

3.1. Computgtion of the structure-borne sound isolation of a lengitudinally
vibrating continuum with an attached head mass. As a measure of the structure-
borne sound isolation the ratio of the velocities v, and v, at the input or output
of a vibration isolator which is installed in a spring — mass — system (see
Fig. 13) will be considered. This velocity ratio characterizes the effect of a strue-
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2y
[s-kg'] 5
-
2 ;
1
| \/
10 1 ! r
i T \ [l
. ‘ f/’ .:
A \!
2 ya =
o
10° £
|
. B 0% -2 -fiHad

G 270°

b ¥, Fig. 12. Four-pole parameter Uy,
e of a prismatic rubber spring
---- theoretical curve using eq. (8),

90°
x— ——x computed from measured data
using eq. (17), O——Q approximation using

2 f[Hz] ed.(19), —-— theoretical spring admittance
(n =3-1076 g2-kg=])

180°

10’

ture-borne sound isolation with kinematic excitation in the case when the exci-
tation has no reverse effect (i.e. it is a pure motional excitation). From the four-

(20)

-pole equations
0, = Wpy Fa+ WsaDs,y

F1 = Ui §e +Uyo0.,

mass m A
= —r b & &
[
vibration 0 (4) ‘JJ b- 1
1solator ! * 2 g
g il
Lo, ————
electromechanical circuit diagram

| |
&,

vibration modetl
Fig. 13. Characterization of the structure-borne sound damping of vibration isolators
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and the condition §, = jwmv, to be read from the circuit diagram (see. Fig. 13)
one obtains as the modulus of the velocity ratio:

D
— = |y joom + Wy,|. (21)

Dy

From equation (8) we obtain for the longitudinal vibrating continuum

= cos(l—j g—)kol Aw;?wk (1 —j )sin(l—jg—)kol.

The ratio |v,/v,| was computed for the loss factors n = 0; 0.1; 0.3 with the
ratio Myyne/m = 0.001; 0.01; 0.1; 1. The results are plotted as 20log v, /v,| dB
levels above the frequency ratio f/f, in Figs. 14 to 16.

The mass ratios mgyy,,/m characterize certain spring types.

In many cases one chooses f, ~ 10 Hz when mounting machines on rubber
springs. The first natural continuum frequency f, of rubber rubber spring
isolators which are commonly used lies at f, ~ 1000 Hz. Thus, one obtains
folfy =107%. We know, however, that

: 1 1 T e m
oy ey e
2m nm w (77—

qn’spring (fo ) (23)
m fi

8o that one may expect Mgy n./m ~ 0.001 for rubber springs. The loss factor
of rubber is  ~ 0.1.

Analogously, for usual steel springs we obtain f, ~ 5 Hz, f, ~ 150 Hz,
Jolfy = 3:107% From equation (23) it follows that mgy,./m ~ 0.01. The loss
factor of steel springs is n ~ 0.001, ..., 0,01. Thus from the above considera-
tions Fig. 14 refers to rubber springs and Fig. 15 to steel springs. Fig. 16
illustrates particularly the frequency dependence of the ratio |v,/v,| at higher
frequencies. We observe that the expression 20log |v, /v,| dB increases by 40 dB
per decade above the natural frequency of the spring-mass-system considered
when it has a low loss factor. Above the first natural continuum frequency f,
the rise of the curve is 80 dB/decade. With very weak damping the maxima
of the curve 20loglv,/v,| lie on a straight line rising with 20 dB /decade. This
result is in contrast to the results of reference [4] where, above the first natural
continuum frequency, a frequency response of 20log |v, /v,| rising by 80/decade
was indicated. If one increases the damping of the spring then above second
natural continuum frequency there is a greater slope of the curve connecting
the maxima. Thus, due to the high damping as for the parameter |2, | in Fig. 9 —
there are no distinet natural continuum frequencies at all. It is this slope of
[v; /05| at higher frequencies (which seems to contradiet experience) which causes
us to be interested in the following question: Can a strongly damped steel

Dy

(22)
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gpring be more appro;iriate for structure-borne soundkisolation than a rubber
spring? Considering the available results this can be the case only if the
20log |v, /v,| curve of the strongly damped steel spring will, due to its steeper

20109/
i

70

60

50

40

30

20

10

3

U
S
e

2 G2 Dl R & . w024

Fig. 16. Velocity ratio level |o;/oy| for mgpping/m = 1
O—On =0, X===x n =103

slope, intersect the curve of the rubber spring rising by 40 dB/decade above
the second natural continuum frequency.

