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IMPEDANCE OF THE UNBAFFLED CYLINDRICAL PIPE OUTLET
FOR THE PLANE WAVE INCIDENT AT THE OUTLET*
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The paper presents formulae for the impedance of the outlet of semi-
infinite eylindrical wave-guide derived by considering the propagation of a plane
wave and accounting for the generafion of higher Bessel modes due to the
diffraction at the opened end of the wave-guide. For this purpose expressions
for the refraction and transformation coefficients of the basic mode were derived
by solving exactly the wave equations with suitable boundary conditions using
Wiener-Hopf factorization.

1. Introduction

In the practical applications of acoustics an important role is played by
the phenomena occurring at the opened ends of wave-guides, e.g. of meaguring
pipes and acoustic horns. The first attempt to describe these phenomena was
presented by Rayleigh [1]who had assumed uniform distribution of the velocity
of vibrations at the outlet provided additionally with an infinitely rigid aco-
ustic baffle. A further step towards the definition of the acoustic field inside
the semi-infinite unbaffled cylindrical waveguide was made by Levine and
Schwinger [2]. They assumed, however, that a basic mode plane wave propa-
gates in the direction of the outlet and that because of diffraction at the opened
end of the wave-guide only the plane wave with an amplitude described by
the complex coefficient of reflection propagates. The impedance of the outlet
calculated on the basis of the value of this coefficient is given, among others,
by Zyszkowski ([3], p. 218). However, it is known, e.g. from the theory of the
infinite ¢ylindrical wave-quide (cf. [4]), that such assumptions are valid only
when the diffraction parameter of the wave-guide, i.e. the product of the wave
number and the pipe radius is smaller than the value of the zero-crossing of

* This paper is a contribution to the interdisciplinary problem MR.I.24
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the Bessel function of the first order, equal to 3,8317... This model has thus
a limited application to higher frequencies and larger diameters of the wave-
-guides.

In 1949 Wajnsztejn [6] developed an analytical theory of the acoustic
field of a semi-infinite unbaffled eylindrical wave-guide utilizing the method
of solution of a similar problem for electromagnetic waves [b]. Basing on his
results the author of the present paper has calculated the impedance of the
outlet of the unbaffled eylindrical wave-guide for the plane wave incident
at the outlet with the aid of an exact solution of the wave equation for any
value of the diffraction parameter. The result obtained can also be interpreted
as an impedance of a circular sound source located at the bottom of a semi-infi-
nite, rigid cylinder of the identical radius.

2, Solution of wave equation

Let us consider a cylindrieal wave-guide with an infinite, thin and rigid
wall and select a cylindrical coordinate system in which the Z-axis coincides
with the symmetry axis of the wave-guide. The wave-guide wall X' is given
by the equation of the side-wall of the semi-infinite cylinder with a radius a:

2 =f(r,2):r=a,220}

Let us assume further that the acoustic potential @(r, z) does not depend
on angle ¢ and its dependence on time is described by the factor expressed
in the form exp(—imt). The wave equation for the potential has thus the fol-

lowing from:
1( 0@ 0*P
] b Y, VSR

- (r 6r)+ Py +k*d = 0. (1.1)

The assumption that the wave-guide is perfectly rigid leads to the boundary
condition

09 |

—t =0, y 1.2
oar |z (18

This means that the normal component of velocity vanishes at the wave-
guide wall. The second boundary condition requires that the potential should
be continuous at the surface extention in the negative direction of the Z-axis:

lim &(r,2) =1lim &(r,2), =2<0. (1.3)

r—a + r—a

The solution of the problem of acoustic field of the wave-guide consists
in finding the function @(r, 2) which satisfies equation (1.1) for the boundary
conditions (1.2) and (1.3) and the Sommerfeld condition of radiation (cf. [4]).
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Let us assume that the partial solution of this problem, depending additio-
nally on a parameter w and modified by a function F(w) is the solution obtained
for the infinite wave-guide [5], [6]

¥
To o =)t
O(r,z,w) = i2n20 F(w)e™ (1.4)

oo 7 (v ),

where
v = V(ka)®—w?. (1.5)

The upper product of cylindrical functions in braces refers to the interior
of the cylinder described by X whereas the lower one to the outside of this
cylinder, i.e. for » > a [4].

