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HOW THE STRUCTURE OF A MEDIUM IS SEEN BY AN ACOUSTIC WAVE*
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Division of heterogeneous media into three types, depending on the dimen-
sions of heterogeneities. Media with maecroheterogeneities occurring naturally
and in technological materials. Chraracterization of microheterogeneities. Fre-
quency and energy transport ranges requiring quantum representation of waves
in media with heterogeneities caused by crystal structure defects. Quantum
phenomena and background noise for audible sounds. Density of phonons occur-
ring in acoustic impulses. Quantum phenomena possible in biological substaneces.

1. Introduction

The acoustic wave is a unique source of information concerning the medium
in which it propagates. For many centuries only waves in continuous and homo-
geneous media have drawn the attention of scientists. Even before the second
world war investigation of the influence of the structure and heterogeneity
of a medium on the propagation of acoustic waves had begun. However it is
only in the last decade that considerable progress in the investigation of this
problem has been made; many laboratories have concentrated their activities
on the study of this subject. This situation justified the choice of the problem
of the correlation between the structure of media and bodies and acoustic
waves propagation as the focal point of the second FASE Congress.

The sessions of the first and second sections are dedicated to this problem,
while the third section constitutes their logical complement: moving from the
physical phenomena to their perception by man. I think that this is sufficient

* FASE-78, invited paper, unpublished in the Proceedings.
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reason for me to dedicate the opening lecture of the Congress to certain general
aspects of the influence of media structure on the acoustic field.

The acoustic wave “sees” the heterogeneity of the medium if its length
is commensurable with the dimensions of the heterogeneities or with the distance
between them. For a longer wave the medium “appears” to be homogeneous;
however, the heterogeneities influence the value of the attenuation coefficient
and, therefore, the acoustic wave gives indirect information about their nature.
As far as the dimensions are concerned, we may differentiate three ranges of
heterogeneities connected, respectively, with the macrostructure, microstruc-
ture and molecular-atomic structure of a medium. The rather trivial definitions
of the limits between these ranges will be omitted from my considerations.

In the majority of media all the three ranges of heterogeneities exist;
it is the length of the wave that determines the one that we perceive. Of course,
every material medium has heterogeneities due to its molecular-atomic structure
and we should therefore pay a special attention to them. The macroscopic
heterogeneities may be natural or caused by technological processes. In Table 1

Table 1. The frequencies related to the macroscopic heterogeneities

Medium Size of heterogeneities Related frequency
Rocks 1-10m 0.5-5 kHz
‘Water in ocean 0.5-1m 1.5-3 kHz
Reinforced concerete 0.5-1cm 0.25-1 MHz
Organie tissue 0.1-1¢m 0.2-2 MHz
Porous poreelain 0.5 mm 40 MHz

some examples are given of media of this kind and the frequencies corresponding
to the wavelengths commensurable with the dimensions of the heterogeneities.

The microheterogeneities have until lately been almost exclusively of
natural origin and technological processes have influenced them only indirectly.
The situation has recently changed with the introduction of microcomposites,
e.g. in the form of whiskers.

In Table 2 the data pertaining to the microstructure of typical media,
analogous to those given in Table 1, are presented.

Table 2. The frequencies related to the microscopic heterogeneities

Nature of heterogeneities Size of heterogeneities Related frequency
(pm] [GHz]
Magnetic domains 10-100 - 0.05-0.5
Dislocations in a monoerystal 10 0.5
Erythroeytes in blood 4-8 0.2-0.4
Graing in a polyecrystal 1-5 1-5
Punctual defects 0.1 50
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Both ranges of heterogeneities have one essential feature in common:
the medium must be treated as heterogeneous but still continuous; we deal
here with an acoustic wave in the traditional sense. It allows us to use common
methods of description for both of these ranges.

The essential feature is the structure of the heterogeneity; the dimensions
are related to the wavelength, and thus relative parameters are dependent
on the frequency. We may differentiate two basic types of the structure. On the
one hand — the medium with strong heterogeneities, i.e. of markedly different
acoustic impedances. Usually in such a case we deal with heterogeneities in the
form of inclusions in a continuous matrix. These are called grainy media.

On the other hand, we have granular media with weak heterogeneities,
ie. of acoustic impedances not much different from one another. Most often
heterogeneities are close to one another, so that here there is no distinet matrix.

Differences in structure necessitate different mathematical methods for
determining the field distribution in media of the two types. For grainy media
we usually adopt the method of imaginary sources, while in granular media
the method of a small parameter is used. Depending on the degree of the structu-
ral irregularity we may or may not introduce statistical methods.

In Table 2, examples of both types of heterogeneity are given.

