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The estimation of frequency response of multiple input systems is discussed
from the standpoint of systems identification, with application to problems
in noise control. The systems considered are assumed to have inputs, either
random or deterministic, that are identical in form but shifted in time. Such

inputs are found typically as force and pressure excitations in engines, pumps
and compressors. It is shown that the input cross-spectra can be neglected
for inputs of this type, providing proper frequency smoothing is used. If the
time-shift between inputs is not equal or if the analysis bandwidth cannot be
chosen arbitrarily, biased estimates of the frequency responses will result when
the input cross-spectra are neglected. Expressions for this bias error are de-
veloped and several numerical examples are presented showing the effect of
analysis bandwidth and timeshift on the bias error. This technique was applied
to the problem of estimating the structural-acoustical frequency response of
a diesel engine. By neglecting the cross-spectra between the combustion pres-
sures the frequency responses were computed on-line with a small digital pro-
cessor. As a result experimental and computer time were greatly reduced.

List of symbols

B, — bandwidth [Hz] N — number of inputs

f — frequency [Hz] @;(t) — 4" input to system

Ii — natural frequency of the i*2 input y'(t) — coherent output

H; — frequency response to the it input y(t) — total output

k — frequency index of unsmoothed 2(t) — incoherent uncorrelated output-
spectrum Sy — auto-spectrum of the 4th input

m — frequency index of smoothed 8ij  — cross-spectrum hbetween the 4th
spectrum and j* inputs

— number of frequency points Si  — cross-spectrum between the 4th

smoothed per band input and total output

* Presented, in part, at the 89th Meeting of the Acoustical Society of America, April
1975. .
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8; — cross-spectrum between the i Z;  — gain of the ith system

input and coherent output & — damping ratio
8iz — cross-spectrum between the ith 7;  — time delay between inputs ¢ and 1

input and incoherent output Tij — time delay between inputs ¢ and j
8, — auto-spectrum of incoherent out- @i — phase angle between inputs 4

put and j
8,y — aubo-spectrum of total output 0 . — estimate of any parameter
8y — auto-spectrum of coherent output E{n} — expected value of 7

— record length b{n} — bias error of 7
Introduction

In modeling dynamic systems, one often requires information to complete
the model that can only be accurately known from experiment. The process
of determining this information is termed “parameter identification” since the
needed information is in the form of one or more unknown parameters in the
mathematical model [1]. For example, a second-order model has two unknown
parameters: the system natural frequency and damping.

Traditionally, controlled laboratory experiments have been used to ascer-
tain system properties. The system to be modeled is subjected to a known
artificial excitation and the response is compared to the theoretical response
as predicted by the mathematical model. The unknown parameters are then
selected, by predetermined criteria, to yield the best agreement between pre-
dicted and experimental system response. The experimental techniques can be
either time domain (such as step or pulse response) or frequency domain. For
frequency domain testing the system excitation can be in the form of sinusoidal
steady state, sine sweep, impulsive, step or stationary random.

Alternatively, it is possible to determine dynamic properties while a system
is in its actual operating environment. This method is attractive for studying
systems not suitable for laboratory testing, e.g. ships, buildings, and other
structures. Parameter identification is accomplished by studying the system
response due to normally occurring excitations, providing that the excitations
and response are measurable. Since, in general, these quantities will be random,
stochastic theory is involved in the measurement and analysis processes. A bene-
fit of in situ testing is that the unknown parameter estimates are usually more
realistic than those obtained by laboratory testing since in the latter case the
system is removed from its operating environment. However, for in situ testing
the measurement and analysis techniques must remove, or properly account
for, the effect of extraneous information (e.g. ambient sound and vibration).

The estimate of the frequency response of a system is a useful information
in determining unknown parameters. In the system control, frequency response
data aids in the formulation of control strategy. Even in uncontrolled systems
(e.g. climate) the frequency response data are useful for predicting the system
behavior to sets of selected inputs.
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Frequency response techniques ean be applied to eertain acoustic systems,
particularly with respect to practical problems of noise control. When the
system under study is a noise source of complex geometry, such as most ma-
chinery noise sources, simple acoustical models using idealized geometries
(spheres, cylinders, panels, ete.) often do not yield detailed information about
the system and its behavior. Frequency response data (providing it can be
obtained) can give an insight into the system behav:lor and aid in formulating
a more realistic acoustical model.

