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PROPAGATION OF ELASTIC WAVE IN SOLID LAYER-LIQUID SYSTEM*

ANNA GRABOWSKA

The Institute of Fundamental Technological Research (00-049 Warszawa, Swietokrzyska 21)

The paper presents the solution of the problem of a flat wave propagating
without attenuation along a solid layer placed between a semispace filled with li-
quid and the vacuum.

The wave equation of secalar and veector potentials of displacement has
been solved for this case. A characteristic equation accounting for boundary
conditions has been derived. This equation has been solved numerically and it
has been shown that in these conditions the wave can propagate at a veloeity
slightly smaller than the wave velocity in the liquid.

The distributions of stress, acoustic pressure, and displacement of the
propagating wave have been determined numerically for a layer of a thickness a
= 0.075 em and @ = 0.010 cm, contacting with water on one side, and for
a frequency of 3 x 108 Hz. The type of wave is close to a surface wave.

1. Introduction

The problem of the propagation of an elastic wave in the solid layer-liquid
system originated in the course of ultrasonic investigations of tumours. Using
a probe containing a piezoelectric transducer and generating ultrasonic waves,
a needle is driven through the patient’s skin toward the tumour. The punctured
organ is observed by an ultrasonic visualization system. The needle passes
through a hole in the centre of the piezoelectric transducer which has the form
of a plate.

In the course of these investigations it has been observed that the wave
propagating along the needle placed already inside the body is accompanied
by a wave which after reaching the end of the needle is reflected backwards
and returns giving an image of the needle end on the osecilloscope screen. This
effect makes it possible to locate precisely the puncture and to sample the tu-
mour tissue instead of cutting the whole organ apart.

* The paper was written under problem MR.I.24.
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This work is aimed at investigation of the effects accompanying the pro-
pagation of the above wave along the needle surrounded by the body tissue.
We shall reduce this problem to the consideration of a wave propagating in
a flat solid layer-liquid system. In addition we shall assume that the considered
wave is a running, continuous sinusoidal wave.

The solution of this problem consists in a description of an elastic wave
propagating in an infinite isotropic homogeneous solid layer in contact with an
mimobile and infinitely deep liguid on one side and with the vacuum on the other.

2.  Basic equations

The coordinate system is chosen as follows (cf. Fig. 1). The z-axis coincides
with the upper edge of the layer and is parallel to the direction of the wave
propagation. The z-axis is directed vertically upwards. The layer thickness

*z

Fig. 1. The considered solid layer contacting liquid on one side

is a; the densities o,, 2 and p are the Lamé constants and the velocities of longi-
tudinal and transverse waves in the material are ¢; and ¢, respectively. The
liquid denisty is g, and the longitudinal wave velocity in the liquid is ¢,.

The displacement vector w can be presented in the form .

i U =v+w (1)
with conditions curl » = 0, div w = 0.

It follows from the vector analysis that such representation of a vector
field is always possible. This is a representation of a vector in the form of a sum of
the gradient of a scalar potential ¢ and the curl of a vector potential y (v, v, v.):

w = [u, v, w] = grade{rot y. (2)

In view of a two-dimensional character of the problem the vector potential
w contains only one component v, .
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Eq. (2) leads to the following expressions for the components of displace-
ment u, described in the layer by potentials ¢,(z, 2, 1), ,(®, 2,1) and in the
liquid by ¢q(®, 2, 1):

‘

— in the layer
B0 s RIS

By = o S —_—

dx 0z 0z dx ’

(3a)

— in the liquid

09, dg,
e ) Wo =i o
dx 0z

Uy = ) (3b)
where u,, w, are components of displacement vector, parallel to the x-axis,
w,, w, — components of displacement vector normal to the z-axis.

Potentials ¢, v,, ¢,, satisfy the following wave equation:

1 d%p, ;
Vip, = & o in the layer,
1%
Py, = - az” in the layer (4)
. t ,
Rer OrPp o 50
Vig, = —%W in the liquid.

