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ULTRASONIC WAVE PROPAGATION ALONG THE SURFACE OF A ROD IMMERSED
IN A LIQUID

LESZEK FILIPCZYNSKI
The Institute of Fundamental Technological Research (00-049 Warszawa)

This paper describes the wave phenomena occurring in a needle used
for puncture of body organs, under the simplifying assumption that this needle
is an ideal elastic cylinder immersed in an ideal liquid.

Investigations carried out by the author using an echo method showed
that the velocity of the wave propagating in the needle immersed in water
is close to the velocity of the wave propagating in water.

The author has analysed the propagation of waves along a cylindrical
rod of infinite length immersed in a liquid, solving the wave equations for
displacement potentials in the rod surrounding liquid, taking into consideration
the boundary conditions on the rod surface. It was found that it is possible
for the velocity of the propagating wave to be lower than the velocity of the
wave in water, with the wave being guided by the rod and the surrounding
liquid layer. The characteristic equation obtained was solved numerically for
a 1.5 mm diameter steel rod immersed in water at wave frequencies of 3 and
5 MHz. Stress distributions, acoustic pressure and the propagating wave dis-
placements were determined. It can be concluded from the character of the
wave that it is a surface wave.

The results obtained can be used as the first approximation to the problem
of wave propagation along a needle in the case where the needle wall thickness
and the frequency are adequately large.

Notation
a — rod radius
A, B, — constants
gs Oy — phase velocity and group velo-
city of wave along the rod,
respectively
Or,O0p — velocities of longitudinal and

transverse waves, respectively,
in a solid medium

Cw — wave velocity in liquid
— frequency
HY — Hankel function of the second

kind of order n
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Iy — Bessel function of the n-th order

Ta — modified Bessel function of the
first kind of order =

Iy — wave number, see formula (15a)

kr.p, by — see formulae (22)-(24)

X, — modified Bessel funetion of the

gecond kind of order n
L, T, W — see formulae (39), (40) and (41)

P — acoustic pressure

r, 0,8 — oylindrical coordinates

t — time

u — vector of displacement in the
rod

Up, gy  — components of vector u

Uw — vector of displacement in liquid

Uy, Uy, — components of vector Uy
— vector potential of displace-

ment

W — component of vector W

A p — Lamé constants

@ ¢,  — densities of rod and liquid,
respectively

Ozz, Opp — normal components of stress

Trs — tangential component of stress

P X — sealar potentials of displace-
ment in rod and liquid,
respectively

y — see formula (9)

(%] — angular frequency.

1. Introduction

The puncture of various body organs with a needle was recently intro-
duced into ultrasonic medical diagnostics, with the direction and also some-
times the depth of puncture being ultrasonically controlled. The above method
has been used in obstfetrics in amniocentosis to investigate genetically condi-
tioned foetus deformations, in phthisiology in punctures to remove fluids from
pleura, in oncology in histopathological investigations of tissues suspected of
cancer development, and for localization and puncture of blood vessels [1, 7,
6, 13]. In these cases ultrasonic waves of frequencies usually between 2 and
8 MHz are introduced along a steel needle of 2 mm diameter into the interior
of the patient’s body which from the viewpoint of its elastic properties is com-
parable to a liquid.

The puncture of the body is achieved with a needle whose hole is filled
with a metal rod which is removed after the puncture has been made. The
needle itself is in turn placed in a hole concentrically made in the centre of
a disc-shaped piezoelectric transducer (Fig. 1). By means of the ultrasonic
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Fig. 1. An ultrasonic transducer for ultrasonically
guided punctures [6]

beam radiated by the echoscope or ultrasonograph head the biological strue-
ture to be investigated is localized and the needle is subsequently entered along
the ultrasonic beam into the patient’s body, the needle being inserted through
the hole in the piezoelectric transducer (Fig. 2).

Fig. 2. The principle of a needle guided by an ultrasonic beam
B — a patient’s body, S — the biological structure investigated, 7' — the piezoelectric transducer, R — tube,
N — the needle, U — the ultrasonic wave, P — the rod filling the needle

The objective of this investigation is an explanation of the wave pheno-
mena oceurring in the needle used for puncture of the body organs, under the
simplifying assumption that this needle is an ideal elastic cylinder immersed
in an ideal liquid.

