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AND THE MEAN VELOCITY OF THE THERMAL MOTION OF THEIR MOLECULES
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It is shown in this paper that in assuming a rectangular potential well
we also assume |that the intermolecular compressibility of a liquid consists
of a kinetic and a potential part. It was accepted that the kinetic part — as
for a perfect gas — is independent of temperature at constant pressure. Hence,
it can be concluded that the temperature coefficients of both the compressibi-
lity and the sound velocity depend almost exclusively on the space filling.

In considering the propagation of acoustic waves in gases attention hag long
been drawn to the close similarity of the expressions for the acoustic velocity and
the mean velocity of the thermal translatory motion of the molecules

il RT : )
o M
and
RT
il e (1a)

where w denotes the propagation velocity of acoustic waves in a gas, ¢ is the
mean velocity of thermal motions, and r is a constant coefficient whose value
depends on the method of averaging used. Thus there is a close relationship
between the propagation velocity of the acoustic waves and the velocity of the
“thermal motion although the relationship between r and y in formulae (1) and
(1a) has not yet been reported. (The solution to this problem will be presented
in section 1). In this situation there arises an obvious an interesting question
as to whether and in what manner the velocities of the thermal motion of mo-
lecules in liquids are related to the velocity of propagation of acoustic waves in
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liquids(*). This paper contains remarks and obgervations concerning this prob-
lem. In the first place attention will be drawn to the relation between the pro-
pagation velocity of acoustic waves in perfect gases and the thermal velocity
(s. 1). Then after a brief recapitulation of some essential problems concerning
the propagation of acoustic waves in solids (s. 2) attention is turned to the pro-
pagation of acoustic waves in liquids (s. 3).

1. In first considering the propagation of an acoustic wave in a per-
fect gas from a microscopic point of view it can be seen that within a system
of hard, non-interacting molecules a continuous wave cannot propagate. An
acoustic wave propagates in gas as a result of the volume elasticity which in this
case is of a purely kinetic and static nature.

Consideration must thus be given to the volumes of such size that statisti-
cal quantities become meaningful. (This is in contrast to the analogous problem
in solids where it is possible to start with a model confined to one molecule and
its nearest environment). We thus have
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where y = ¢,/¢,, and w is the velocity of acoustic waves in the gas. The other
letters have their commonly accepted meanings. The gas pressure p can be ex-
pressed by the formula
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where n denotes the number of molecules per cubic centimetre, m is the mass of

one molecule, and ¢? is the mean square velocity of the thermal motion of the
molecules. From (2) and (3) it ecan be seen that
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If the acoustic disturbance is an isothermal process then the velocity of
propagation w, of such a disturbance will be given by
L)
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(1) In using the term “liquid” we ghall always mean simple liquids as we hold that the .
properties essential for the liquid state occur in a simple liquid in an undisturbed form.
By taking into consideration various side-effects such,as association, solvation, hydrogen
binding ete., we unnecessarily complicate the problem if we are only interested in the es-
sence of the liquid state.



INVESTIGATION OF THE RELATIONSHIP 51

The isothérmal disturbance thus propagates at a speed whose square is
equal to the mean square of the component of the velocity of the thermal motion
in the direction of propagation of the acoustic waves.

In the case of an adiabatic disturbance the mean square velocity increa-
ses. We then have
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In this expression we do not know the change in the mean square of the

velocity during the adiabatic deformations (d¢®/0v),. It can however be determi-
ned by the following considerations.

It is known that the internal energy of one mole of a perfect gas is given
by the expression
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where f denotes the number of degrees of freeddm. We thus have
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From (7) and (8) we obtain
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Substituting (9) into (6) we obtain
FISTO. [Ecuﬁ] = 155[2 +1] Loggiasds b (10)
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2. There is a widely held view that the liquid state is more similar to the
solid state than to the gaseous state. At the same time it is stressed that ligquids
and solids have very similar densities. Furthermore, it is considered that:

(a) the ghort-range order in liquids is a remnant of the long-range order
in erystals,

(b) the thermal motion of the molecules in liquids is similar to the thermal
motion of the molecules in solids.

As we shall subsequently discuss these assumptions, and particularly
their acoustic aspects, in section 3, some short remarks on the problem of the
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thermal motion of molecules (a one element solid) and the propagation of acous-
tic waves are needed.

It is generally- considered that this problem is covered by the theory of
the specific heats of a one element solid. It is assumed in this theory that a mo-
del of a lattice of coupled harmonic oscillators (one per atom) correctly descri-
bes the thermal motion. The internal energy is obtained accordingly by summing
the quantized energies at all frequencies. An actual solution of the problem is
obtained by the use of either Debye’s method or the Bern-Kédrmén method.