Chung et al. [2-3] have used frequency response techniques to defermine
the structural-acoustical behavior of diesel engines. Chung considered the
engine as a set of NV linear systems with N inputs #;, ¢ =1, 2, ..., N (cylinder
pressures corresponding to the combustion excitation in the N cylinders of the
engine) and a single output y (the engine noise measured at a point about 1 m
from the side of the engine).

The uncorrelated output z is included in the model to account for any
extraneous effects such as ambient sound or instrumentation noise. The fre-
quenecy responses were calculated from measured time records of the system
inputs and outputs using multiple input linear theory [4].

x,(t)—s]  Hy

SAREmee L

xrt)—  Hr

Fig. 1. A multiple input system with uncorrelated
output z

Seybert and Crocker [5-6] used the diesel engine frequeney responses fio
predict the effect on noise of engine operating conditions such as speed, load
and injection timing. :

The frequency responses are calculated by solving the following set of
algebraic equations, utilizing spectral estimates computed from measured time
records [4], where it is assumed that the time records are stationary:

[80 ()] = [85(HIH:(f)], (1)
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where the frequency response matrix

w1 =| 20|,

the spectral matrix

811 (f) 81 (f) .. Buy (f)
[S';j(f)] 5} ‘821 (f) S?.ﬂ (f)""SﬁN (f)

---------------

the cross-spectral matrix

'

Sy ()
18,1 = | Jov )
Sxalf)

The diagonal elements of the spectral matrix are the auto-spectral densities
of each input x;(f). These spectra can be estimated from computations of the
finite Fourier transform X,(f, T),

I 1
Sii(f):T{X:(f’T)Xi(f!T)}’ ?::1:2’---1N7 (2)

where T' is the finite record length and * denotes the complex conjugate.
Similarly, the cross-spectra between inputs are estimated by

. 1
Sij(f)=E{X:(f1T)Xj(f’-T)}5 'irj=152’---sN (3)

and are represenfted by the off-diagonal terms in the spectral matrix. The
cross-spectral matrix is made up of elements representing cross-spectra between
each input and the output y(#). These cross-spectra are estimated by

- 1
Sw(f)=?{X:(f,T)Y(f:T)}, 'i:1$27“'yN' (4)

It should be noted that the spectral estimates computed by using eqnations
(2)-(4) are inconsistent estimates and some form of smoothing must be used to
reduce the wariance of the estimates. Smoothing also removes the effect of the
extraneous output z(f), providing it is uncorrelated with respect to all inputs
(8;(f) =0, ¢ =1,2,...,N). If this is true, then it can be shown [4] that

Siy(f)—_—siy'(f), ":=1321---1N5 N

where 8;,,(f) is the cross-spectrum between each input and the coherent output
y(t).
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Using the quantities defined above, the total output speectral density
8,,(f) can be computed by

Sv‘y'(f) e Szz(f)_l"sw(f)’ (5)
where S,,(f) is the spectral density of the uncorrelated output z(¢), and
N N

By (f) = D) D) 8y(H) HE () Hy(f) (6)
- i=1j=1

is the speetral density of the coherent output ¥’ (f).

A typical frequency response for the diesel engine is shown [5] in Fig. 2.
It was computed using equation (1) with measured time records for the com-
bustion pressures (measured by quartz pressure transducers in each cylinder)
and the sound pressure as measured by a condenser microphone located about
1 m from the side of the engine. The engine was operating in a free-field environ-
ment. The frequency response in Fig. 2 describes the structural-acoustical
behavior of the combustion induced noise; regions where the frequency response
is high correspond to high dynamic response and/or high radiation efficiency
of the engine structure.

20 log(Hx10%)-d8

4

v

Frequency -hkHz

Fig. 2. Typical frequency response (magnitude)
for one oylinder of a diesel engine

A problem associated with estimating the frequency responses of multiple
input systems is the large number of cross-spectra between inputs that must
be estimated for equation (1). For an N input system, N (N —1)/2 input cross-
-spectra must be estimated (the divisor 2 appears since the lower triangle
cross-spectra in the spectral matrix are computed from the complex conjugate
of the upper triangle spectra — 8;(f) = 8j;(f) — see equation (3)). Since the
total number of spectral estimates needed for equation (1) is N (N +3)/2, the
input cross-spectra represent a fraction of (N —1)/(N —3) of the total spectra.
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Many analog-to-digital converters and digital processors do not have
sufficient capability to sample and compute more than one cross-spectral
estimate at a time, thus making experimental time quite long for systems with
many inputs. In addition, most mini-computer systems cannot perform matrix
inversion (necessary to solve equation (1)) for large values of N due to computer
core limitations.

