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Effects of microstructure factors on the acoustic performance of open-cell foams can be characterized
numerically by a microstructure-based approach. To this regard, the numerical homogenization approach and
the equivalent-fluid theory are employed to study the acoustic behavior of random open-cell foams within
their Voronoi tessellation-based Representative Volume Elements (RVE). As a validation step, the numerical
predictions are compared with the reference findings to either verify the finite element procedure or demonstrate
that the constructed RVE can capture both the local geometrical characteristics and the acoustic macro-
behavior of cellular solid foams. It can be seen from the obtained results that the morphological characteristics of
open-cell foams could be controlled to achieve the desired sound absorbing behavior. In addition, the analytical
expressions, formulating the relationship between the geometry of foam absorbers and their target absorption
performance, are established to design sound absorbing foam layers.
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1. Introduction

Porous structures and materials have recently
served a wide application due to their high sound ab-
sorption and exhibiting other relevant features (e.g.
weight, thickness, safety, recyclability). When the air
propagates through a porous medium (i.e. foam, fi-
brous, granular), its freely traveling sound energy can
be partially absorbed due to a combination of dissi-
pation mechanisms including visco-inertial and ther-
mal effects (Fahy, 2000; Allard, Atalla, 2009).
The relationship between the microstructure parame-
ters and the macroscopic behavior of sound absorbers
can be predicted by different methods: (i) theoretical
(Johnson et al., 1987; Champoux, Allard, 1991;
Lagarge et al., 1997; Allard, Atalla, 2009); (ii) ex-

perimental (Panneton, Olny, 2006; Olny, Pan-
neton, 2008); and (iii) numerical one (Gasser et al.,
2005; Perrot et al., 2007; Lee et al., 2009; Nguyen
et al., 2022). These approaches allow to characterize
and design the sound absorbing structures under vari-
ous application constraints.

In open porous cellular structures, acoustic pres-
sure in the pore connectivity vanishes mainly by the
visco-inertial and thermal dissipations that dominate
the sound absorbing performance rather than the
visco-elastic frame effect. Consequently, the foam solid
skeleton can be assumed rigid perfectly in model-
ing this class of sound absorbing materials (Fahy,
2000; Allard, Atalla, 2009; Dib et al., 2015; Park
et al., 2017a). The macroscopic transport properties
are influenced greatly by the cellular pore connections,
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thus a potential way to enhance their advanced func-
tional performance (e.g. sound absorption) is tuning
the local morphology foams (Doutres et al., 2011;
Trinh et al., 2019; Langlois et al., 2020; Jafari
et al., 2020).

The foamy morphology was fully characterized by ex-
periments (Matzke, 1945; 1946) or simulations (Kray-
nik et al., 2003; 2004; Köll, Hallström, 2014). In
these studies, several morphology distributions (e.g.
cell size, cell shape, face area, strut length) were con-
sidered. The findings stated clearly that: (i) the real
foam has a very complex morphology that depends
strongly on the manufacturing process; (ii) computa-
tional methods can successfully reconstruct this struc-
ture. In acoustic applications, it is observed that simple
RVEs, e.g. mostly as tetrakaidecahedron shape (poly-
hedron with 14 faces) namely Kelvin cell, are widely
used to study foam materials for both open (Perrot
et al., 2012; 2007) and semi-open cell (Doutres et al.,
2011; Gao et al., 2016; Park et al., 2017a) struc-
tures. The Weaire-Phelan structure, consisting of eight
cells (two irregular dodecahedron and six like-tetra-
kaidecahedron), was proposed by Weaire and Phe-
lan (1994). This equal-volume cell pattern could be
a good candidate as an idealized unit cell for modeling
and predicting foamy characteristics (Buffel et al.,
2014). For the case of foams having a wide distribu-
tion of pore size and shape, random RVEs can be re-
quired for characterization tasks of overall properties
(Nguyen et al., 2022).

In terms of the acoustic performance, the sound ab-
sorbing ability of foam-based absorbers is greatly in-
fluenced by their layer thickness (Chevillotte, Per-
rot, 2017) and local morphology features (porosity
(Chevillotte, Perrot, 2017; Trinh et al., 2018),
cell size (Perrot et al., 2012; Chevillotte, Per-
rot, 2017), level of membrane or solid film (Doutres
et al., 2013; Park et al., 2017a; Trinh et al., 2019),
and polydispersity (Nguyen et al., 2022)). It turns
out that, as compared to the opened cell structures
at a similar cell size scale, membrane foams having
a reasonable reticulated level or controlled pore con-
nection provide a higher sound absorption coefficient
level (Park et al., 2017b; Trinh et al., 2019). Howe-
ver, manufacturing the design morphology of ultra-
thin membranes at scale of several micrometers, i.e.
< 2 µm (Gao et al., 2016; Trinh et al., 2019) and keep-
ing it during the use process still remains a challenge.
It means that foams with and without membranes are
both required to develop for their tuning sound ab-
sorbing properties, in which, great attention was paid
to designing and optimizing the open-cell foam mate-
rials (Perrot et al., 2008; 2012; Jafari et al., 2020;
Langlois et al., 2020).