Having reviewed briefly these well-known facts it should be stressed that —

_independent of the fundamental importance of both the acoustic theories of
the specific heat — their significance for the problem of the velocity of acoustic
waves and thermal motion should not be overestimated. The limitation arise
for, among others, the following reasons:

(a) Using Debye’s method we proceed from the assumption of an elastlc
continuum. In such a manner we thus immediately preclude the possibility of
considering the elementary (molecular) mechanism of the transmission of an
acoustic pulse.

(b) Using the Born-Karmén method we neglect the finite volume of the
atoms. This leads consistently to an erroneous representation of the mtermole
cular forces, as may be seen from the following argument.

Let the volume of a solid be V, of this V,, accounts for the proper volume
of the molecules themselves. Let‘us call V; = V —17,,, the free volume. We then
have
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From formula (11) it is evident that the measured (effective) compressibi-
lity f,, differs considerably from the “real” intermolecular compressibility f,.
The second term on the right-hand side of the equation can usually be neglected.

3. A relation between the velocity of propagation of acoustic waves in
liguids and the thermal motion of the molecules should be based on the informa-
tion already available on the thermal motion of molecules in liquids. Unfortu-
nately, such information is very scarce and thus no theory of the specific heat
of a one element liquid has so far been elaborated.

Following FRENKEL [3] it has been suggested that the similar values of the
specific heat c¢,, of liquids and relevant solids in the neighbourhood of the soli-
dification temperature, give evidence for the similarity of the thermal motion
in both states. This information is too general for the present purpose since it
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conveys no clear idea as to whether the molecules are moving at a uniform speed
while reflected from the walls of the cells formed by the closest molecules, or
are vibrating sensu stricto, and are thus under the action of, for example harmo-
nie, forces. However, the molecular mechanism of the propagation of acoustic
waves in liquids depends on the nature of these motions. In the former case
the propagation of an acoustic wave can to some extent be explained by
reference to the “gas model”, i.e. to the state presented in section 1. How-
ever, in the latter case use shoulds be made of the quasi-crystalline model.

Thus it can be clearly seen that even qualitative considerations concerning
the elementary mechanism of the propagation of acoustic waves in liquids must
be based on reliable information on the nature of the thermal motion of the
molecules. It has been suggested that the existence of short range order in
liquids points explicitly to the fact that an explanation of the manner in which
acoustic waves propagate in liquids should be based on the quasi-crystalline
model, the short range order being interpreted as an expression of the tendency
of the intermolecular forces to develop crystalline structures. However, as
long ago as 1922 GANS [4] showed that in systems of non-interacting rigid
balls there is a distinet probability of finding the molecules at a definite distance
from each other. This probability depends on amongst other factors the ratio
V¢/V. From expression (11) it can be seen that the intermolecular “real”
compressibility is considerably higher than the effective (measured) compres-
sibility, than the assumption of a flat bottomed potential for the interacting
forces of the molecules cannot be regarded as a course approximation. In
assuming a flat potential bottom, i.e. assuming that the liquid molecules are
moving freely from collision to collision, it can be supposed that the relations-
hip between the wave propagation velocity and the mean velocity of thermal
motion, substantiated in section 1, can also be used for a liquid [5].

However, this description is not satisfactory. If the liquid compressibility
is considered to be exclusively of a kinetic nature, derived from the energy in
a manner similar to that of the gas molecules, then by considerations of space
filling, the relation
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should be satisfied, as can be seen from formula (11). Now the ratio V,/V va-
ries from approximately 1/5 to 1/10, and the liquid compressibility should
thus be from 1/5 to 1/10 that of the gas compressibility. This obviously does
not oceur and it is therefore evident that even under the assumption of a flat po-
tential well, the relationships derived in section 1 cannot be used for liquids.
The main reason for this can be seen in the fact that the flat potential bottom
lies below the axis of the abcissae, while the depth of the well depends also
(under the condition of constant pressure that we are considering), on the tem-
perature. s
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The physical conditions, represented by means of a geometrically simple
potential are very complicated. It must be taken into consideration that it
is not possible, in this case, to use the equipartition principle. The application
of this principle requires that the energy of a molecule should be a linear homo-
geneous function of the squares of the position coordinates and of the momenta.
It can be seen from the model that the liquid compressibility is both kinetie
and potential. However, we do not know the way in which these two compouents
combine to form the resultant compressibility. We can only make an estimate
for subsequent use. We are of the opinion that the kinetic component of the
intermolecular compressibility is considerably higher than the potential compo-
nent, although the temperature dependence of the intermolecular compressibi-
lity is defined by the temperature dependence of the potential component.
We thus can write

'KS = Ksk+Ksp! (12)

where K, and K, denote the moduli of the kinetic and potential intermolecular
compressibility, respectively. :

Neglecting the compressibility of the molecules themselves, the measured
compressibility g can, using formula (11), take the form

VB,
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The question arises as to the relation of the change of the ratio V,/V to
the change in the compressibility 8, and the dependence of this effect on tem-
perature at constant pressure. It can be seen that
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or, by neglecting the third term on the right-hand side of the above equation,
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BT _\V

s

where a denotes the volume expansion coefficient.