The remainder of this paper will discuss a class of inputs normally occurring
in many physical systems, where the input cross-spectra can be neglected.
With such systems experimental time is reduced and the frequency responses
can be computed from a set of uncoupled equations (1) (with input cross-spectra
neglected). The computations are then suitable for mini-computers with small
memories since matrix inversion is unnecessary. That is, equation (1) reduces
to a set of equations

Hz(f) :'Siy(f)/‘gii(f)! 1=1,2,..,N. (7)

Conditions for neglecting cross-spectral terms

Equations (5) and (1) can be expanded to yield

N N N v
Syu 3 Szz+28ii |Hif2 et ZZSini*Hjs (8)
=1 116?_:31
N
By=H8y+ D 8;H;, i=1,2,..,7, (9)
Gd

where the direct contribution of the inputs has been separated from the cross-
-term contribution. The cross-terms can be neglected in equation (9) providing

N
D 8;H; < HS;, i=1,2,..,7, (10)
(20)
or
N
Z‘Sin:Hj < |Hy|*8, i=1,2,...,N,
(4)
thus
N N N
Y S,HIH; < Y 8y lHiP. (11)
=1 j=1 i=1

(F#7

-
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Hence, if equation (10) can be established, then equation (11) follows and
equations (8) and (9) reduce to

N
By = 8+ Zsﬁ |H;*, (12)
i=1

Siy 3 HiSﬁ" (13)

There are several conditions under which equation (10) is fulfilled, however,
most are trivial. For example, if the inputs are independent random processes
so that 8y = 0 for ¢ # j or if one-frequency response is dominant, see equation
(9) (in which case the multiple input system reduces to a single input system),
equation (10) is satisfied. There may also be certain symmetries between the
frequency responses that would satisfy equation (10), but in general this will
not be the case. In the case of the diesel engine, symmetry does exist between
the arrangement of the c¢ylinders and the mierophone position, but measurements
of the frequency responses do not reflect this.

One general condition that satisfies equation (10) oceurs when the inputs
are of the form

a’r',-(t)=.’v1(t—£—'r.‘-),'t¢-<T, ’I:=1,2,...,N, (14:)

where T' is the period of the inputs, if the inputs are deterministic processes,
or the sample record length if the inputs are random processes. Each input
has the same form but is delayed by a time 7z; from some reference (here 1)
input, as in Fig. 3. This class of inputs is typically found in multicylinder engines,
pumps, and compressors. For this case the auto-spectra are identical (see equa-
tion (2)),

8(k) = 8(k), i=1,2,...,N, (15)

_____ xp(t) T |
_________ G Ay ol
\-.—v-’ 3

Fig. 3. Identical inputs except delayed in time
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and the cross-spectra are given by (see equation (3))

Sij(k) =‘S(k)6w"':j(k)! J :f‘l'h @:5.7. =112:°"7N’ (16)
where
7;;(27k)
@i () =J—T—y Ty = Ti— Ty, (17)

and k = 1,2, ... is the harmonic multiple of the fundamental frequency 1/T.

Frequency smoothing is often used to reduce the variance of a spectral
estimate and is accomplished by averaging the spectral values of the raw spec-
trum over a selected bandwidth. The disadvantage is a loss of frequency resolu-
tion since the bandwidth is increased from 1/T to KT, where K is the number
of spectral values averaged. That is, a smoothed spectrum is given by

Sm) == > 80, m), (18)

where the raw spectra 8(k) of k points have been decomposed into m bands
of K points each (Fig. 4). Smoothing equation (9) yields

K K N
1 1
Su(m) = D 'Sy, (1, m) =T{Z{H,-(z, m) 8, m)+ 8y (1, m) By m)}. (19)
i=1 =1 J=1

(i#1)
ﬂk Points of raw spectrum § (k)
Points of smoothed spectrum S(m)
l '. : '
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Fig. 4. Example of frequency smoothing procedure, where the raw
spectrum of % points has been decomposed into m bands of K = 4
points each

If the frequency responses are relatively constant across the smoothing
bandwidth, then equation (19) becomes

N

Sy (m) = Hy(m)S;(m)+ > Hy(m)8y(m), (20)
Jj=1
(3#19)
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where 3 ¥
e 1 5 I
Sii(m) =“fg Siu(l,m) and Sij(m) =Ez 8 (T, m).