In addition, the issue related to the local morphol-
ogy of open-cell foams and their acoustical behavior
(e.g. transports, effective properties, and sound absorp-

tion) remains unanswered. Regarding this, the present
work aims to develop a numerical framework for sys-
tematic predicting of the influence of the microstruc-
ture factors on the non-acoustical and acoustical pa-
rameters of open-cell foam absorbers.

This paper is organized as follows. Section 2 intro-
duces the RVE reconstruction procedure. To generate
the required ensemble of seed points, the method for
randomly packing equal-sized spheres is first presented.
Then, the polycrystalline structure of open-cell foam
materials is reconstructed using the Voronoi tessella-
tion. Section 3 briefly recalls the theoretical formula-
tions describing the wave propagation phenomena in
a pore connection. This summary focuses on hybrid-
numerical approach using the multi-scale homogeneous
technique and formulating a porous medium by the
semi-phenomenological model. In Sec. 4, parametric
analysis and design flowchart of the acoustic behavior
of foam absorbers with varying structure parameters
are demonstrated. Finally, some conclusions are drawn
as well as forthcoming works are proposed.

2. Generation of microstructure representation

Figure 1 shows the microscopic presentation of a real
foam structure whose pore connection is made of liga-
ments and vertices (also named struts and nodes).
The reconstructed Voronoi-based model of the foam
microstructure depends on the basic distribution of
seed points (Kraynikm et al., 2003; 2004; Kröll,
Hallström, 2014). In this section, the morphology of
monodisperse foams with open-cell structures is gene-
rated.

window 
 size

cell size

strut/edge

vertex/node

1 mm

Fig. 1. Structure of a real monodisperse open-cell
solid foam.

2.1. Dense random packing of rigid mono-sized
spheres

Herein, we follow the popular algorithm provided
by Jodrey and Tory (1981; 1985) to construct a ran-
domly close-packed distribution of equal spheres. The
method is briefly introduced in the following.

In the initial state, a set of N sphere centers is
randomly distributed in a cubic unit. It is assumed
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that each generated point is the center of two spheres,
namely the inner and the outer one with their corre-
sponding diameter din and dout.

The diameter d (k)in is equal to the minimum center-
center distance in the sphere ensemble as:

d
(k)
in = min ∥r(k)ij ∶= x(k)i − x(k)j ∥ , i, j ∈ [1,N], i ≠ j.

(1)
In each step, two any overlapping spheres are sep-

arated by an equal distance along their center:

D
(k)

=
1

2

d
(k+1)
out − ∥r(k)ij ∥

∥r(k)ij ∥
. (2)

The diameter d (0)out is set initially to (6/(πN))1/3

with a nominal volume faction of 1. If remaining
overlaps, the diameter of the outer sphere is reduced
slightly as follows (Jodrey, Torry, 1981; 1985):

d
(k+1)
out

d
(0)
out

=
d
(k)
out

d
(0)
out

−
κi

2ΓN
, (3)

where κi is the initial rate of contraction, and Γ =

⌊−log10∆η
(k)
p ⌋ with ⌊.⌋ is the greatest integer function.

∆η
(k)
p is the difference of the volume packing fraction

between two sphere ensembles at iteration k, when
∆η
(k)
p ≤ 0 the packing algorithm is terminated.
To address the periodic conditions for the RVE

skeleton, a technique introduced in (Ghossein, Le-
vesque, 2012) can be used. This tool generates perio-
dic particles according to collisions of a sphere with the
cubic faces. For each intersect collision, the location of
the periodic sphere pxi is defined from the location xi
of its original sphere as pxi = xi+h, in which the num-
ber of periodic spheres p and the components of the
offset vector h = [hi]1×3 depend on the location of the
intersect face, i.e. p ∈ {−1; 3; 7} and hi ∈ {−1; 0; 1}.