The problem of ultrasonic wave propagation along a rod immersed in
a liquid was first examined by BJorNo and KuMAR [3]. In the present investi-
gation the author uses a similar analysis, the different approach to the problem
resulting from the particular conditions imposed by the puncture, which was
the primary object of the author’s consideration.
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Propagation of elastic waves in a liquid along a flat layer of a solid medium
of large or small thickness has been investigated by GRABOWSKA [6] showing
that in such a case a wave can propagate simultaneously in the solid medium

and in the liquid at a velocity slightly lower than the wave velocity in the
liquid.

2. Experiments carried out using a needle

In order to obtain preliminary knowledge of the phenomena of ultrasonic
wave propagation along a rod, the author made a series of experimental obser-
vations with an ultrasonic transducer as shown in Fig. 1, and a needle of 1.5 mm
outer diameter and 1.0 mm inner diameter, using an ultrasonic echoscope.
The piezoelectric transducer of frequency 3 MHz had the shape of a ring with
a 9 mm outer diameter and a 6 mm inner diameter. The space between the
inner surface of the transducer and the outer surface of the needle was filled
with a removable metal tube.

42

Fig. 4. Oscillographic records of ul-

Fig. 3. Oscillographic records of ul-

trasonic pulses (a, b, ¢) and the mea-
suring system (d)
T — a piezoelectric transducer, W — water,
N — the needle, R — the rod filling the
needle, P — a flat reflector of methyl
metacrylate, x — direction of motion of the
needle and the rod, as shown in (d)

trasonic pulses (a, b, ¢) and the me-
asuring system (d)
The record (¢) corresponds to the position

of the needle and the rod, as shown in (d).
Notation as in Fig. 3
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Figure 3d shows the ultrasonic transducer with the needle pulled through,
filled with a metal rod, and a flat reflector immersed in water at a distance
of 5 em from the transducer. The transmitted impulse, the echo from the flat
reflector (methyl metracrylate) and the echo from the needle end are shown
in the oscillograph records above. If we move the needle left (in the « direction),
the echo from its end also moves left. However, the echo amplitude rapidly
decreases. This is not visible on the oscillograph records, because it was com-
pensated by amplification variation. The maximum echo emplitude was lower
by 14 dB than the amplitude of the echo from the reflector.

An interesting fact is shown in Fig. 4. Namely, it was found that distinct
from the needle end echo, there also occurs an echo from the end of the rod
filling it. If we move the rod left (in the x direction), the echo from the rod
end also moves left, and the echo amplitude rapidly decreases.

It can be concluded from the above experiments that there is a wave pro-
pagating simultaneously in the water and the interior of the needle; removal
of water from the tank completely eliminated the above-mentioned wave.
The velocity of the wave is approximately equal to the wave velocity in water,
as can be determined from the oscillograph records (with a precision of 59/,).

3. Initial equations

Let us consider ultrasonic wave propagation along a rod of circular cross-
section, as in the cylindrical coordinate system shown in Fig. 5. The rod with
a diameter of 2a is made of material with a density ¢, and the velocities of

pyoccr

XPwCuw

Fig. 5. The cylindrical coordinate system assumed in the analysis

longitudinal and transverse waves in the material are ¢; and ¢,, respectively.
The rod is immersed in a liquid with a density g;;, where the ultrasonic wave
velocity is ¢
The displacement vector in the rod is the sum

U = Uy + Uy, (1)
where

curlu, =0, (2)
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thus
u = gradg+curl W, (4)
potentials ¢ and 14 satisfying the scalar and vector wave equations:
o
—— CLVi9 =0, (5)
oW

Because of rotational symmetry only the component W, of the vector
potential is different from zero while W, = W, = 0. Thus, expanding (4),
we can write

_ap_ oW,
op  O(rWy)

“ =2t e @)

Equation (6) can be reduced to a scalar equation, introdueing [10] a new
scalar quantity y from the relation
ay

W, = _‘W:

where the quantity y satisfies the wave equation

oty

o

Thus, finally, scalar equations (5) and (10) must be satisfied for the rod,
while for the surrounding medium we have

a4

atﬁ
where y is the scalar potential of displacement uy in the liquid in accordance
with the relation

(9)

—CLVip = 0. (10)

— 0%, Viy =0, (11)

Uy = grady. (12)

The solutions of equations (5), (10) and (11) can be assumed in the form
of waves travelling in the direction z,

@ = @,(r) e/ Fod), (13)
v = p,(r)ef—*o), (14)
X = xo(r)ef@ o), (15)

where &k, = w/¢,, ® = 2=nf, f — frequency, and ¢, — phase velocity of a wave
travelling along the z-axis.
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Substituting (13), (14) and (15) into the wave equations (5), (10) and
(11) we obtain the Bessel equations of the zero order:

D2, (r 1 Op,(r o \? T
P+ 220 (o)~ =0, (16)
L =
Rye(r) 1 dypy(r) e 18
e | e B CR Y 1)
T 6
Pyo(r) 1 Oxo(r) w \? T
L) 1 2 0 1 [(5) —] tr) = 0. (18)
W .
The solutions of these equations can be given [11] in the form
@ = Ady(kyr)el™ T, (19)
v = CJ o(kpr) e’ Fo? (20)
% = BHQ (kyr) @ ~*0, (21)

where J, is the Bessel function of zero order, H{) — the Hankel function of
the second kind of zero order, and

% =(G—) _R, (22)
Ky = (-6;) _, (23)
s [ @\ _

b = (5=) - (24)

The solution of equations (16)-(18) is in general a linear combination of
the Bessel and Neumann functions. Since these functions tend to infinity for
r—0, only the Bessel functions J, were introduced into solutions (19) and (20)
which include the rod centre. However, the solution for the liquid surrounding
the rod was assumed in the form of the Hankel functions of the second kind
which represents a wave travelling with an increasing value of r.

4. Boundary conditions

On the rod surface (r = a) boundary conditions in the form of equality
of normal stresses in the rod o,, and of acoustic pressure p (in the liquid) must
be satisfied, while tangential stress z,, on the rod surface must be equal to zero.

The first condition takes [9] the form
ou, ou,

2
o | 2

ou,
or

c,,-_—;.[-”:—'+ ——p forr=a  (25)
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where

&’y
P = —ew—i (26)

and 1 and y are the Lamé constants. The second derivative, instead of the first
one, appears in formula (26) because, in accordance with formula (12), the
function is the potential of displacement, and not that of velocity, as is usually
assumed in acoustics.

The second condition for disappearance of tangent stresses takes [9] the
form

ou, ou,
= = =a. 2
o ,u[ . -+ o ] 0 “ifor rea=ia (27)

Subsequently we shall introduce the third boundary condition in the form
of equality of the radial displacements in the rod (%,) and in the liquid (u,,)
on the boundaries of the rod and the liquid:

%, =%, IOF7r=a. (28)

The components of displacements in the rod and displacements in the
liquid can be expressed by means of functions of ¢, v, , on the basis of relations
(7)-(9) and (12):

U = T oo (29)
dp Oy Py

“ % v (50)
a 8

thy =75, wpy =E (31)

Substituting formulae (29) and (31) into (25), (27) and (28) we obtain the
three ultimate boundary conditions

% k 1
A3 01005 0) + 22 T,y | + O T g )~ 1, (pa] +

+BEY goy g 4 — 0 (32)

2905' 0 w ]
A[2]kpkd (kg a)]+ C[(kikp — k7)1 (kpa)] = 0, (33)
—A[kyd (kg a)1+C[jkokpd 1 (kpa)]+ Bly HY (kya) = 0, (34)

where J, and H? are the Bessel and Hankel functions of the first order, re-
spectively.
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5. The characteristic equation

Eliminating quantities 4, B and C from equations (32)-(34), after numerous
transformations we obtain the characteristic equation for the problem under
consideration:

Ow ( ® ) 1 HY (kya)

40 \Cp ] T HY (kypa)
Jolkpa) 1 .{ &)\ [1 o \? ]2 1 J,(kpa)
nkTJ1(kT“) 2a (GT) i 2(01') 1 kr, J,(ka) il

In the case where a vacuum surrounds the rod instead of a liquid we have
o = 0 and the left-hand side of equation (35) disappears. Thus we obtain the
characteristic equation for a cylinder, as given by REpwoop [10] after Po-
cHHAMMER and CHREE.

When solving the characteristic equation, only real constants of pro-
pagation %, will be considered. In the general case, a finite number of imaginary
propagation constants, satisfying the equation, occurs for each given frequency.
They are analogous to propagation constants occurring in acoustic waveguides
below the cut-off frequency, when the vibration modes investigated do not
propagate, being completely attenuated (Re(kya) =0, Im(k,a) # 0). We can
also neglect the case of complex propagation constants k,, since the imaginary
component of these constants represents spatial wave attenuation. The waves
of this type will in practice decrease their amplitude until totally attenuated [14].

We investigate the case where the ultrasonic wave is guided along the rod
and is not attenuated in the rod, nor re-radiated by the rod to the liquid.