From formula (14) it is evident that the temperature dependence of
the change in the measured compressibility g is defined almost exclusively by
a change in the space filling. Table 1 contains numerical data of the relevant
coefficients. From the table -it can be seen, that for benzene, for example,
B (8B /0T, x a '~ 6, in agreement with the values obtained by other methods ().

(2) The values of the volumes of the actual molecules determined by various methods
differ slightly from one to another because it is evident that the quantity to be measured. is
defined by the method of measurement. In this interpretation we consider that, for example,
two values of the ratio Vg/V equal to 1/6 and 1/7, respectively, are in agreement.
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Table 1. Thermal coefficients of some normal liquids

1 HﬁT) 1 (BW) 1 BT/') 1 (8;})
—— 104 | —(——) x10% —|—]| x10%| —|— 104
Name of liquid i ( arT px w\ dT /» ¥ val'ip y \oT px
[deg—1] [deg—1] [deg—1] [deg—1]
—7.4 [10]
Benzene +74.6 [6] —36.6 [7] 12.2 [8,9] —6.6*
Carbon
tolsaskionide +173.0 [6] —33.7 [7] 12.2 [8,9] —6.1  [10]
+ 2.5%
Ethyl ether +99.2 [6] —46.3 [7] 16.4 [8,9] —0.5 [10]
10.8 10
Carbon disulphide +77.4 [6] —27.9 [7] 12.0 [8,9] ++ 9.2% [10]
Ethylo-benzene +57.8 [11] | —28.4 [T7] 10.1 [8,9] <o g
Chloro-benzene +57.3 [6] —28.8 [7] 9.8 [8,9] —8.6 [10]
_3.8*
Cyeclohexane +78.1 [9] —36.0 [7] 12.0 [8,9] 9.8 [12]
: e e gy
Aminobenzene +50.0 [6] —24.4 [7] 8.5 [8,9] _1.5%
Ethyl acetate +88.5 [9] 383 "[7] 13.6 [8,9] —2.4 [8,9]
n-pentane +99.2 [9],113] —44.5 [7] 16.2 (18] —b5.4*
Nitrobenzene +66.2 [11] | —224 [7] 8.3 [8] FER T
m-xylene +67.3 [11] —30.6 [T7] 10.1 [8] —1.8 [11]

#* Author's calculations

The temperature coefficient of the velocity of sound,

1 (0w _(2 V) 1
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is, as can be seen, expressed exclusively by a change in the volume. This fact
should be stressed since, from a formal computation of the value

olor), =15l 12

(see Table 1), some workers conclude that a change in the coefficient of compres-
sibility primarily accounts for the temperature change of the sound velocity.
If the intermolecular compressibility is to be considered as a real measure
of the elastic properties, it can be easily seen that almost the only reason for
a temperature dependent sound velocity at a constant pressure is the change
in volume.

4. In conclusion it can be said that if we consider only the effect of the
temperature dependent change in volume at constant pressure, then we obtain:

(a) good agreement, as regards the sign and the absolute value, of the
“measured” temperature coefficient of the liquid compressibility (3),

(3) In view of the slight difference in the numerical values of the ratio V4/V obtained
by different various methods the estimates presented above do not at present permit the
isothermal and adiabatic compressibilities (cf. Table 1) to be descerned.
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(b) good agreement, as regards the sign and the absolute value, of the tem-
perature coetficient of the sound velocity, and that

(¢) it can be accepted to a good approximation over the whole range of
the liquid state that the intermolecular compressibility changes only very
glightly with temperature, at constant pressure. The change in the “measured”
compressibility is simulated by a change of volume.

The conclusions (a), (b) and (¢) result from the assumption that the inter-
molecular compressibility of a liquid consists of a kinetic compressibility,
which is independent of temperature at constant pressure, and of a potential
compressibility which is considerably lower than the kinetic compressibility.

The relation between the velocity of the thermal translational motion of
the molecules in a liquid and the sound velocity is more complex than the similar
relation for perfect gases. The considerations presented in this paper are thus
the first approximation of the dependenues between these quantities which as
yet are undetermined.
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