For representation purposes, Fig. 2 shows an as-
sembly of 1024 spheres with a volume fraction of
0.60 and the corresponding radial distribution func-
tion g(r) compared to several loose packing configu-
rations (i.e. ηp < 0.60). This ensemble was generated
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Fig. 2. a) Random close packed ensemble of 1024 mono-
sized spheres with a packing density of ηp = 0.60; b) graph

g(r)→ r(= 2r/d) for different packing fractions.

in around 1100 seconds on an Intel(R) Core(TM) i7-
4500U, CPU@ 1.80 GHz 2.40 GHz, and 4 GB RAM.
The algorithm may require a much lower number of
iterations for non-periodic packings.

2.2. Foam microstructure generation

The Voronoi pattern-based cell system is developed
from the set of seeds or nucleus generated in Sub-
sec. 2.1. The Voronoi cell Vi corresponding to the point
Pi(xi) is defined as the space domain of x closer to that
seed than any other seeds Pj(xj) (Okabe, 1992):

Vi(xi) = {x ∈ R3
∣ ∥x − xi∥ ≤ ∥x − xj∥, for all j ≠ i}.

(4)
The Voronoi diagram is constructed from all sin-
gle Voronoi cells which is a union of convex polyhe-
drons without any overlaps. As an illustration, the
3D Voronoi diagram shown in Fig. 3b corresponds
to the random dense packing of spheres in Fig. 3a.
In this structure, the cell edges and vertices present
the ligaments and the nodes of the foam morpholo-
gy, respectively. In membrane foams, it was noticed
that the cell walls or faces with a given thin mem-
brane should be used for modeling the foams with solid
films that close fully or partially the pore connection.
From the Voronoi diagram, an established RVE skele-
ton of the foam within cylindrical struts is provided
in Fig. 3c, and the finite mesh model of its fluid phase
shown in Fig. 3d can be used for multiscale simulations
in the next section.

a) c)

b) d)

Fig. 3. Steps in the foamy structure generating: a) dense
packing of spheres; b) periodic pattern based on Voronoi
cells; c) representative element volume of solid foams; d) FE
mesh of pore domain containing 218 811 tetrahedral ele-

ments.

It was noticed that the regular structures (e.g.
Kelvin or Weaire-Phelan pattern) can be created from
an appropriate set of ordered seed points, i.e. the body-
centered cubic lattice or the lattice with the seed coor-
dinates shown in Fig. 2 in (Weaire, Phelan, 1994).
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For the random RVE model, the average cell size
in the foam ensemble is estimated through the mean
cell volume V ce as:

Cs = (6
V ce
πNc

)

1/3

, (5)

where V ce = 1/Nc
Nc

∑
i=1
Vcei with Vcei is volume of the i-th

cell in the ensemble of Nc cells.
Based on the RVE, two geometrical factors of the

pore connection of foams, namely, the open porosity φ
and the thermal characteristic length Λ′, can be esti-
mated by:

φ =

y

Ωf

dV

y

Ω

dV
, Λ′ = 2

y

Ωf

dV

x

∂Ωf

dS
, (6)

where Ωf and ∂Ωf denote respectively the fluid domain
and the solid-fluid interface of the RVE domain Ω.

3. Computations of transport and acoustic
properties

Acoustic porous layers can be formulated by two
frequency-dependent properties (i.e. effective density
and bulk modulus). This description includes two geo-
metrical factors (φ, Λ′) and six macroscopic transports
involving (i) four factors regarding the viscous-internal
effects and (ii) two factors regarding the thermal ef-
fects. From these effective representations, the sound
absorbing coefficient of absorbers can be estimated. We
herein present the computational scheme for this mod-
eling framework.

3.1. Hybrid multiscale calculations

Below is a brief introduction about the first princi-
ples for estimations of the above transports.

3.1.1. Stokes problem

At the low-frequency limit (that is, ω → 0), Stokes
or viscous flow in interconnected pores of the foams can
be governed by the following equations and boundary
conditions (Auriault et al., 2010):

η∆v −∇p = −G with ∇ ⋅ v = 0 in Ωf , (7)

with v = 0 on ∂Ωf , and v, p are Ω-periodic; η, v, and p
are the dynamic viscosity, velocity, and pressure of the
fluid, respectively; G is the imposed macroscopic pres-
sure gradient. Symbols ∆ and ∇ denote the Laplacian
and nabla operators.

The components of two static viscous factors, the
permeability tensor k0 = [k0ij]3×3 and the tortuos-
ity tensor α0 = [α0ij]3×3, are calculated as (Boutin,
Geindreau, 2008):

k0ij = φ ⟨k⋆0ij⟩ , α0ij =
⟨k⋆0pik

⋆

0pj⟩

⟨k⋆0ii⟩⟨k
⋆

0jj⟩
, (8)

wherein k⋆0 is the local static viscous permeability as
v = −(1/η)k⋆0G, and ⟨●⟩ = (1/∣ Ωf ∣)

y

Ωf

●dV .