It can be seen from Fig. 15 that this circumstance will arise in the frequency
range of interest (i.e. up to 1000 Hz) only if the steel spring isolators will have
a loss factor > 0.3 and if mgy,./m — 1. This is realizable only by “series-
-connected lumped-parameter systems” containing additive damping elements
or otherwise damped springs.
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3.2. Computation of the structure-borne sound excitation at the place of
mounting of elastically supported machines. The general case of machine moun-
ting on isolators with natural continuum frequencies can be characterized by
the electromechanical circuit diagram shown in Fig. 17. Including the complex

8- % &
g T N,
M ANE »
(‘% Mﬂ‘ (%] J‘ (I\%lepﬂzz) b.u lﬂﬂ
L. v . ~ A._‘,-—’
machine N isolators floor

Fig. 17. Derivation of the relationships for the calculation of the structure-borne sound

coefficients 2, of the chain matrix of a single isolator the four-pole equations,
which in a system of N analogous isolators link the input and output quantities
(see Fig.17), are as follows:

1
8 =Uulp+NUpvp, v = F o1 Fp+Wsevp. (24)
The force fed into the vibration isolators is
n -
81 = Fo— L. (25)
Dar

The short-circuit force §, can be determined during the operation of a machine
which is rigidly mounted on a test foundation (ref. [3]):

bm S bF
Fo = — 0y, (26)
R
From relationships (24) - (26) we obtain a computational method for (multipli-
cation) determining therms. value of the velocity © ; at the place of mounting of an
elastically supported machine when the effective velocity ¢, (which is produced
by the machine rigidly mounted on a test foundation) is known

S Dy +Dhar : ~ (27)

Up = F
Q111 1 1 sz
— + N — =+
sebu 2+ %) 5752 %)

Assuming that the natural continuum frequency of the applied isolators
does not lie within the frequency range up to 1000 Hz which is of interest, we
can introduce the four-pole parameters of an ideal spring according to equation
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(10) into eq. (27). It then becomes

CHGE L~ 34 I)D([)F:“I)M) oo (28)
bF’(bM"" FbIJr[)D) 1
Now, with the conditions o® [10]
; 3
1Darl > (Bol;  [brl; 5T Bzl > (B! (29)

considered in equation (28) one obtains the simple approximate relationship:

hp. hy
P SI0M o 30
Up hj' (1IN)hIUF! ( )

where only the admittance moduli are used.

The ranges of operands of equation (27) applicable in practical cases can be
taken from [10].

Thus, the following conditions for the admittance moduli and four-pole
parameters have been derived:

A

= > NAy,, (31)
hp
: |
FAZI

— > Au, (32)

D

hy > hyy (33)
1
FAEI > hM- (34)

With relationships (31) to (34), equation (27) takes the simple form

hph
PRS- N (35)

&
hF"l‘\f'Azl

 Here, %,, proves to be the most important parameter for the computation

of the structure-borne sound excitation. The four-pole parameter |[A,,| rather

than the isolator admittance by is set in eq. (35) which makes a difference to
equation (30).

Fig. 18 shows the comparison of the results computed from equations

(27), (28), (30) and (35) with the measured results relating to the mounting of

a machine model on No. 25 steel springs (electrodynamic exciter on steel
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mass, see ref. [10]). For a quantity characterizing the difference between
computation and measurement we used the level difference AL, between the
computed and the measured velocity level at the place of mounting :

AL, = 20log —2%™.  4R]. (36)
¥ pmeasur.

One can see that by using the isolator admittance in equations (28) and (30)
there is considerable deviation between computation and measurement at
Jf > 100 Hz. However, the application of the four-pole parameters from equa-
tion (27) or the parameter 4,, from equation (35) characterizes the effect of
the natural continuum frequencies of the steel springs much better. The results
of Fig. 8 can be used to show this. The modulus of the four-pole parameter 9,,
for f > 100 Hz clearly remains below the theoretical admittance of the No. 25
steel spring. This means that the springs used seem to be considerably harder
due to the natural continuum frequencies than is indicated by the spring cons-
tant. The increasing difference between bzl and A,,| in Fig. 8 corresponds
to the difference between the measurement and the computation according to
equations (28) and (30) which increases with frequency (see Fig. 18).

aL,
(a8l

fa £ 3 e

4

>

™~
,’;‘

PD"/

20 ‘%‘ < Fig. 18. Differences between the com-

N \‘\’\ e puted and measured velocity levels for

SRR SR T the elastic mounting of a machine
. Ny’ model on steel springs

; O——0 computation with four-pole parameters us-

'n‘ I ing eq. (27), x — —— x complex computation using

X eq. (28), A—-— A approximation with hy using eq.

35), O— —— ximati ith 2
10? 2 5 07 flr1, 2% D= ——{) appra Sl R o

The fact that the structure-borne sound excitation can be much better
calculated by substituting 4,, for k; in equation (30) leads us to the coneclusion
that the compliance n of steel spring ean be corrected above the first natural
continuum frequency. Evidently, h; ~ A,,, and with h; = on for the steel
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spring compliance (see eq. (9)) it follows that

sink,l
kol

(37)

1
n=—A»A, ~n
w

(ny = steel spring compliance below the first natural continuum frequency).

On average, the compliance decreases with frequency and has additional
minima at the natural continuum frequencies.

Experiments have shown that with rubber springs, due to the smaller
influence of the natural continuum frequencies in the frequency range up to
1000 Hz, one can compute the structure-borne excitation from equation (30)
and dispense with the four-pole parameters.
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