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ON AN ACOUSTIC METHOD FOR THE DETERMINATION OF THE DENSITY OF A LIQUID
AS A FUNCTION OF PRESSURE

JOACHIM GMYREK

Institute of Physics, Silesian Technical University (44-100 Gliwice ul. Bol. Krzywoustego 2)

On the basis of Schaaffs paper and Griineisen’s theory it has been shown
that the Rao expression at constant temperature does not depend on the pres-
sure. It results from the stability of the Rao-Schaaffs expression that it is possible
to determine the density of a liquid as a function of pressure by the intermediary
of quantities measured exclusively under normal pressure. The method provides
a better agreement of the calculated values with experimental ones than do
other methods.

1. Introduction

A precise determination of the density of a liquid as a function of the tem-
perature T and the pressure p can be reduced to the hitherto unsolved problem
of the liquid state equation. Although there exist many empirical or semi-em-
pirical liquid state equations, none of these permits determination of the volu-
me (or the density) with satisfactory accuracy over broad intervals of pressures
and temperatures. In addition, these equations are predominantly specific
rather than universal. : '

The generally valid thermodynamical différential equations do not help
in solving the problem since the values of the partial derivatives of the parame-
ters of the liquid state are unknown. Thus resort must be made, with the pre-
sent state of knowlegde, to the semi-empirical equations. The choice of an
equation is purely arbitrary and depends, for example, on the kind of liquid
and the relevant interval of temperatures and pressures. The determination
of the relationship V = V(p, T) in extreme conditions now assumes a special
importance with a view to the operating conditions of engine fuels and lubri-
cants in aviation and rocket technology.

It should be noted that WEHR [1] and SzACHNOWSKI [2] have, for a long
time been engaged in the problem of the determination of the density of a li-
quid as a function of the pressure. For various aviation fuels and oils they have
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succeeded in achieving satisfactory agreement with experimental results by
assuming that the ratio of the specific heats in pressure intervals of the order
of several hundred atmospheres is constant. Such an assumption is not valid
for greater pressure changes and thus the continuation of the work started
by WEHR is not possible. The theoretical solution of the problem of the dependen-
ce of » on the pressure is not possible with the knowledge available(!), while
the experimental material regarding this problem is very poor.

In this situation it has been decided to resume work on the determination
of the density of a liquid as a function of pressure, but with an acoustic method,
because of the high®efficiency and accuracy of present-day ultrasonic measu-
rement techniques. The starting point is the empirical fact stated recently by
SCHAAFTS that the so-called Rao expression — which has so far been investigated
at constant atmospheric pressure as a function of temperature — has proved
to be independent of the pressure for a constant temperature.

2. The independence of Rao’s formulation from the pressure

Using the results of measurements of sound velocity and density made by
RAJAGOPALAN, CARNEVAL and Lrrovirz for n-heptane, n-octane, n-nonane,
n-decane and n-dodecane, and for methyl, ¢thyl, propyl and n-butyl alcohols, as
well as the results obtained by VEpAm and Hovrow for water, SCHAAFFS has
stated that the so-called Rao expression is essentially independent of pressure,
especially for pressures above 1000 atm.

Some results of his calculations are given in Table 1. The measurements
were made at a temperature of 20°C. '

Table 1
o —%

Substance P Bax 1072 Subst P Fedilo
[atm] | [em!®35—13mol—1] e eey [atm] [[em!®%—13mol1]

n-heptane 1 Teaa n-dodecane 1 11.50

- N85 7.32 785 11.80

1370 * 7.36 1370 11.90

Methyl alcohol 1 1.943 ethyl 1 2.85

. 1000 2.012 aleohol 1000 2.95

2000 2.022 [ 2000 2.96

n-propyl aleohol 3 3.670 n-octane ' 1 8.00

3000 3.870
8000 3.915 785 8.21
10000 3.925 | 1370 8.28

(1) Thermodynamiecs provides no temperature and pressure dependence of the specifie
heat and no such relation should be expected to be stated since the material constants are
a consideration of importance. The situation is identical to that for the problem of the liquid
state equation. Thermodynamies is not eapable of providing such an equation (C. SCHAFER,
Introduction to theoretical physics, vol. II).
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SCHAAFTS [3] was investigating the expression

M
%t o)

where w is the sound velocity, ¢ is the liquid density and M is the
molar mass. i

However, it is known that in the range of variable temperatures and con-
stant pressures more exact results are obtained by using, for the determination
of various molecular quantities, the individual power exponent according to
KuczerA [4, 5, 6]. An attempt has therefore been made to investigate the
dependence of the Rao expression by using the individual value of the power
exponent determined for normal pressure.