In general, by solving Eq. (7) we can define a set
of all nine components of each transport tensors. For
the case of permeability, its coefficients can be deduced
from three separate procedures with the corresponding
imposed gradient G (e.g. Gx = [1 0 0]T is for esti-
mations of components [k0xx k0yx k0zx]

T). However,
referring to a geometry symmetry, the second order
macroscopic transport tensors become a diagonal form
(i.e. k0 = k0I3 and α0 = α0I3 with I3 is the identity
matrix).

3.1.2. Laplace problem

When ω → + ∞ (i.e. high-frequency regime), the in-
ertial flow in a pore domain behaves like an ideal fluid
(i.e. no viscosity), thus its governing formulation has
the same form as the equations of the electric con-
duction phenomenon (Johnson et al., 1987; Avel-
laneda, Torquato, 1991; Achdou, Avellaneda,
1992). Therefore, the macroscopic properties of in-
terest can be computed from the following equations
known as the Laplace problem:

E = −∇ϕ + e with ∇ ⋅E = 0 in Ωf , (9)

with E ⋅ n = 0 on ∂Ωf , and ϕ is Ω-periodic. Herein,
E is the electric field, ϕ is an electric potential, e is
a given unit vector field, and n is the unit vector nor-
mal to ∂Ωf .

Within symmetric properties, the high-frequency
tortuosity tensor α∞ = [α∞ij]3×3 and the viscous char-
acteristic length tensor Λ = [Λij]3×3 can be described
by a scalar calculated as (Johnson et al., 1987; La-
farge, 2099):

α∞ =
⟨E2

⟩

⟨E⟩2
, Λ = 2

y

Ωf

E2 dV

x

∂Ωf

E2 dS
. (10)

3.1.3. Poisson problem

When ω → 0, heat diffusion in the pore phase is
formulated as (Rubinstein, Torquato, 1988):

∇
2u = −1 in Ωf , (11)

with u = 0 on the fluid-solid interface ∂Ωf and u is
Ω-periodic.

The local solution u is used for calculating two
remaining macroscopic transports as (Avellaneda,
Torquato, 1991):

k′0 = ⟨u⟩ , α′0 =
⟨u2⟩

⟨u⟩
2
, (12)
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where k′0 is the static thermal permeability and α′0 is
the static thermal tortuosity.

From the local field solutions of three above-
described static problems, see Fig. 4 for instance, we
can deduce the corresponding transport parameters as
input factors of the semi-phenomenological model pre-
sented in the next section.

a)

b)

c)

Fig. 4. Graphs of three local asymptotic fields: a) k∗0xx
(×10−8 m2) with an imposed unit Gx; b) Exx/∇ϕ (–) with

an imposed unit field ex; c) u (×10−8 m2).

3.2. Acoustic model of porous media

In the equivalent-fluid theory (Lafarge, 2009; Al-
lard, Atalla, 2009), the air in a porous structu-
re (i.e. pore phase) might be replaced by an equiva-
lent fluid with its macroscopic representation (i.e.
two frequency-dependent properties). In the Johnson-
Champoux-Allard-Pride-Lafarge (JCAPL) or eight-pa-
rameter semi-phenomenological model, the frequency-
dependent density ρ̃(ω) and the frequency-dependent
bulk modulus K̃(ω) are estimated from the transport
properties governing the viscous-internal and thermal

effects as follows (Johnson et al., 1987; Champoux,
Allard, 1991; Lafarge et al., 1997):

ρ̃(ω) =
ρ0α∞
φ

⎡
⎢
⎢
⎢
⎢
⎣

1 +
ηφ

jρ0k0α∞ω

⋅
⎛

⎝
1 − P + P

√

1 + j
M

2P 2

α∞ρ0k0ω

ηφ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

, (13)1

and

K̃(ω) =
γP0

φ

⎡
⎢
⎢
⎢
⎢
⎣

γ − (γ − 1)(1 +
ηφ

jk′0Nprρ0ω

⋅
⎛

⎝
1 − P ′

+ P ′

√

1 + j
M ′

2P ′2

k′0Nprρ0ω

ηφ

⎞

⎠

⎞

⎠

−1⎤
⎥
⎥
⎥
⎥
⎦

−1

,

(13)2

with

M =
8k0α∞
Λ2φ

, M ′
=

8k′0
Λ′2φ

,

P =
M

4(α0/α∞ − 1)
, P ′

=
M ′

4(α′0 − 1)
.