The required potential ®(r, z) is assumed to be a superposition of the above
partial solutions [5], [6],

D(r,2) = [B(r,z,w)dw, , (1.6)
C

where € is a contour which is selected so that the obtained solution satisfies
the imposed boundary conditions. In particular, the boundary condition (1.2)
now takes the form

[ L(w) F(w)dw =0, 2>0, (1.7)
(8]

where

By I‘n:Vz

I3 (o), H{(v). (1.8)

By calculating then the potential step on the surface r = a,
D(a,, 2, w)—D(a_,z, w) = 4nF (w)e"*™°, (1.9)

it is possible to write the boundary condition (1.3) in the form
[ e e F(w)dw =0, 2<0. (1.10)
C

Finding the potential &(r, 2) is thus reduced to the determination of such
a function F(w) and a contour that equations (1.7) and (1.10) are satisfied.
The solution of these equations can be obtained by the Wiener-Hopf method,
by factorizing analytically integrands L(w) and F(w) into factors L, (w) and
L_(w) in the and lower half-plane of the complex variable w, respectively,
as this permits to make use of the convolution theorem [7].
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A further development of the factorization method, described extensively,
among others, in papers [6] and [6], leads to the following expression for the
acoustic potential of the wave-guide under consideration:

:
o5 = e Fim it ), 0
W=l 0\ n

where R, is the coefficient of transformation of the incident wave info the n-th
wave mode with a wave number y,/a, with

Va = V(ka)—ul, (L12)
and u, is the n-th zero-crossing of the Besel function of the first order

Jl(Juﬂ) =0.

The first component in square brackets represents the plane wave which,
according to the assumption, propagates in the direction of the wawve-guide
outlet and is transformed there into an infinite number of waves with a Bessel
distribution which propagate in the opposite direction. Analyzing carefully
the exponential expressions under the sum sign we see that for a fixed diffraction
parameter only a certain number of components will represent the waves
which can propagate along the wave-guide, since, if the condition

ko = x> pu, : (1.13)

is satisfied, the exponent of the exponential funection will be an imaginary
number. Starting, however, from a certain N such that

By < %< BNy (1.14)

the exponents will be negative real numbers and thus the corresponding com-
ponents of the sum will represent a disturbance, attenunated exponentially
with increasing coordinate Z. Since these disturbances are not the energy.
carrying waves, they will be ignored in further considerations of impedance.

3. Reflection and transformations of impedance

It follows from (1.11) that the determination of the acoustic field inside
the wave-guide is now reduced to the problem of explicit caleulation of the
coefficients of reflection and transformation of the incident wave. According
to paper [6] these coefficients have the following form:

reflection coefficient

R, = : (2.1)
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transformation coefficient

& 2xL (%)
e %2 —pn) L (7,) 22
The factors L (w) and L_(w) are defined as
Va
L, (w) = ]/l:fw vy (w), (2.3)
.4
Va
L_(w) = V:; — v (), (2.4)
where
N d
V4 (0) = ]/:r(x+w)H‘1"(o)J1(v) [] heﬂ“””*, - (25
N
p_(w) = ]/ (e —w0)HO(0) Iy (0) [ [ L2 g0 (2.6)

Yitw

=1

X is an index of the highest mode capable of propagating freely in the wave-guide
(ef. (1.17)), S8(w) is the complex funection

8(w) = X (w)+i¥ (w). (2.7)

For real values of w that satisfy inequality |w| < x the real and imaginary
parts of the function 8(w) equal respectively to

.Q(v)dw

X = [ -
M YM

p(w) = ———.Q(V)-{-—-— hm[ 2 1n”"+"’ f s ")d'w ] (2.9)
e ol P -4 —¥ur

2(v) is the argument of Hankel function of the first kind of the first order
increased by =/2:
N, (v) 7
Livke: 3
Substituting (2.3) and (2.4) into (2.1) and making use of (2.5) and (2.6)
we get expression for the reflection coefficient of plane wave:

Q(v) = ArgH‘"(v)Jr— = aretg

(2.10)

PRRGRE ¥ B k2 S (2.11)
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The calculation of the transformation coefficients R, is a little more com-
plicated, primarily because of the occurrence of the derivative of the function
L_(w) in the denominator of formula (2.2). The derivative of the function
L_(w) in (2.4) equals

Bl = S [ S ”"“("”’]w-(w), (2.12)
Voo 12— T y_(@)

where the second component in brackets can be caleulated by means of the
logarithmic derivative [6]:

«t:((:g)) s mev) dww +Zwiw. (2.13)

i=1 ¥Y§-1 =1

At the point w = y,, in which the function v (w) vanishes, its logarithmic
derivative assumes an indefinite value, Hence, L _ (w) will exist in the sense
of a limit. Direct calculation leads to the following expression:

L. (pe) = —— ) —4 H i L L AL (2.14)
thn Yit¥n

f=1
i#n

On the other hand, the factor L (x) in the nominator of (2.2) can be writ-
ten as

L) =iVa ]/—1, Xit* osen (2.15)

=0
koo 1

where use was made of the asymptotic formulae for the special functions at
small values of the argument [9]:

' k
e e

I(k+1
: ety gy (2.16)
Aiphe __1({)'(?) -

Finally, we can write the expression for the transformation coefficient of
plane wave into the n-th wave mode

]/H Yi o3 Yn Vi + % G[S(-yﬂ)+8(x)]]l2 : (217)

— ¥
i e ?{
i#n

Effective calculations of the values of coefficients as functions of diffrac-
tion parameter are only possible by numerical methods, since the integrals
in the definition of the function S (w) cannot be expressed by analytic funetions.
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The graphs in Figs. 1 and 2 represent respectively the moduli and phases
of the reflection coefficient R, and the transformation coefficients R, of plane
wave for all the allowed wave modes because of their values within the range
[0,20] except for B, appearing as late as for » = 19.62. Numerical computations

have been made starting from the point » = 0 with a step 0.1.

In the calculations use has been made of the generally accepted definition

of modulus and phase of wave reflection coefficient

R, = —|R,|¢".
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Fig. 1. Moduli of the reflection coefficient R, and the transformation

coefficients R, as functions of diffraction parameter » = ka
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Fig. 2. Phases of the reflection coefficient R, and the transformation coef-
ficients R, as functions of diffraction parameter » = ka

4. Outlet impedance

The acoustic impedance of the outlet of the wave-guide will be calculated
from the formula of apparent power [8],

P = [ V*pdo, (3.1)
K
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where k is the surface of the outlet, ¥ — normal component of the velocity
of vibrations, p — aeoustic pressure,
The required impedance is related to the appacrent power by the formula

i
7 =——P 3.2
where ¥, is the mean square of the velocity at the outlet. Knowing the acoustic
potential, we can calculate the acoustic pressure and normal velocity at the

outlet, that is for z = 6:

P = —iwpe?, (3.3)
0D oD
i 25 e | 4
on oz o
After simple calculations we get
00 Jo(i;ir)
=44 1 s 3.5
% we[ +§ " Jo(p) ’] e
Hon
1 A[ 1+ 'z Ju(“’ )] (3.6)
o T (e . .
a ﬂyﬂ Jl](.lun)

Hence, from definition (3.2) we have immediately

= -, e
fdwaZ(HR D(%)))(-—l—I—Rm#_‘:l:))ymrdr. (3.7)
& gl Jolpin Bm

In integrating we make use of the orthogonality of the weighted Bessel
function set [9]:

f I (*;" 'r)I (ﬁa’i‘. r) rdr = 6nma2J‘§ O (3.8)
0
Utilizing this property we have
1 0
7 =yl Pane| = 3 IR,7+ x(2iT (R +1)] 39)

Similarly we can calculate the mean square velocity

"
- fVV*da 2
K

ol 7l + 2 (1 —2 Re(Ro))]. (3.10)
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Acoustical impedance at the outlet is thus equal to

> —ya B+ %(2iIm(Ry) +1)