In the caleulations use has been made of the results of measurements
of the sound velocity and the density for n-pentane over a pressure range from
1 to 8000 atm, contained in the papers by IKrRAMOW and BIELINSKI [7].

The results of these calculations are presented in Table 2.

Table 2
Ap [atm] | B, 10+t : Remarks
|
0 ‘ 3¢
500 13.8 1. Measurements were made at a temperature of 20°C
1000 13.8
1500 13.7 2. The maximum error B, is +1.5 %
2000 13.8
2500 13.8 3. In the caleulations the individual power exponent has
3000 | 13.8 been used
3500 13.8 q = 2.83
4000 13.9 1 ( Bw)
4500 13.8 E b
ar
5000 13.9 § = Pt TL
5500 13.8 l(i”)
6000 . 138 v \oTIm
6500 13.8 p; = normal pressure
7000 13.8
8000 13.9

‘

It can be seen that the application of an individual exponent gives a bet-
ter stability of the expression B, = w"?( M [0) with changing pressure and con-
stant - temperature.

Accidental deviations are the result of errors made during the measurement.
Worthy of note, although so far unexplained, is the fact that for all high pres-
sures the exponent ¢ has remained unchanged.
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3. An attempt to explain the independence of the Rao expression from the pressure

Let us consider, following GRUNEISEN [8] and others, the liquid molecules
as point sources of force arranged momentarily along a certain direction at
distances 7 and bonded by intermolecular forces. When a molecule is shifted
by &, then the force of the interaction of two nearest molecules is [~ 28 (7).
Let us assume that neighbouring molecules are distributed evenly on spheres
of radii §;7. The force of interaction from the neighbours distributed along
a certain considered direction is 2&3'(S;7). If we denote }cosp; =t;, where

@, are the a.ﬁgles to the chosen direction, then the force of interaction from all
the neighbours will be f = 28 3.1 (8,7).

The potential of the interaction is expressed by equation

plr) = —om o+ )

TR
.r!l

where # and y are constants (y > ), and « and g are individual constants.
In considering equation (1), the directing force D is

f 8 t R )
D=1 =2l L 3o o 2 D )

(Z g%)a =cq M ani (Zg—;)ﬁ = I

i )

We write

where p, is the nutﬁber of neighbours as a distance S, 7.
It should be noted that in the equilibrium state

ax by
R
Then
QX o i
D=2 m{(?o) (y+1) H”(y)*-(ft?le)‘f’(m)}, (3)
where
"ol g
QU 2 8e+?
)= @l Fle) = e
P [
T 8 T 8

Let us derive the GRUNEISEN factor y = dlny/dInv, which as GRUNEISEN
has proved experimentally, does not depend on the ‘temperature and pressure.
! |
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Sinee the frequency of vibration of the molecules », assuming a monochromatic
vibration spectrum, is : '

; Sty B8 T
PR S

“ex V¥V
we have =

1 ]
d(Iny) = ) d(InD) andv = const#,

where D is the directing force, and x the oscillator mass, so d(lnv) = 3 d(InF).
Consequently, ‘
d(Iny) 1 d(InD)
= g . 6 d(nh)

(4)

If we assume 7, ~ 7 (the increase of temperature will indeed cause an incre-
ment in 7, but the increase in pressure will reduce this inerement in #), it can
be shown that

_ 1 @)@ H)PE) — (@+2) (@ +1) ¥ (o)
6 (¥ +1)¥(y) — (2 +1) ¥(@) :

If we take into consideration the interaction of all the more distant neigh-
bours, then ¥(2) ~ 0 and ¥(y) ~ 1/9. Consequently,

(5)