(14)

In above equations, ρ0 is the air density at rest, γ is the
ratio of heat capacity, P0 is the atmospheric pressure,
Npr is the Prandtl number, and ω = 2πf is the angular
frequency.

The sound absorption coefficient at normal inci-
dence of a rigid-backed absorber is finally defined by:

Aα(ω) = 1 − ∣
Z̃s(ω) − ρ0c0

Z̃s(ω) + ρ0c0
∣
2

, (15)

with

Z̃s(ω) = −j
√

ρ̃(ω)K̃(ω)cot
ωL

√

K̃(ω)/ρ̃(ω)
, (16)

where L is the absorber thickness and c0 is the sound
speed in air.

4. Results and discussion

4.1. Foamy morphology

Using the procedure described in Sec. 2, some mor-
phology characteristics of random monodisperse foams
are discussed in this section. The obtained character-
istics of the generated structures are compared with
both the experimental characterization data (Matzke,
1946) and computational results (Kraynik et al.,
2003; Köll, Hallström, 2014) previously reported.
Figure 5 shows the distribution of face number per cell
P(F ) (see the left panel) and the distribution of edge
number per face P(E) (see the right panel). The cell
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Fig. 5. Distributions of (a) F -face cells and (b) E-edge faces
in foam structures.

volume Vce and the strut length Lli are respectively
normalized by Ṽce = Vce/V ce and L̃li = Lli/Lli, in
which the mean length Lli is estimated from the ave-
rage cell volume V ce as Lli = V

1/3

ce . Two observed distri-
butions Ṽce ↦ P(Ṽce) and L̃li ↦ P(L̃li) are graphed in
Fig. 6. The numerical results compare well with the
reference works, and the virtual foam structure cap-
tures well some key morphology features such as (i) the
14-face cells (Fig. 5a) and the 5-sided faces (Fig. 5b)
are the most frequent in the foam ensemble, and (ii) the
monodispersity corresponds to a narrow distribution of
the normalized cell volume (see Fig. 6a).

a) b)
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Fig. 6. Graphs of the normalized cell volume (a) and the
normalized edge length (b) distributions of Voronoi random

foam as compared with previous numerical works.

Regarding the structure that has narrow distribu-
tions, P(E) and P(L̃li), a relaxation step could be
required (Kraynik et al., 2003; Köll, Hallström,
2014) in Surface Evolver (Brakke, 1992). After this
step, the relaxed structure foam can be generated.
In this structure, the proportion of the cell windows
in pentagon shape is larger than 60% as found in the
Matzke experimental data (see Fig. 5b). It was no-

ticed that this statement is also confirmed in foams
with a tuned membrane level (Trinh et al., 2019).

4.2. Transport and effective properties of foams

In this part, the macroscopic transport properties
and the effective factors of open-cell foam structure
are studied. Figures 7–9 depict the results of the pro-
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et al.

Fig. 7. Effect of microstructure (i.e. Cs, φ) on the ther-
mal (a) and viscous (b) characteristic lengths. Numerical
estimations are shown with Kevin pattern (KV, ▽), Waire-
Phelan pattern (WP, 2), and Voroinoi tessellation (VT, ⋆).
The continuous lines are the fitting curves from Eq. (17).
Dashed lines in sub-figures (a, b) denote the analytical

models proposed by Doutres et al., (2011).
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0.7 0.8 0.9 1
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Fig. 8. Effect of microstructure on the viscous (a) and ther-
mal (b) static permeabilities. Numerical estimations are
shown with Kevin pattern (KV, ▽), Waire-Phelan pat-
tern (WP, 2), and Voronoi tessellation (VT, ⋆). Contin-
uous lines are the fitting curves from Eq. (18) and the
dashed line in sub-figures (a) denotes the analytical models
proposed by Yang et al. (2014). For k′0 in panel (b), the
dashed thin and thick lines are plotted with a ratio k′0/k0
equal to 3/2 and 10/3 as mentioned in (Vu et al., 2019;

Lafarge, 1993).
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Fig. 9. Porosity-tortuosity relations of open-cell foams:
high-frequency tortousity (top), static viscous tortuosity
(middle), and static thermal tortuosity (bottom). Numeri-
cal estimations are shown with Kevin pattern (▽), Waire-
Phelan pattern (2), and Voronoi tessellation (⋆). The con-

tinuous lines are the fitting curves from Eq. (19).

posed multiscale computations in comparison with the
several analytical models for the characteristic lengths,
permeabilities, and tortuosities, respectively.