Examining 8;;(m) for the inputs described by (14) we get

K
5 1
Siylm) = = Z 8 (1, m) e, (21)
=1

If the auto-spectrum of the inputs S(I,m) is relatively constant across
the smoothing bandwidth, then

K
L 8 (m) :
8y(m) = —_Ze‘wff("m). (22)
K =1
It can be shown mathematically that
K
Dewtm L0, - Gabi ] el BN, (23)
=1

For the case where the time delay between any two consecutively numbered
inputs is T/N we have
(@ —NT

T{j = N

(24)
For this case equation (20) gives

giy(m) = Hf(m)gii(m)’ ¢ =1,2,..,,N. (25)

In equation (23) the quantity €?i®™ can be interpreted as the “roots

of unity” and represented geometrically in Figs. 5 and 6 for N = 3 and N = 6,

respectively. An interesting property of these roots is that for any specified

values N and ¢ —j the sum of the corresponding roots is zero, a fact stated in
equation (23) and shown in Figs. 5 and 6.

Im
k=14...
7200 ;
\ k=36..
Re
_/120"
k=2.5... k=74...
r-s=1 fnant

Fig. 5. Example of the function €/i* for different values of i—j for N = 3
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Im Im Im
k=24.. h=1.7... k=1.4.
‘ "“‘fzi"
o
hk=3.9... Qk:GJ?... k=3.6.. k=1.8.. h=2.4...
Re Re Re
h=4.70... | k=511... Im k=2.4... Im
r-s=1 k=¢4... r-5=2 k=4.10...| k=5,11... r-s=3
120°
Ris6.. k=23.. 60 h=6.12...
Re 3 e
k=158, k=28.. | k=17...
r-s=4 r-s=5§

Fig. 6. Example of the function €'?i;* for different values of i —jfor N = 6

Consequently, there exists an optimum smoothing index K, equal to the
number of mutually coherent inputs N, or a multiple thereof, that will allow
the cross-spectral terms between inputs to be ignored in calculating frequency
responses and in predicting the system output, when the inputs are given by
equation (14).

Bias errors

In many practical cases one cannot restrict the analysis bandwidth to
a multiple of N harmonics necessary to establish equation (25) or the time delay
may not be as in equation (24). The question arises: “What bias error is intro-
duced by neglecting cross-terms without proper frequency smoothing,” i.e.,
when K # N or a multiple thereof. It is also of interest to examine the bias
error introduced by neglecting cross-terms when the inputs are delayed from
one another by unequal amounts. If éw( f) is an estimated value of the true
gpectrum 8, (f), then the expected value of S’W in a bandwidth B, can be ex-
pressed as

T+B,[2

B8, ()] == 8y, Ed¢ (26)

B

C1—B,l2

where E[ ] denotes the expected value operator and represents the mean-

-square value of the process in a bandwidth B, normalized by the bandwidth,

and £ is a dummy frequency variable. In general
E[Sw(f)] # Sw(f)
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due to bias errors associated with the form of the actual spectrum §;, or the
nature of the estimation process. The bias error b[8;,(f)] is defined as

b[84,(H)] = B84, (f) —8u ()] (27)

Stationary random inputs

Using equations (9), (15), (16) and (26) one obtaines
T+B,2

B8, (N1=5
r—B,/2

N
{H,-ww(mS(aZHI(ae"’ﬁ“’}ds §=1,9,.., ¥, (8)
dd
where the spectral quantities have been expressed as continuous functions
of frequency rather than discrete values at harmonic numbers k.
Also
@y = 2rfry, (29)
where 7;; is the delay between any two inputs 4 and j.
It 8(f)H;(f) (j = 1,2, ..., N) is not a strong function of frequency across
the smoothing bandwidth B,, then equation (28) becomes
F+B,/2

