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The dynamics of slightly diverging two-dimensional beams whose direction forms a constant angle θ with the
equilibrium straight magnetic strength is considered. The approximate dispersion relations and corresponding
links which specify hydrodynamic perturbations in confined beams are derived. The study is dedicated to the
diffraction of a magnetosonic beam and nonlinear thermal self-action of a beam in a thermoconducting gaseous
plasma. It is shown that the divergence of a beam and its thermal self-action is unusual in some particular cases
of parallel propagation (θ = 0) and has no analogues in the dynamics of the Newtonian beams. The nonlinear
attenuation of Newtonian beams leads to their defocusing in gases, whereas the unusual cases correspond to
the focusing in a presence of magnetic field. The examples of numerical calculations of thermal self-action of
magnetoacoustic beams with shock fronts are considered in the usual and unusual cases of diffraction concerning
stationary and non-stationary self-action. It is discovered that the diffraction is more (θ = 0) or less (θ = π/2)
manifested as compared to that of the Newtonian beams. The beams which propagate oblique to the magnetic
field do not reveal diffraction. The special case, when the sound and Alfvénic speeds are equal, is discussed.
This magnetosonic beams incorporate acoustic and Alfvénic properties and do not undergo diffraction in this
particular case.
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1. Introduction

The divergence is inherent to the flows exceed-
ing one dimension. Two- and three-dimensional beams
with initially planar fronts propagate usually with in-
creasing of their characteristic width. Thus, a beam’s
energy and impulse spread over larger cross-sections.
Diffraction is more pronounced in the cases when a ra-
tio of the transducer characteristic length to the wave
length is small. Hence, it is of great importance in
medical and technical applications, where accurate
evaluation of the actual focus and excess tempera-
ture in the focal zone is the key issue (Yufeng, 2015;
Duck, 2002). Position of the actual focus differs from
the geometric one due to diffraction and nonlinear ef-
fects following a beam. The nonlinear shift of the focus
has been explained and described for the first time in
(Rudenko, Sapozhnikov, 2004). The nonlinear phe-
nomena are also associated with inhomogeneous distri-
bution of magnitude of wave perturbations across the

axis of a beam’s propagation because they strengthen
proportionally to the squared magnitude. In particu-
lar, the nonlinear transfer of energy into the entropy
mode is stronger in the par-axial area. That leads to
the larger heating in the par-axial area and forma-
tion of thermal lenses. In turn, thermal lenses have
impact on the propagation of a beam since the local
sound speed depends on the equilibrium temperature.
The MHD (magnetohydrodynamic) beams and the re-
lated nonlinear phenomena reveal a wide variety of be-
haviour in view of strong dependence on the direction
of the magnetic field, diversity of wave modes and equi-
librium parameters of a plasma. Particularly, the pa-
rameter of nonlinearity and damping coefficient due
to thermal conduction are variable (Chin et al., 2010;
Nakariakov et al., 2000).

This study considers diffraction of a magnetosonic
beam in dependence of orientation of the axis of prop-
agation and the equilibrium parameters of a plasma.
It turns out that the obliquely propagating beam al-
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most does not diverge. As for the case of parallel pro-
pagation, the diffraction term may take an unusual
sign. These features probably have no analogues in the
wave theory of confined beams. As for the perpendi-
cular propagation, it occurs commonly but with weaker
divergence compared to that in the Newtonian beams.

2. Equations of MHD flow

The dynamics of a gas is governed by the ideal
MHD equations. That means that the spatial and tem-
poral scales of perturbations in a flow must be much
larger than gyro-kinetic scales. The model imposes
equal temperature of ions and electrons and makes
use of one-fluid perfectly electrically conducting gas.
The set of initial partial derivatives’ equations con-
sists of the continuity equation, momentum equation,
energy balance equation, and electrodynamic equa-
tions (Freidberg, 1987; Krall, Trivelpiece, 1973;
Callen, 2003):

∂ρ

∂t
+∇ ⋅ (ρv) = 0,

ρ(
∂v
∂t

+ (v ⋅∇)v) = −∇p +
1

µ0
(∇ ×B) ×B,

∂p

∂t
+ (v ⋅∇)p + γp(∇ ⋅ v) = 0,

∂B
∂t

= ∇ × (v ×B),

∇ ⋅B = 0,

(1)

where p, ρ, v, B, are hydrodynamic pressure and mass
density of a plasma, its velocity, the magnetic field,
µ0 is the magnetic permeability of a free space, and
γ denotes the ratio of specific isobaric heat capacity
and specific isochoric heat capacity, γ = CP /CV . The
third equation in fact incorporates the continuity and
the energy balance equation and relies on the internal
energy for an ideal gas, p

ρ(γ−1) . The fourth equation
in the set is the ideal induction equation, and the fifth
one ensures the solenoidal character of B (the Maxwell
equation). Many examples of plasmas such as Solar at-
mosphere, Earth’s magnetosphere, neutron star mag-
netospheres are described reasonably well by the MHD
system of equations. The exceptions are the problems
which relate to kinetic effects, magnetic reconnection,
some laboratory plasmas, weakly ionised plasmas, cos-
mic rays, molecular clouds, and some other cases. The
equation of state for an ideal gas is valid besides ap-
plications dealing with very cool and dense plasmas.