It is seen that the RVEs based on different polyhe-
dron patterns (including Kevin pattern, Waire-Phelan
pattern, and Voronoi tessellation) can consistently pre-
dict the foamy transports. From these numerical values
(in a porosity range of 0.70 ≤ φ ≤ 0.99 (Chevillotte,
Perrot, 2017), several microstructure-transport rela-
tionships are generated. The following equations are
for two characteristic lengths:

Λ′

Cs
= a1

φ

(1 − φ)a2
,

Λ = Λ′/n,

(17)

with a1 = 0.2901, a2 = 0.4010, and n = 1.677.
Equation (17)1 is developed from the definition

of the thermal characteristic length as Λ′ = 2φ/Sp
(Perrot et al., 2012) with the specific area of the
fluid-solid surface Sp being a function of the solid frac-
tion, (1−φ). Note that ratio n between two characteris-
tic lengths in Eq. (17)2 is nearly 1.55 for high porosity
open-cell foams in (Doutres et al., 2011), which also
relies on the range [1, 2] found by Allard and Cham-
poux (1992) for fibrous materials.

For permeability parameters, the viscous static per-
meability is assumed as function of φ3/(1−φ)k (known
as Kozeny–Carman equation (Costa, 2006)), whereas
the thermal static one is related to two purely geomet-

rical factors (φ, Λ′) as k′0 ∼ φΛ′2/8 (Lafarge et al.,
1997). That leads to the following expressions:

k0

C
2

s

= b1
φ3

(1 − φ)b2
,

k′0

C
2

s

= c1
φ3

(1 − φ + c2)2
,

(18)

with b1 = 0.6491 × 10−2, b2 = 0.3063, c1 = 0.02359, and
c2 = 0.7646.

Extending Archie’s law in (Archie, 1942) to the
multiscale estimations, the analytical approximations
for three tortuosities are found as functions of the
porosity:

α∞ = 1/φd1 ,

α0 = 1.253/φd2 ,

α′0 = 1.157/φd3 ,

(19)

in which d1 = 0.7882, d2 = 1.571, and d3 = 0.6252.
These observed porosity-tortuosity equations accord
with the theoretical constraints proposed by Lafarge
(2009) in the valid range of porosity: (i) α0/α∞ > 1
(i.e. 1.253/φ(d2−d1) > 1.26); (ii) α0/(α∞α

′

0) > 1 (i.e.
1.083/φ(d2−d1−d3) > 1.02), and α′0 > 1.

Next, the proposed method is validated with a ref-
erence to porous configuration based on the classical
face-centered cubic (FCC) lattice with a porosity of
φ = 0.26. The sphere radius is equal to 1 mm, and
their necks (at the contact points) have a radius of
0.15 mm (Gasser et al., 2005). Figure 10 compares
the effective properties of the FCC lattice from the
present estimations (dashed line) and the reference val-
ues (markers) adopted from Gasser et al. (2005). Two
computational schemes show a good agreement, which
validates greatly the proposed finite element modeling.
As listed in Table 1, the comparison of the predicted
transports for this reference FCC lattice also supports
this statement.

As shown in Fig. 10, the normalized effective prop-
erties of open-cell foams (within Cs ∈ [0.02, 1] mm
and φ = 0.98) are compared with the FCC granular
medium with the frequency range of [1, 104] Hz. The
observed curves reveal that: (i) the foam connectivity
and the granular packing provide the different effective
properties (see the real parts in Figs 10a and 10b); and
(ii) these complex factors of open-cell foams are greatly
influenced by their average cell size Cs. In addition,
within Cs ∈ [0.3, 0.5] mm as the same pore scale of
the FCC lattice (sphere radius: 1 mm; contact neck
radius: 0.15 mm), the imaginary part of both proper-
ties varies in the same range (see, Figs 10c and 10d).
In the next section, the sound absorption performance
of these porous media will be investigated.
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Fig. 10. Normalized values of ρ̃(ω) (a, c) and K̃(ω) (b, d) of open-cell foams (continuous lines, the thicker line the bigger
cell size) are compared with that of the FCC granular medium (markers for reference data from Gasser et al. (2005) and
dashed line for the present work, in which these effective properties are estimated using JCAPL model with the calculated

factors presented in Table 1). Logarithmic scales are used for two bottom panels (i.e. imaginary parts).

Table 1. Computed transport properties in comparison with the reference estimations for two porous layers:
FCC packing (Lee et al., 2009) and melamine foam structure (Lai et al., 2000).