The function H{), occurring in the assumed solution (21), corresponds
to the radiation of wave by the rod to the liquid along the axis . This follows
from the asymptotic value of this function which for high values of r takes
[11] the form

2
Hi(z) =~ o g~ Hz—n'4) [1 - lsw = YRR ] 3 (36)

However, in the case where the phase velocity ¢, of wave is lower than the
velocity ¢;;, in accordance with (24) the wave number ky, becomes an imaginary
quantity and the Hankel function passes into a modified Bessel function of
the second kind K, (), in accordance [2, 8] with the relation

Ko(0) o mej =" HA(—ja). 1)

Of all cylindrical functions only this function decreases monotonically
to zero for the argument tending to infinity, and this occurs only when the
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Hankel function argument is a negative imaginary quantity [8], because [2]
for the modified Bessel function K,(x) we have

n g n—1
w)=l/%e [1—[— = . (38)

where u = 4n? for & > n.
When ¢, < ¢;, the wave numbers %, k., k; are imaginary:

) [0f-
kv = ij—]/_i"i. —1=4ijW (39
C: y
ky = :H— —f —1 = +jL, (40)
L 0
02
bp= oo il (41)
T

Assuming, from the above discussion, a negative value of the imaginary
wave number &y (see (39)), we obtain from (37)

HP(—jWa) K,(Wa)
B (—jWa) K, (Wa)'
Similarly for imaginary arguments: the Bessel functions of the first kind

pass into the modified Bessel functions of the first kind, in accordance [12]
with the relation

(42)

I, (%) = j7"J,(j@). (43)
It should be noted [12] that
Jo(j2) = Jo(—jo) (44)
and
Ji(jw) = —dJ,(—jx). (45)

Taking into consideration relations (43)-(45) and also (42), we obtain for
both positive and negative imaginary wave numbers k;, k, (see (40) and (41))
a new form of the characteristic equation (35):

ow ( ©\'1 E,(Wa)
Or

W K,(Wa)
Lo L(Ta) 1 (e [1{o\ F1 I(Ia
==kl 7 Ta) "2—(07) _[?(O_T) “k“] Z T,Za)

Such an involved form of this equation makes its solution very difficult,
because the quantities 7, L and W depend on %, through relations (39)-(41)
and (22)-(24). Therefore equation (46) was solved taking into consideration
the fact experimentally determined in Section 2 that the velocity of the wave
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discussed propagating along the rod is very close to that of wave in water.
In such a case only the value of W depends essentially on the value of ¢,
while the value of ¢, has little influence on the values of L, T and k,. Thus, assum-
ing ¢, = ¢y in formulae (40), (41) and (15a), we can solve the characteristic
equation (46) for the quantity W.

Under such conditions, equation (46) was numerically solved assuming
a frequency f = 3 MHz, a rod diameter equal to 24 = 1.5 mm, a rod made
of steel in which longitudinal and transverse waves velocities are equal to
¢, =59 km/s and ¢, = 3.23 km/s, respectively, and the wave velocity in
water equal to 1.48 km/s. Equation (46) is satisfied for wave numbers equal
to ky = 0.18 em™}, ky = £7-113 em™}, k;, = +7-123 cm™’. Having the wave
number %, the phase velocity of wave travelling along the rod was determined.
Being equal to ¢, = 1.479998 km s, it is thus only slightly lower than the wave
velocity in water without a rod. Other possible solutions of the characteristic
equation were not examined.

The group velocity ¢, of the wave propagating along the rod is equal to
the phase velocity ¢,

dw do
TR T e M (M

in the range of the considered frequencies of 3-5 MHz, because the phase
velocity ¢, is in this case practically constant. This can be concluded from the
numerical computations carried ouf, since in this frequency range its value
changes only at the fifth decimal place.

6. Wave distribution inside and outside the rod

The distribution of displacements in the rod and the surrounding liquid
occurring for the wave type considered appears to be of interest. Taking into
consideration relations (37), (43) and (44), solutions (19)-(21) take the following
form:

p = Al (Lr) ﬁﬂm‘_k"”y (47)
p = OL(Tr)e' @ %o, (48)
2
x = B; JE o (Wr) el @—ke), (49)

From relation (33) we find the ratio A/0,

A kp(kp—T) J,(kra)
e . ’ (50)
c 2jkpky, J(kpa)

which for imaginary values of wave numbers, in accordance with (40), (41)
and (43)-(45) takes the following form:

A UTTARY 1(Ta)

T “EamneT s i)

(51)
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It can be readily checked that condition (33), from which the ratio 4/C
was determined, is satisfied only for the positive sign on the right-hand side
of formula (51). Therefore positive and negative values should be at the same
time assumed for the imaginary wave numbers (40) and (41).