2. Molecular-atomic heterogeneities

The image of the acoustical phenomena changes deeply, once we descend
to the molecular-atomic range. The traditional view of the acoustic wave make
sense only in connection with the movement of matter, but the space between

Table 3. Examples of two types of heterogeneities

Grainy media Granular media
ZySZi, D> Zye2Z; D <l
Reinforced concrete Water in ocean
Porous poreelain Organic tissue
Crystal lattice Polyerystal

the molecules in fluids or the atoms in solids is not filled with a material medium,
The acoustic wave is, therefore, a collection of vibrations of discretely distributed
particles; this is often disregarded in technological acoustics. There is an im-
portant difference here, when compared with the electromagnetic wave, which —
regardless of frequency — propagates is space in a continuous manner. The
concept of the acoustic wave-length loses its physical sense in this range,
becoming a formal quantity, since the same distribution of oscillations of particles
may be obtained for a number of wavelengths (Fig. 1). We must, therefore,
look for another solution.
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Fig. 1. Varied concept of wavelength for a chain of particles

Let us consider (Fig. 2) a simple chain of identical oscillators of masses
my,, elasticities K, and distances @ between them; the oscillator has displace-
ment u, and momentum P;. Using Fourier analysis we find the displacements
Ut and momenta P, for the k, mode of oscillation:
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Fig. 2. A chain of oscillators of masses m, and elasticities K, between them
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This mode of oscillation may be represented in the reciprocal space of wave
vectors as a so-called modal oscillator moving with a velocity ¢, (Fig. 3). This
operation is performed on the basis of classical mechanies, but the energy
transport in the chain of oscillators, representing the acoustic wave, is subject
to the same universal law as the energy flux of electromagnetic wave: it does
not oceur in a continuous manner but in quanta of energy given by the formula

E=hw(fn+—;—), (2)
where 7 is the universal Planck constant, and # is the number of the energy
levels, i.e. the number of phonons.

The energy of the modal oscillator consists therefore of indivisible quasi-par-
ticles called, as we know, phonons; these quasi-particles are analogous to light
photons, though their properties are slightly different.
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Fig. 3a. Representation of a chain of oscillators by a number of k oscillators with a velocity e,
Fig. 3b. Representation of a chain of & oscillators as a flux of phonons nk;

Therefore we shall present the moving modal oscillator as a flux of phonons
of the same velocity ¢, (Fig. 3), consequently entering the field of quantum
acoustics. The probability = of the phonon of energy %, being in a given position
at a given moment of time, is defined by the wave function

v = /=", (3)
where § = It (energy of the system x time).
For phonons not dispersed by external factors this function fulfils the
Sehroedinger equation in the form
oy n?
i
) P —|— y
where m is the effective mass of the phonon.

This is compatible with the equation for the potential of an acoustic wave
in a non-dissipative medium:

Py =0, (4)

oD
ot

—=o*Vid =0, (4a)

It is evident that the quantum equation is of the first order, while the
acoustic equation is of the second order; the quantum equation describes the
flux of phonons moving with veloeity w,

: b hk 4
w = -?;z—-gl‘aadﬂ, my = ?, (O)
while the classical equation concerns the local movement of real particles of

instantaneous velocity:
v = —grad®. (5&)

The continuity of flux equation in a continuous medium, describing the
instantaneous density ¢ of the medium,

iv(ev) = 0, (6)
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is formally identical with the equation for the probability density of the phonon
distribution:
0
X 4 div(mw) = 0. (6a)
ot
However, there is an important difference in the relations between the
velocity and the potential. For the acoustic wave we have the Euler equation

dv
¢ = +gradp =0, (7)
and for the phonon flux the quantum acoustical equation
dw
) +grad@ =0, (7a)
where @ is the quantum potential:
B Va
e B (8)
2my; Vo

The gradient of the quantum potential defines the uncertainty of the po-
sition of the phonons, that is the dispersion of their flux. In the case of the flux
of classical particles, having precisely determined positions, the quantum po-
tential is obviously equal to zero.

The relations presented are an illustration of the degree of similarity and
at the same time of difference of the phenomena occurring in the micro- and
macroworlds. The acoustician crossing the boundary between these two worlds
must be fully aware of the complexity of the problems which he tackles.