Reference
Macroscopic transport parameters

φ Λ′ Λ k0 k′0 α∞ α0 α′0

[–] [mm] [mm] [×10−10 m2] [×10−10 m2] [–] [–] [–]
Lee et al., 2009

0.26
0.247 0.159 6.70 27.0 1.65 2.49 1.85

Present 0.247 0.157 6.76 26.3 1.66 2.65 1.91
Lai et al., 2000

0.99
0.30 0.10

13.0
NA 1.02 NA NA

Present 0.41 0.24 19.2 1.01 1.27 1.16

4.3. Sound absorption of foam-based layers

The established analytical laws of the non-
dimensional transports in Subsec. 4.2 are used to pre-
dict and design the sound absorbing coefficient of ab-
sorbers based on monodisperse open-cell foams. We
herein tune two microstructure parameters (i.e. φ and
Cs) and the layer thickness L.

We validate the analytical expressions of macro-
scopic factors by a real melamine foam proposed in
(Lai et al., 2000) with available measured data of some
transports and the sound absorption. For comparison,
the average cell size of this foam is estimated using
Eq. (18)1 with an equivalent permeability keq0 = η/σ,
herein σ = 14000 Rayls/m is the static resistivity mea-
sured on the sample. From the value of Cs and φ,

using the corresponding expression generated in Sub-
sec. 4.2, the six remaining factors can be found (Ta-
ble 1). As shown in Fig. 11, the predicted curve and
the measurement data show a good agreement, which
demonstrates the predictive performance of the estab-
lished models of the macroscopic transport properties.

Figure 12 plots the effects of the averaging cell
size Cs and the layer thickness L on the sound ab-
sorbing capacity of foams at a porosity φ = 0.98. The
thickness L in the top and bottom panels are respec-
tively 30 mm and 90 mm. From the plotted curves, it
is seen that we can select the value of Cs to reach
the sound absorption level and tune the desired fre-
quency. Absorbers with L = 30 mm and Cs in a range
[0.2, 0.3] mm can provide Aα > 80% at frequencies
> 3 kHz. For the thicker absorbers (i.e. L = 90 mm),
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Fig. 11. Sound absorption of the melamine foam with
L = 51 mm: solid dots (adopted from Lai et al. (2000))

and continuous line (the present work).
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Fig. 12. Sound absorption of different porous absorbers
with (a) L = 30 mm and (b) L = 90 mm. Foam layers have
a tuned cell size (continuous lines as shown in Fig. 9, the
thicker line for the larger cell size), whereas the granular
layer is based on the FCC lattice (dashed lines) (Gasser

et al., 2005).

the sound absorption level of 80% can be achieved with
Cs ∈ [0.2, 0.6] mm at low frequencies (> 1 kHz). In ad-
dition, within the smaller cell size (i.e. [0.2, 0.4] mm,
90 mm thick layers of foams can be used for low fre-
quency applications (∼ 0.55 kHz) with a higher absorp-
tion level of 90%. The depicted curves also indicate
that, compared with a FCC-based absorber with the
same thickness, the foam layers have a smaller num-
ber of peaks and the first absorption peak occurs at
a higher frequency for any values of Cs. That can be
generally caused by the relation of the complex wave-
length of these porous media, R(λFoameq ) < R(λFCC

eq )

with λeq(f) = f−1
√

K̃(f)/ρ̃(f). In addition, the oscil-
lation amplitude of quarter-wavelength resonance be-

havior decreases when reducing the cell size at a certain
value (or high values of the dimensionless factor L/Cs).
The sound absorption curves reveal that we enable us-
ing the average cell size that provides the perfect ab-
sorption (i.e. Aα ≈ 1) at the first peak of the absorption
behavior with a given thickness and porosity.

Then, we design foam absorbers for the desired
sound absorption property. The question raised pre-
viously about the foam layers that produce the unit
value of the absorption at the first peak with evi-
dence as illustrated in Fig. 12. To address this tar-
get, we generate 9 classes of the foam absorbers having
their thickness in the range [20,100] mm with a step
of 10 mm. In each class, we design 5 foamy configu-
rations corresponding to 5 values of different porosi-
ties (i.e. φ = 0.75/0.80/0.85/0.90/0.95/0.98). Based on
these configurations and the analytical expressions pre-
sented in Subsec. 4.2, we may find the value of Cs
that provides the first peak with Aα = 1. Figure 13
draws the findings for cases φ = 0.75 and φ = 0.98,
respectively. With a smaller oscillation amplitude of
quarter-wavelength resonance behavior, all curves for
the case φ = 0.98 show a better sound absorption (i.e.
high sound absorption dips) compared with the lower
porosity case.
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Fig. 13. Optimum sound absorbing coefficients of foam lay-
ers within their thickness varying from 20 mm (thinnest
line) to 100 mm (thickest line): a) for φ = 0.75 and b) for
φ = 0.98. For the sake of visibility, some values of Aα after
the first peak are removed. The vertical dashed-dot lines

refer to the first peak center.