Eq. (4) is satisfied by any periodic function. By separating the variables
with respect to eqgs. (4) we obtain the following solution:
@s(@, 2, 1) = [A;c08k;2+ A, sink,z]e 752 g™,
v, (@, 2, 1) = [B;cosk,z 4 B,sink,z]e %=’ (5)

Po(@, 2, 1) = He H0* g2,

where
2 2 2
w w ¢ ®
E = — —k*, f = —— k2, ky = —5 —k? (ha)
Cq 0% ¢

and ¢ = w/k. The potentials ¢, v,, ¢, in (5) describe waves propagating along
the z-axis with a phase velocity ¢ and a wavelength 1 related to the wave
number by relation k& = 2z /A. The frequency f is given by relation f = w/2x.

The normal stress z,, and shear stress z,, in the solid can be expressed by
potentials ¢, and y, and by elastic constants as follows:
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The acoustic pressure in liquid is given by relation

@ po
P Gt (7)

3. Boundary cenditions and characteristic equation

The solution of the problem should satisty appropriate boundary condi-
tions posed by the requirement of continuity of stresses and displacements
perpendicular to the surface of the layer. These conditions are as follows:

T, = —p (2 =0), T =0 (2 =0), w,=mw, (¢=0),

(8)
T =0 (2 = —a), T, =0 (2= —a).

In agreement with the convention used in acoustics [2] it has been assumed
that positive tensile stress corresponds to negative pressures. Hence the nega-
tive sign appears at acoustic pressure in the first boundary condition (8).

Putting relations (5) into boundary conditions (8) and making use of (3a),
(3b), (6) and (7) we obtain a set of five homogeneous equations with unknown
coefficients 4,, 4,, B,, B,, K. The solution to this set requires the determinant
W formed of the coefficients of this set to vanish. This determinant has the
form

oy —2uk? 0 0 2ujkly — g, @?
0 2jkkg L 0 0
W = 0 kg — ik 0 jko |- (9)
(w? g —2uk?)coskga (2uk®— w?pg)sinkga  2ujkksinka  2ujklk,coskia 0
2jkk gsinl g a 2jkkgeos kga (k2 —k3)coskga  (k,— k®)sink;a 0

The characteristic equation is the very condition of vanishing of this de-
terminant and has the form
(0?0, —2uk?)2 (k2 — kj)2kosink, a-sink,a +
+4o, 0% uj(k2+ k)2 k2 kK, cosk,a-sinkga+
+16p2k" k3 ki kosink,a-sink, a -+

— (w? o, —2uk?) o, w2k, (K* — k})jsink,a coskya —
—8(w?p, —2uk) u(k:—F0) k2k Kk g+
+8(w? o, —2uk?) u (k2 —k}) K2k, k, kycoskya-coskja = 0. (10)

If we put g, = 0 in characteristic equation (10) we obtain the characteristic
equation for the layer in the vacuum as given by Ewinge and Jardetzky [1].
The characteristic equation (10) determines the relation between the phase
velocity ¢ of the wave and the wave number k. The relation between the phase
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velocity ¢ and the angular frequency o can be obtained after putting the re-
lation k¥ = @/c¢ in (10).

The solutions of (10) can be real or complex. The real values of k satisfying
(10) correspond to wave propagation along the z-axis without attenuation.
The complex values of k correspond to propagation with attenuation.

The characteristic equation (10) has been solved numerically for the fol-
lowing parameters.

(a) The layer is made of steel:

g; =10 gjem?, "~ 4.= 1.04 x101%g/em -5°,

% = 8.03 x10! g/ecm 8%, ¢4 = 5:9 x10° cm/s,
¢; = 3.23 X105 ecm/8.

The layer thickness was a = 0.075 ¢m in the first case and @ = 0.010 cm
in the second case. These thickness are equal to the thickness of the needle
used for punecturing the body tissue.

(b) Liquid —water:
oy =rluglem?® i ey =148 X 105 em [g.
(¢) Frequency:
f =3MHz.