The energy of a single phonon is given by formula

B, = ho,. (9)

In light flux the scintillations corresponding to the individual photons
had been observed by the beginning of our century. It must be expected that
in view of the development of the technology of hypersound, for which a single
phonon has a relatively high energy (for instance, for a frequency of f = 10** Hz,
the energy E = 107" erg), a similar observation of individual phonons will be
possible. However, this does not seem to be possible at lower frequencies,
gince we deal there with enormous number of phonons. For instance, the weakest
audible sound impulse at a frequency of 4000 Hz and with a duration of 1 msec
carriers 101! phonons. We have, therefore, a double quantum limitation on the
range of applicability of traditional acoustics. The quantization in space occurs
when the wavelength is commensurable with the distance between the oscil-
lators, and in the case of a spatial system — commensurable with the mean
free path of the phonon. It is independent of the wave energy and thus on the
(w, E)-diagram the limit is a vertical line (Fig. 4).
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As for the quantization of energy, it may be sensed only at low intensities,
when the number » is small, e.g. equal to 10. Then the limit on the (w, E)-dia-
gram is an oblique straight line. !
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Fig. 5. Vibration transport in the internal ear represented by a chain of oscillators

For the chain of oscillators previously presented (Fig. 5) the limit of quanti-
zation thus defined corresponds to a transported power of

Nim = [107%ofsinks] W, (10)

where w, = Vkq/m, is the frequency of natural oscillation of the resonator,
and %, = om/e.

The distance between the molecules or atoms and, therefore, the limiting
frequency depends on the temperature and pressure. In Table 4 some characte-
ristic examples are given.

In gases the molecules are moving at random, there is no order and the
mean free path of the molecule is the determining factor. In liquids there is a close
order, while in solids — a distant order; the mean free path of the phonon is
determined in this case.

Table 4. Limit frequency as function of the molecular structure

Medium Temperature Pressure Mean free path | Limit frequency
T[K] P [atm] l f [GHz]
| [m-10~7]

300 1 2 2
Ideal gas 100 1 0.7 6

20 1 0.1 40
Liquids
Co, 273 70 480 0.05
C8, 298 1 7.4 3.25
50, 273 10 34 0.7
CeH, 273 1 6.5 3.7
CH,(C1 273 ; 1 17 1.43
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Let us proceed to the quantum limitation of energy — it is especially in-
teresting for sound perception. A man of very keen hearing has a minimum
audibility threshold of about p, = 2:107° N/m? at 4000 Hz; hence 4, =
= 10~ W/m?2. This threshold coincides with the level of thermal noise caused
by the impacts of molecules of air against the ear-drum. On the other hand,
certain quantum phenomena also oceur in the internal ear, the energy is trans-
ported by chains of oscillators composed of molecules of lymphatic fluid. In
the case of the weakest received signal one such chain is activated. The data
of such a chain are the following: m, = 5-10"* kg, K, = 01N/m, w, =
1.4-102 Hz, @ = 3-107°m, ¢ = 15000 m/s. Introducing these parameters into
formula (10) for a signal of frequency w/2n = 4000 Hz, we obtain for the limi-
ting power N, transported by the chain of molecules, a value of 3.3-107"* W.

This chain collects the energy of the wave falling on the ear-drum. The
limiting power N, corresponds to activation by a wave of intensity iy,
= 1.7-107" W/m?2.

Table 5. Limit frequency as function of the atomic structure

Medium Temperature Mean free path Limit frequency
T IK] ! [m] f[GHz]
273 6.8-10~°7 214
8i 71 4.3-1077 3.4
20 6.5-107 0.023
273 1.8-10—* 590
8i0, 77 2.4-10-8 38
20 181058 0.076
273 5.2:10-° 164
Ge 77 5.2-10~8 16.4
20 T1-10~" 0.12
273 1.4-107° 818
CaF, 77 1.6-10-8 58.7
20 1.6-10~6 0.587
273 1.07-10-° 710
NaCl i 0.8-10—8 95
20 3.7-10~ 2.05

The convergence of that quantity with the andibility threshold i, confirms
the universal character of the quantum limitation.

The phenomena of oscillation transport by the biomolecules of the nervous
system is as yet unexplored to the full.

The natural frequencies of the biomolecules are considerably lower than
those of the lymphatic liquid and are of the order of 10%-10° Hz, and this fact
affects the oscillatory proecesses in the neurons.
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I have mentioned several problems still awaiting their solution. Acoustics
is still being developed, it developes branches and in each of these branches
new problems worthy of scientific and technical research appear. A reflexion
taken from the past seems to be particularly fitting here. In this year there
occurs the centenary of the publication of Lord RavrLricu’s “Theory of Sound”.
Shortly after this book had been published one of the contemporary physicists
said that it contained everything that could be written on sound and that nothing
was left to be done in acoustics. After a hundred years we are more modest.
In Europe alone there are several journals dedicated solely to acoustics and the
papers on our speciality are dispersed in journals of many disciplines, beginning
with linguistics and musicology and ending with architecture and metallurgy.
I think that both we and our successors will have enough subjects to pursue
for at least the next hundred years.

Leceived on September 19, 1978