For each pair of Li and φi, we search a value of Csi
that fulfills the sound absorption constraint Aα = 1 at
the first peak (i.e. f1i). The found values of (Csi, f1i)
are depicted by circle markers in Figs 14 and 15. From
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these observations, the cell size-layer thickness and the
first peak frequency-layer thickness relations are gene-
rated mathematically as follows:

Cs = pL + q, (20)

L = δ/f1. (21)

In the expressions above, the average cell size Cs
is in mm, the thickness layer L is in m, and the fre-
quency of the first absorption peak f1 is in Hz. The
approximated coefficients (p, q, δ) are listed in Table 2,
the values in each row present a given porosity.

Table 2. Fitting coefficients of Eqs (20) and (21).

Porosity φ
Coefficients

p q δ

0.75 5.500 0.3148 67.43
0.80 4.483 0.2932 71.06
0.85 4.007 0.2310 74.96
0.90 3.107 0.2074 79.99
0.95 2.890 0.1675 86.67
0.98 2.817 0.1232 92.58

From the optimal cell size-to-thickness ratio as
shown in Fig. 14, it can be seen that (i) the thinner
the optimal thickness the smaller cell size or the pore
diameter, and this linear law is in accordance with the
result proposed in (Vu et al., 2019); (ii) the correla-
tion between microstructure features (open porosity φ
and cell size Cs) and the layer thickness is consistent
with the one studied by Chevillotte and Perrot
(2017), in detail, for the high solid fraction foams, we
need to control their pore size at a higher level com-
pared with highly porous ones. In Eq. (21), for φ = 0.75,
the value δ = 67.43 is nearly 61.36 for granular media
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Fig. 14. Optimum average cell size for a given thickness
of a foam absorber whose first peak has a total sound ab-
sorption (i.e. Aα = 1). From top to bottom, the results
are shown with an increase in porosity from 0.75 to 0.99
(as increasing the marker size). Markers are the considered

points, and the lines are the fitting linear laws.

based on random close packings of rigid spheres (Vu
et al., 2019), see Fig. 15.
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Fig. 15. Frequency at the first absorption peak of the op-
timal absorbers. Circle markers are the considered points,
and the thin lines are the fitting exponential laws. The size
of circle markers indicates an increase in the porosity of
foams. The thick line presents the expression for sphere-

packed media (Vu et al., 2019).

From Eqs (20) and (21), an absorber owning 100%
sound absorption at a given frequency can be designed
by following several scenarios: (i) input f1, one con-
straint factor and two remaining tuned factors in a set
of (L,φ,Cs); and (ii) input f1, but two constraint fac-
tors and one remaining tuned factor. Three factors are
tuned or constrained in the designing input space in-
dicated by the gray zone in Figs 14 and 15. Note that
within the constraint range of the open porosity, the
low-frequency target (e.g. < 678 Hz) can be enhanced
by using layer thicknesses > 0.1 m.

5. Conclusion

The effective absorption properties of open-cell
foam materials were characterized systematically by
a homogenization approach. Based on the numeri-
cal estimations of macroscopic transport properties,
the effects of the average cell size and the porosity
on the acoustic performance of foam layers have been
studied. Through the present observations, the follow-
ing concluding remarks can be drawn:

• Microstructure-based modeling is able to capture
the foam morphology and generate the micro-
macro relationships which are in accordance with
results provided in the literature. The methodol-
ogy serves as a computation scheme for systematic
studying sound-absorbing foams.

• Under design and application constraints, the de-
sired sound-absorbing property of foams with an
open-cell structure can be achieved by adjusting
the microstructure variables and the layer thick-
ness.

• The semi-analytical relations, L(f1, φ) and Cs(L,φ)
in Eqs (20) and (21), could be helpful for designing
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foam absorbers with perfect sound absorption at
desired frequencies within the design space.

Finally, it should be noted that without further de-
velopments, the proposed framework can be extended
for: (i) considering the target as the average absorp-
tion over a specific band (e.g. low or high frequencies)
or other functional property (e.g. sound transmission
loss); (ii) including more morphology parameters such
as polydisperse/graded foams.
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