B[84()] = H(HB(+ S(f)H;(f ¢ dg
ij Z i(f i .J;/ -
(faﬁi)
or
A N1 siny; B
By ()] = 8(f) {Hi(f) + é () e‘*‘zwﬁf}, - (30)
(75£1)

where y; = nr;;. Therefore the bias error in S",, (f) is, from equation (27),

N
siny; B,
D18, (N1 = 8() Y Hy(f)— T2, (81)
= PijDe
(7#1)
and the bias error for the frequency response (defined similarly to equation (27))
Sm iP‘IJ‘Be 12 f
b[H D H,( Vi 32
Z vy B, o
U#)

The magnitude of the bias of the frequency response can be expressed as

siny; B,

e (33)

N
LD D 1H,(f)

(1)
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so that the equality in equation (33) is the upper bound of the bias error for
the frequency response magnitude. The zeros of equations (31)-(33) occur if
siny; B, 0
e N ’
vy Be

that is
wﬁBe='an, ’ﬂz=1,2, ey

or, using the definition of y;,

B,=—, j#4;4,j=1,2,...,N. (34)
i
Therefore, in general, there is no bandwidth that will result in zero bias
error for all of the inputs under consideration. One exception is when the time
delays are given by equation (24), in which case the largest bandwidth is

(35)

which is in agreement with the interpretation of equation (23). Although a special
case, many physical systems have inputs of this form. In general though, an
optimum bandwidth would be selected that would minimize the bias errors
for all the frequency responses according to some predetermined criterion — for
example that the sum of the bias errors for all the frequency responses should
be a minimum.

Bias errors — periodic inputs

In the case of periodic inputs of the form of equation (14), where T' is the
period of the inputs, the bandwidth is restricted to a multiple of 1/T, the funda-
mental frequency of the inputs. In this case, the expected value of the cross-
-spectrum between each input and the output is

K
3 1 -
B8y (m] = > Syl m), (36)
=1 -
and the bias error
’ b8y (m)] = B8y (m) — 8,y (m)]. (37)

Substituting equations. (9) and (15) into (36) we get

K N
B, ] = > Hl, mS(E, m)+80,m) > Hy(l, m)dwstm

=1 j=1
(371)

T o A R (|
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Again, assuming that the spectra and frequency responses are not highly
variable across any band K/T, we have

N K
3 1 ‘
E [S y(m)] = S(m) {H (’j’n) - y H (m) e eiPﬁ(l,m}} -
(31)
Since
a N i2rr g Km|T 1 inl(K onIT
Bisym) = 5o {mim+ 3 mm (-5 + 5 g
G i
7 i ! ;.  co8(K +3)7y2xn/T
-H(Ecot T Ben(egnlT) )]},

the bias of the frequency response is

N 5
: Hy(m) PRI sin[(K +3)2p,/T]
S = 3, ~=op [+ =
(7+1)

cos[(K +3)2y,/T ])] (39)

+i(coty,;/T) — sin (v /T)
1]

Numerical results

Equation (32) is an expression for the bias error in estimating the frequency
response when the cross-spectra between inputs are neglected. Note that in
order to estimate the bias error, estimates of the other frequency responses
are needed. Several example will be discussed to show the form of the bias error
and the effect, of the assumption that the product S8(f)H;(f) is relatively con-
stant in any one band.

Example 1. Consider a six-input system where the inputs are mutually
coherent band, limited white noise (consta.nt spectral density) and the time
delay between inputs is uniform and equal to 20 msec. The frequency responses
are independent of frequency and have equal real and imaginary parts, as
given by

H; = Z,(1+1),

where Z; =1, 1, 2, 2, 3, 3, for ¢ =1, 2, ..., 6, respectively. A band center-
frequency of 208 Hz was chosen. Figure 7 shows the computed and actual
bias error for H , as a function of analysis bandwidth B,, where the solid lines
are the real and imaginary bias error calculated from equation (32) and the
symbols are actual bias errors determined by estimating H, from equation (13),
where cross-spectra between inputs have been neglected. The theoretical error
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Fig. 7. Computed and theoretical bias error for Example 1

predicts exactly the actual error. The bias error is smaller for larger bandwidths
due to the effect of frequency smoothing, which is really spectrum integration
od 8;, (equation (26)). The cross-spectral terms of §;, (equation (9)) are oseil-
latory in frequency, being both positive and negative, and tend to cancel when
integrated, while the direct term, H,S,;, is positive across the entire band.
As can be seen from Fig. 7, complete cancellation of the cross-spectral terms
occurs at bandwidths that are multiples of 50 Hz. Since the delay between
inputs is 20 msec, the fundamental frequency of the inputs is 8.333... Hz
(1/(6 x0.020)) and the cross-terms cancel at every bandwidth that is a multiple
of six times the fundamental frequency or every 50 Hz. This is analogous to
the examples in Figs. 5 and 6.