1
B (y+2). (6)

According to BorN-KARMAN the velocity of wave propagation is expres-

sed by the formula .
D )
w = r]/—- = 27rv,,.(2) (7)
7

Y
ik AT

where v denotes the molar volume, % is the structural factor, which is indepen-
dent of pressure and temperature, and N , is the Avogadro number, hence after
logarithmic differentiation we obtain

d(Inw) = }d(Inv)+d(ln»,),

Since

i.e.
J d(Inw) $2 1

d(Inv,,)
d(lnv) 3

d(lnv) *

* (®)

(%) According to Eucken, for normal monochromatic body the limiting frequency of
the spectrum is », =~ ». !
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Substituting equation (6) into equation (8), we obtain

or

In integral form, expression (9) becomes

g M -5 ey
w (7) = R, = const. (10)

In this manner we obtain the analogue of Rao’s expression which is valid
for T = const, as distinct from the classical rule which can be applied for p; =
= const with a universal power exponent g = 3. Expression (10) is certainly an
approximate form of more complex, but as yet unknown relations between
the sound wvelocity and the liquid volume.

4. Consequences of the Rao-Schaaffs rule

It “‘fill be demonstrated that, from the stability of the Rao-Schaaffs ex-
pression, it is possible to determine the liquid density as a function of pressure
using quantities measured exclusively under normal conditions.

For this purpose we may observe that

hence

where p, denotes the density at pressure p,, and g, is the density at pressure p.

Since
M M '
W, = w}M(M) =yl (—), (10%)
1 e
the substitution of equation (10’) into equation (11) and subsequent integration
imply
2 2qg+1
p—p, = _wﬁ[(ﬁi) _1]_ (12)
2q+1 01
From (12) it is possible to determine the density g, as
2g+1 -
0p = 01 (2¢ 42 P, (13)

]
W) 01
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bl

It can be seen that in formula (13) there are only the quantities measured
at normal pressure.

When we assume ¢= 3 (*) a universal power exponent in expression (107),
equation (13) takes the form

SRR
0= ell/M "y (13a)

w; 0,
If we neglect the pressure p,, as being considerably smaller than p, then
equation (12) can be written in the form

l T
p = Zwies [(i) —1]- (12a)
0
Kirgwoon [9] obtained an analogous equation empirically in the form
— B(S) [(&) —~1], ! (14)
€1

where B(S) and n are constants for a given liquid.

Equation (14) applies well for water within the range of pressures from 1 to
25000 atm for n = 7.15.

Taking advantage of relation (13), the density has been calculated for
n-heptane and for diethyl ether over a broad range of pressures and at ambient
temperature. The results have been compared with experimental data. Results
of these calculations are shown in Tables 3 and 4.

Table 3. The caleculation of the density of m-pentane at a temperature of 20°C

Otabl TR R o ) PR g
p[atm] [gﬂ,;z;ls} Ec;_cﬁg;) tion ch &gl)i tion Remarks
[%] [ %]
1 0.6254 | — R - - 1.In formula (13a) the
500 | 0.6660 | 0.664 —0.30 0.665 —0.15 exponent ¢ = 3
1000 | 0.7044 0.693 —1.62 0.695 —1.28 has been used
1500 0.7300 0.715 —2.06 0.717 —1.79
2000 0.7468 0.734 —1.71 0.738 —1.18 2. In formula (13) the
2500 0.7630 0.751 —1.67 0.765 —1.05 individual exponent
3000 0.7774 0.765 —1.59 0.770 —0.95 ¢ = 2.832 is taken
3500 0.7910 0.778 —1.64 0.784 —0.88 according to the da-
4000 0.7996 0.790 —1.20 0.797 —0.33 ta from the tables
4500 0.8110 0.801 —1.23 0.808 ~0.37 of Landolt-Bornstein
5000 0.8195 0.811 —1.04 0.819 —0.06
5500 0.8300 0.821 —1.08 0.829 —0.12 3. Tabulated values of
6000 0.8385 0.829 —1.13 0.839 +0.06 the density are the
7000 0.85356 0.845 —=1.00 0.856 +0.29 average value of
8000 0.8669 0.860 . —0.80 0.871 +0.47 the measurements
by Bielinski and
Bridgeman

(®) The average value for liquid n-paraffins from O to U is 2.941, whereas the average
value for a series of homologieal paraffins, olefins as well as aromatic hydrocarbons is ¢ =2.963
[13].
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Table 4. Calculations of

n-heptane Deviation
Ap [bar] Qtable Qcalculated [%] Remarks
J [g/em?] [
0 0.6753 —_ &~ For the calculations the exponent
50 0.6803 0.6793 —0.15 ¢ = 2.953 is taken according to Landolt’s

100 0.6849 0.6831 —0.26 m

200 | 0.6933 0.6904 jilan | e & = ”13[?]