Only the real values of k were taken into account when solving (10) since they
correspond to the waves which are not attenuated in the z-direction. Under
such an assumptions it has been obtained: for a¢ = 0.076 cm, propagation
constant & = 127.4 em !, wave numbers, k; = j-123 em™ !, k, = j-113 em ™,

ky = —j-3.12 em™'. Then the phase velocity of the surface wave is
¢ = wlk = 1.47840 x105 em/s,

i.e., it is slightly below the assumed velocity of wave in water. As it follows
from (5a), k, is imaginary. Then, by virtue of (5) the first exponent of potential
‘os(@, 2, t) will be real. Thus the wave considered decays in liquid with the in-
crease of depth z.

The distributions of normal and shear stresses, of the acoustic pressure,
and of the components of displacement vector of the propagating wave have
been calculated numerically for the above example with the aid of egs. (6),
(7), (3a), (3b) (for # =t = 0). These equations, after some elementary transfor-
mations, assume the form:

7, = A[Cico8kza— Cysink,al( —k*—k3) +
+2u[ — k3(C,coskga— Cysinkya) + ( — Dysink,a — D,coska)jkk,], (11)

17,, = pl(Dycosk,a—Dysink,a) (k] —k?) +2jkk;(—Csinkga —Cyc08kga)], (12)

iz
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P = — oo Be M,
w, = (Cysinkga+ Cyeoskya)kg— (D, cosk,a — D,sink, a)jk,
U, = —(C,coskya—Cysinkya)jk + (Dysink,a + Dycosk,a)k,, (13)
wy = —jkoBe %%, gy, = —jkBe e,

The plots of the stresses and displacements are presented in Figs. 2 and 3.
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Fig. 2. Distribution of normal stress 7., Fig. 3. Distribution of the components
and shear siress 7., in the steel layer and of displacement vector in the steel layer
the distribution of acoustic pressure p in and in water for a = 0.075 cm

water; f = 3 x10% Hz, a = 0.075 em

For a = 0.010 em the propagation constant k¥ = 132 em ™', wave numbers
kg =j§-128 em™, k, = j-118 em™', k, = —j-34.7 em~. The velocity of surface .
wave is ¢ = 1.43-10° em/s. The distributions of acoustic pressure, stresses,
and displacements are presented in Figs. 4 and 5.

4. Conclusions

The paper is concerned with the problem of propagation of an elastie,
running wave along an infinite solid layer placed between the semispace filled
with liquid and the vacuum.

By solving wave equations (4) with boundary conditions (8) the characteri-
stic equation (10) has been obtained. Unlike in the case of the layer in the
vacuum [3], this equation cannot be decomposed into two terms describing
the symmetric and antisymmetric modes.
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Fig. 4. Distribution of stresses 7., and 7., Tig. 5. Distribution of components w
in the steel layer and the distribution of and w of displacement veetor in the

acoustie pressure p in water; f = 3 x 108 Hz, stecl plate and in water for a = 0.010 em
a = 0.010 em ‘

The characteristic equation (10) determines the phase velocity ¢ of the
wave as a function of the angular frequency . The phase veloecity ¢ may be
real or complex and in a general case depends on the frequency.

In the case considered in this paper it has been assumed that the wave
in question should be unattenuated in the direction of its propagation. For
steel layers of thicknesses of 0.075 em and 0.01 em, equal to the thicknesses
of needles used for puncturing the body tissue, and for the assumed wave
velocity in water ¢, = 1.48 x10% em/s it has been found that for a frequency
of 3 x10° Hz the velocities are ¢ = 1.47840 x10%¢cm /s and ¢ = 1.42810 x10°¢cm /8
for the thick and the thin layer, respectively. These velocities are only slightly
lower than ¢,. The wave decays exponentially with the increase of the penetra-
tion depth in water. The penetration depth of this wave in water is much larger
than its penetration depth in the layer. The wave is conducted without attenua-
tion along the solid-liquid interface; its character resembles that of a surface
wave.
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