Similarly, from relation (34) we obtain a value for the ratio B/C equal to

B  kp(kp—K;) Jy(kpa)

C T TV okk, HO(kya) (52)

which, after taking into consideration (37), (40), (41), (43)-(45), takes the form

B =T (ki —T*%) I,(Ta) 53

¢  4k,W . E,Wa) el

The value of (53) does not depend on the sign of the imaginary wave

number k, = +4jT. Earlier we assumed a negative sign for the wave number

kw = +jW. Substituting the values of the potential (47) and (48) into formulae
(29) and (30), and taking into consideration the relation

dal, (»)
dx

= L,@)— 2 I(@; Iy = I(s), (54)

we obtain displacements related to a constant coefficient C':

% = [T - iz, zn |ssn (55)
== [ ko IG(LT) PIO(Tr)]e’(”“"D”. (56)

The stress o,, in the rod will be determined on the basis of formula (25).
Taking into consideration the values obtained for dispacements u, and w,,
we finally obtain

G Ap

—ét -— {[L"G2 — k(0% —2C%) M, (Lr) —205 L 21 —_ ! (I”)}

[ I,(Tr)
-

+j:2ky 0% oT l - TI.,(Tr)}] P (57)

The stresses o,, in the rod will be determined [9] from formula
%, Ou, Ou, ou,
O = /1[—— —= —z-] +2u (58)

whence, taking into account (55), (56) and the relations

A = p(C3—203), (59)
u = oCf, (60)
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we finally get

Tt 2 (I~ O) —~ KO + iR TeCR T} =0, (61)

The tangential stresses 7,, will be determined on the basis of relation (27).
Taking into consideration (55), (56) and (60), we obtain

A
- 90%[-23'700?1311(13?) —T(k3+T=)II(Tr)}e"”“"ﬂ“’- W)

The value of the acoustic pressure in the liquid is determined from formulae
(26) and (49). Thus we have

B 2
% =i ow o' —Ko(Wr) Ry (63)

The values of displacements and stresses in the rod and the acoustic
pressure in the liquid, calculated on the basis of the above formulae for the case
investigated, are shown in Figs. 6 and 7, while comparable values, calculated
for a frequency of 5 MHz, are shown in Figs. 8 and 9.

Z3MHz e
R 6 / a=0.75mm gyt
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3 s o L
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O |

01 02 03 05 07 1 rfmm]

Fig. 6. Distribution of displacements (u,), (u,) in the rod with a radius ¢ = 0.75 mm at
a frequency of 3 MHz
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Fig. 7 Distribution of displacements &,., 8.and acoustic pressure p for the rod as in
Fig. 6 at a frequency of 3 MHaz.
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Fig. 8. Distribution of displacement
in the rod as in Fig. 6, but at a fre-
quency of 5 MHz
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Fig. 9. Distribution of stresses and frequency for rod as in Fig. 7, but at a frequency of 5 MHz

7. Conclusions

It has been shown that a wave may be guided along a rod immersed in
liquid whose velocity is only slightly lower than the velocity of the wave pro-
pagating in the same liquid. In the numerical example of a steel rod with
a diameter 2a¢ = 1.5 mm, assuming the velocity of the wave in liquid to be
1.48 km/s, wave velocities equal to 1.479998 km/s and 1.479980 km/s were
obtained for frequencies of 3 MHz and 5 MHz, respectively.

The wave described propagates along the boundary surface of the rod
and the liquid. The depth of its penetration into the rod is considerably smaller
than that of its penetration into the liquid. Assuming no propagation loss for
both media, the wave propagates without attenuation; the wave number k,
is real, because this wave is not radiated into the liquid perpendicular the rod
axis.
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Distributions of acoustic pressure and of stress and displacement com-
ponents, as in Figs. 6-9, show that the wave penetration depth increases with
increasing frequency. It follows from the character of the wave that it is of

surface type.

The results obtained can be used for a description of the wave propagation
along a needle in the case where the needle wall thickness and wave frequency
are adequately large [4]. In such a case stresses disappear inside the rod, and
thus in a spontaneous manner an additional boundary condition of the disap-
pearance of the stresses on the inner needle surface can be satisfied. In general,
however, such an approximation may prove unsatisfactory and then the pro-
blem of wave propagation along a needle will require a separate analysis.
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