Example 2. Non-uniform delay belween inputs. In this example the time
delay between inputs 1 and 2, 3 and 4, 5 and 6 is 15 msec and the time delay
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between inputs 2 and 3, 3 and 4 and 6 and 1 is 25 msec, while the frequency
responses and the input spectral densities are the same as in Example 1. Figure 8§
shows the computed and actual bias error of H 1 for this example at 208 Hz

where it is again noted that equation (32) exactly predicts the actual bias
error. In this case, however, a bandwidth of zero bias error for both real and

imaginary parts of bi4 1 does not oceur until B, = 200 Hz, although the error
is quite small at 125 and 150 Hz.

A

400 -

300 | o Real Part

o Imag.Part

200 +

700 +

Bias Error(Per Cent)

=100 JJ
-200}

=300

=400

1 Il | 1 | L
0 50 700 150 200 250 Bg[Hz]

Fig. 8. Computed and theoretical bias error for Example 2

Example 3. Frequency dependent response Sfumctions. For this example H,
is the same as in the previous examples, but H 1-H, are chosen to be second-order
systems with the relation

Z‘i ¥
Hi(f)z t=2,3,...,6,

)

2 — Archives of Acoustics 3/78
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where Z; is as in the previous examples, the damping ratio ¢ = 0.1, and the
natural frequencies f; = 180, 200, 220, 240 and 260 Hz for ¢ =2,3,...,6.
The time delay between inputs was as in Example 1. Figure 9 shows the com-
puted and actual bias error for H . in a band centered at 208 Hz. It can be seen
from Fig. 9 that equation (32) has become inaccurate in predicting the bias
error, particularly at certain frequencies. This is a result of the violation of the
assumption that H,;8, is relatively constant across the bandwidth, since the
functions H,-H, are now frequency dependent.

A

400 to

300

o Real Part
° /mag.Part

200

100 |

Bias Error (Per Cent)

—300

—400 -nJ.

1 1 1 1 1 -
0 50 100 450 200 250 BelHz]

Fig. 9. Computed and theoretical bias error for Example 3

If the analysis band contains, or is near one or more of the natural frequen-
cies, the bias error will not be accurately predicted by equation (32), particularly
if the damping is low; the presence of natural modes in a band increases the
frequency dependence of the frequency response.

To predict a more accurate bias error than equation (32) one would expand
the estimates of the frequency responses in the Taylor series about the band
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center-frequency, place the series in equation (28), and proceed as before, omit-
ting the assumption that H;S; is constant. This would yield an expression
similar to equation (32), but including terms that would be functions of the
first and higher derivatives of the frequency responses. Thus, it would then
be necessary to have estimates of not only the frequency responses, but also
the derivatives of the frequency responses. The number of terms in the Taylor
series needed accurately to predict the error would depend on the variation
of the frequency responses within the bandwidth.

A

400 +
o -
300 | o Real Part
o Imag.Part
200 - '°
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Bias Error (Per Cent)
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1 1 1 1 1 -
0 50 100 150 200 250 Bp[HZ
Fig. 10. Computed and theoretical bias error for Example 4

Example 4. Deterministic inputs. In this example the time delays and
frequency responses are as in Example 1 while the inputs are delta functions
in time (constant spectrum level). The only difference from the first example
occurs in the analysis bandwidth; here bandwidth is restricted to a multiple
of the fundamental frequency 1/T, where T' = 120 msec is the fundamental

period of all inputs. Figure 10 is a plot of the computed bias error of H 1 (equa-
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tion (39)) and the actual error, showing that the error is accurately predicted
only at the bandwidths of zero bias error. The failure of equation (39) to predict
the bias is related to the difference in equations (26) and (36) where an integral
has been replaced by a summation of a finite number of terms. The integrand
8;y is composed of a set of cross-terms which are highly frequency dependent
(see equation (28)). Therefore, when the system inputs are deterministic and
8;, is estimated by smoothing in the frequency domain, severe bias can be
introduced since the raw spectrum is not a continuous function. When the band-
width is equal to a multiple of the fundamental frequency times, the number
of inputs of the bias will be zero, since the effect of the input cross-spectra
has been “averaged out” as demonstrated earlier in this paper.