300 I 0.7010 0.6973 —0.53 it

500 0.7142 0.7100 —0.59 —_— = —4.-.14[ ]
1000 0.7406 0.7369 T 2 doj
1500 0.7612 0.7590 —0.29 | @ =12.60-107% [deg~] for a tempe-
2000 0.7783 0.7738 —0.08 rature + 30°C. '.I‘he values of density are
3000 0.8063 0.8090 104 | Tom Wargattik T12],
5000 0.8480 0.8558 +0.92

It can be seen from Table 3 that better agreement with the experiment is
obtained by using the individual exponent ¢ in formula (13), than — the uni-
versal exponent ¢ = 3 in formula (13a). In further calculations the former
will thus be used.

Obviously, in the first approximation it is possible by using the universal
exponent ¢ = 3, to determine the liquid density at higher pressures with an
accuracy of 2-3 %, and this requires knowlegde of the liquid density and the
sound velocity for only one measuring point, e.g. at room temperature and
normal pressure.

It should be added that even better agreement of the experimental results
with the values of the densities. calculated on the basis of formula (13) can be
obtained with the aid of experimental data on the liquid density and sound
velocity at a higher pressure than that of the normal pressure (13).

As an example, assuming as initial data for the calculations for diethyl
ether at a pressure of p = 500 atm ¢ = 0.7615 g/cm? (from BRIDGEMAN [11]),
and w = 1284 m/s (according to RIcHARDSON and TArr [10]), then the average
deviation of the results of the values of the densities calculated from experi-
mental data obtained by BRIDGEMAN [11] in the pressure range from 1000 to
12 000 atm is +0.25 %, compared to a deviation of 4-0.69 % for initial data taken
at normal pressure. Thus, it is possible in some cases to extrapolate the results
obtained at not too high pressures to considerably higher pressure ranges.

5. Results

The value of the so called Rao expression at constant temperature is almost
independent of the pressure, as was pointed out by ScHAAFFS. In this paper it



DETERMINATION OF THE DENSITY OF A LIQUID 65

density of n-heptane and diethyl ether

Diethyl

0 table ether Deviation
PIm] | rpjom®) | eenoutated | [%] L
[g/em?]
| 0.7138 —_ —

500 0.7615 0.755 —0.88 For the ealculations the exponent value
1000 0.7885 0.786 —0.30 ¢ = 2.840 has been taken accordlng to
1500 0.8117 0.8116 —0.01 Landolts'table
2000 0.8319 0.833 +0.16 w = 1006 [m/s]

2500 0.8498 0.852 +0.27 :—;: = 4.66 [m/[s deg]
3000 0.8658 0.869 + 0.35 a = 16.31 10—¢ [deg~!]
3500 0.8800 0.884 + 0.45 t = 20°C

4000 0.8928 0.898 +0.55

4500 0.9045 0.910 + 0.64

5000 0.9152 0.922 4 0.75

6000 0.9339 0.943 +0.99 Density data are taken from Brid-
7000 0.9508 0.962 +1.18 geman’s papers [11]
8000 0.9670 0.979 +1.23

9000 0.9826 0.994 +1.19

10000 0.9976 1.008 + 1.09

11000 1.0120 1.022 + 0.95

12000 1.0256 1.034 +0.80

has been shown that a somewhat better stability of this expression is obtained
by using individual liquid exponents and an a.ttempt has been made to prove
this fact theoretically.

From this a relation has been obtained from which it is possible to determine
the pressure dependence of the liquid density over a broad pressure interval.
This method is very simple since it requires only the knowledge of changes in
density and sound velocity as a function of temperature at normal pressure and
gives better agreement of the calculated densities with experimental values
than do the majority of known methods.
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