Z = woa "::: # (311)
Z;!Rnlzly,.lz+x(1 —2Re(R,)) '
n=

We now separate the real and imaginary part of the impedance.
If N is the highest index of the wave for which  is a real number, then
we have equalities

_{ ve, When a< N,
=\ _y* when n> N,

and this leads to the following expressions for the real and imaginary parts
of the impedance referred to the a specific impedance of environment:

N
o z' In |Rnl2+”
Re(Z) = x— a0 : (3.12)
> IR lyal® + #2(1 —2Re(Ry))
n=0
D lyal IRy +22Im(R,)
Im(Z) = % — 2t X (3.13)

Eﬂ R, lyal* + %2 (1 —2Re (Ry))

According to the remark concluding section 2, we can neglect the compo-
nents of sums with an index # > N. Thus we finally get

o
¥ = 2{ Yn |Rn|2
Re(Z) = » ot \ (3.14)

N 2
2 By lyal* 4 (1 —2Re(R,))

n=0

Im(Z) = — s o oL : (3.15)

> IR, Hlyal + 27 (L —2Re(Ry))

n=0

Putting N = 0 in (3.14) and (3.15), we shall confine ourselves to the case
considered in [1], where it has been assumed that only the plane wave is reflected
from the outlet and the wave modes of higher orders have been neglected.

Then these formulae take the well-known form of the expression for im-
pedance

1+ R,

Z =
i T

y (3.16)
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Fig. 3. The diagrams of the real and imaginary parts of the impedance at the
outlet of semi-infinitive cylindrical wave-guide without baffle
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Fig. 3 shows the graph of the real and imaginary parts of the impedance
at the outlet. In addition, in Fig. 4, a comparison has been made of the real
part of impedance Z, in (3.16) to the real part of impedance at the outlet Z
over the range, where these quantities differ from one another, that is for
%> .

On the other hand, the comparison of the respective imaginary parts of
both functions is not given since the difference between them does not exceed
the value of 6:107° less than 2% of absolute value in the above range. This
is of the order of the assumed error of computer calculations. The discontinuities
of the first derivative occurring in Figs. 1-3 appear for the value of the dii-
fraction parameter equal to the successive roots of the Bessel function of the
first order J,(x), that is to say at the points, where the successive wave modes
are excited.

5. Conclusions

The previous calculations of the impedance at the outlet of the eylindrieal
wave-guide, excited by the basic mode, did not account for the appearance of
higher wave modes due to the phenomena occurring at the open end of the
wave-guide. The application of the factorization in solving the wave equation
and further development of the Wajnsztejn theory [6] permitted us to obtain
the useful expression for the transformation coefficients of the basic mode
into other modes, which are allowed for given values of the diffraction para-
meter. The plots of these coefficients, shown in Figs. 1 and 2, represent an
exact description of the acoustic field inside the wave-guide, being a super-
position of incident mode and refracted modes (ef. (1.11)). The calculations of
the impedance, made on the basis of accurate knowledge of acoustic field,
can be applied in two types of problems of great practical importance. They
are: properties of the outlet of unbaffled cylindrical or cylinder-like wave-
guides and the radiation of transducers located on the bottom (base) of a rela-
tively long cylinder.

Commenting on the results obtained, it can be concluded that accounting
for the higher modes resulting from the diffraction at the opened end of the
wave-guide has only little influence on the magnitude of impedance if a plane
wave is an incident at the outlet, although the values of the transformation coef-
ficients of this wave into others attain considerable values even for the highest
permisgible modes. This means that in these problems for which only the ma-
gnitude of impedance is interesting, the assumption of the non-excitation of
these modes is a quite good approximation, which is the more accurate the
greater is the diffraction parameter of the wave-guide. However, one should
keep in mind that the condition of the applicability of this approximation is
the propagation of a “pure” basic mode in the direction of the outlet.
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It is known that practically the generation of an ideal plane wave is very
diffienlt, especially for wave-guide diameter large in comparison with the wave-
length. Preliminary calculations indicate, however, that the contribution of
higher modes in a wave incident at the outlet leads to the values of impedance
quite different from those presented in Fig. 3. This problem will be eonsidered
in a separate paper.
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