Experimental results

The cross-spectral veetors in Figs. 5 and 6 can be demonstrated experimen-
tally for a physical process, such as the combustion of an internal combustion
engine. For a six-cylinder, V-type diesel engine, where the eylinder-bank angle
is 90°, the time delay between the combustion pressures of two cylinders firing
consecutively (one on each bank) is T'/8, a phase angle of 45°, where T is the
engine repetition period. Figure 11 shows several harmonics of the measured
cross-spectrum between these two cylinder combustion pressures, beginning
at 820 Hz. In this experiment the fundamental engine frequency was 20 Hz,
so that 820 Hz is the 41st harmonic: From Fig. 11 it can be seen that eross-
-spectrum harmonics maintain their phase relationship quite accurately, even
at high harmonic numbers.

This example is slightly different from the idealized cases shown in Fig.
5 and 6 since here the delay between two consecutive inputs is not a uniform
T|N due to the geometrical arrangement of a V-type internal combustion
engine; the delay is either T'/8 or 57'/24 depending on the two inputs being
considered (analogous to Example 3). Thus, frequency smoothing over N
harmonics will not result in complete cancellation of the cross-spectra in this
case. Another factor that will affect cancellation is the decreasing magnitude
of the cross-spectrum with frequency that is evident from Fig. 11. In the idealized
case the spectrum magnitude was assumed to be constant with frequency.

To see the effect of input cross-spectra on the estimates of frequency
response, the frequency response was computed between one of the eylinder
pressure inputs and the engine noise (at 1 m form one side), with and without
the cross-spectra. For the case where the input cross-spectra were included,
equation (1) was solved for the frequency response matrix. Equation (7) was
used to estimate the frequency response for the case where the input cross-
-spectra were neglected. Figure 12 shows one of the frequency responses com-
puted for both cases. The bandwidth used in the analysis was 140 Hz corres-
ponding to a frequency smoothing of seven harmonies in each band (20 Hz
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fundamental frequency). The bias error resulting from neglecting input cross-
-spectra can be seen to be quite small, even though only 7 frequency points
were used to determine the smoothed auto- and cross-spectra. In Example 2,
the time delays between inputs are the same fraction of the total time T as in
this experiment. From Fig. 8 it can be seen that a low bias error is predicted
at a bandwidth of 75 Hz, using 9 frequency points to smooth the spectra instead
of 7. However, in Example 2 the frequency response being estimated, H, was
much smaller in magnitude than the other frequency responses (H,-H,) so

that the percent bias error, b [ﬁ 1(f)1 X100 /H(f), is quite large for a given
bandwidth (see equation (32)) compared to a more realistic example where
the frequency responses have similar magnitudes. From experiment it was
found that the frequency responses of the diesel engine had similar magnitudes;
therefore the bandwidth for a given bias is somewhat less than for the theoretical
case in Example 3. This is fortunate since one would like to make the bandwidth
resolution as small as possible.

Summary

The characteristics of cerfain multiple input, single output systems have
been discussed. Specifically, it has been shown that frequency responses can be
determined from coherent inputs, when the inputs are delayed in time. It is
shown that there exists an optimum analysis bandwidth for which the analysis
is valid, and the bandwidth is related to the number of inputs and the time
delay between the inputs. Expressions for bias error when input cross-spectra
are neglected have been developed, both for stationary random and deterministic
inputs. Several theoretical examples have been cited to show the effect of
bandwidth, time delay between inputs and frequency response on the bias
error. The method has been applied to a physical system, a diesel engine, to
estimate the structural-acoustical response of the engine structure. It was
shown by experiment that the input cross-spectra could be neglected for this
application. Many other physical systems such as multicylinder pumps and
compressors have inputs of the fiype considered in the paper. Consequently,
the frequency response technique, along with the simplifications pointed out
in this paper, can be used to investigate the acoustical behavior of other ma-
chinery noise source.
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