The two-dimensional geometry of a flow is con-
sidered following Botha et al. (2000), McLaughlin
et al. (2011). This assumes dependence of all perturba-
tions on x and z. All equilibrium quantities are treated
as constants and subscripted by 0, and the MHD per-

turbations are superscripted by ′. The constant equi-
librium magnetic field is aligned along axis z, so that
B0 = (0,0,B0). The bulk flow is absent, v0 = 0. The
MHD equations may be written in the following form
(McLaughlin et al., 2011):

∂ρ′

∂t
+ ρ0 (

∂vx
∂x

+
∂vz
∂z

) = N1,

∂vx
∂t

+
1

ρ0

∂p

∂x
−

B0

ρ0µ0
(
∂Bx
∂z

−
∂Bz
∂x

) = N2,

∂vy

∂t
−

B0

ρ0µ0

∂By

∂z
= N3,

∂vz
∂t

+
1

ρ0

∂p′

∂z
= N4,

∂p′

∂t
+ γp0 (

∂vx
∂x

+
∂vz
∂z

) = N5,

∂Bx
∂t

−B0
∂vx
∂z

= N6,

∂By

∂t
−B0

∂vy

∂z
= N7,

∂Bz
∂t

+B0
∂vx
∂x

= N8,

(2)

where Ñ = (N1, ...,N8)
T is a vector which consists of

quadratically nonlinear terms. Equations (2) contain
the terms of order M1 (the left-hand side), M2 (the
right-hand side) in the series expansion in a small pa-
rameter, the magnetosonic Mach numberM (M equals
the ratio of characteristic magnitude of velocity to the
speed of magnetosonic perturbations). The dispersion
relations specify all kinds of wave and non-wave motion
of small magnitudes in a plasma, that is, in the case of
insignificant nonlinearity. They follow from the linea-
rised version of Eqs (2), if one assumes that all per-
turbations are proportional to exp(iωt − ikxx − ikzz)
(k = (kx,0, kz) is the wave vector). They are in fact
roots of the dispersion equation:

ω2
(ω2

−C2
A cos2(θ)k2z) (c

2
0(k

2
x + k

2
z)(C

2
Ak

2
z − ω

2
)

+ω2
(ω2

−C2
A(k

2
x + k

2
z))) = 0, (3)

where

c0 =

√
γp0
ρ0

=
√

(γ − 1)CPT0

denotes the acoustic speed in unmagnetised gas in
equilibrium, and

CA =
B0

√
ρ0µ0

is the Alfvén speed. Among roots of Eq. (3), there are
two Alfvén (non-acoustic) modes of different directions
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of propagation (ω2 − C2
A cos2(θ)k2z = 0) and two sta-

tionary modes (ω2 = 0). Four roots of Eq. (3) describe
the magnetosonic modes, fast and slow, of different di-
rection of propagation. The magnetosonic beams are
of interest in this study. The dynamic equation for
any non-zero wave perturbation ϕ(x, z, t) follows from
Eq. (3):

∂2

∂t2
(
∂2ϕ

∂t2
−C2

A∆ϕ) − c20∆(
∂2ϕ

∂t2
−C2

A

∂2ϕ

∂z2
) = 0, (4)

where

∆ = (
∂2

∂x2
+
∂2

∂z2
).

3. Quasi-planar dynamics

Let us consider weak diffraction of small magnitude
perturbations in a beam which is reasonably directed
along axis x1 and introduce the small parameter m
responsible for its divergence. Figure 1 explains the
geometry of a flow.
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Fig. 1. Geometry of a flow.

The component of the wave vector k parallel to the
direction of propagation is k∣∣ (it is of order 1), and
the perpendicular component is k⊥ (it is of order

√
m),

so as:

kz = k∣∣ cos(θ) − k⊥ sin(θ), kx = k∣∣ sin(θ) + k⊥ cos(θ).

All subsequent formulas are leading order; they include
the terms up to m1 in the power series. By expanding
Eq. (3) in the series and collecting the leading order
terms, one arrives at the dispersion relation:

ω = ±(Ck∣∣ +Gk⊥ +
D2C

2
k2⊥), (5)

where C is the positive root of the equation:

C4
−C2

(c20 +C
2
A) + c

2
0C

2
A cos2(θ) = 0. (6)

C is a speed of propagation of both fast or slow modes,
and

G =
c20C

2
AC cos(θ) sin(θ)

C4 − c20C
2
A cos2(θ)

,

D2
=

2(c20 +C
2
A+

a∗

(C4−c2
0
C2
A

cos2(θ))3
C6)− C2c40C

4
A sin2(2θ)

(C4−c2
0
C2
A

cos2(θ))2

4C2k∣∣
,

where

a∗ = c80 + c
4
0C

4
A +C

8
A − 2c20C

2
A(c

4
0 +C

4
A) cos(2θ)

+ c40C
4
A cos(4θ).

The case of the parallel propagation (θ = 0, k∣∣ = kz,
k⊥ = kx) imposes two roots of Eq. (6), C = CA and
C = c0. If CA = c0, the roots of dispersion relation (3)
are degenerate and the denominator C4 − c20C

2
A equals

zero. This case should be considered individually. We
start with the cases of wave vector parallel or perpen-
dicular to the equilibrium magnetic field. These cases
impose zero G.

3.1. Parallel wave vector and the equilibrium
magnetic field

This is the case of θ = 0. The leading order disper-
sion relations for the magnetosonic modes are shown
in Table 1.

Table 1. Leading order dispersion relations.

c0 ≠ CA ±(CAkz +
C3
Ak2

x

2(C2
A
−c2

0
)kz
) ±(c0kz +

c30k
2
x

2(c2
0
−C2

A
)kz
)

c0 = CA ±(c0kz −
c0kx

2
+

3c0k
2
x

8kz
) ±(c0kz +

c0kx
2

+
3c0k

2
x

8kz
)

The modes differ by the relations between specific
perturbations. These relations unambiguously deter-
mine modes along with the dispersion relations. For
all these modes, vy = 0, B′

y = 0.

3.1.1. Case c0 ≠ CA

In particular, the links inherent to the dispersion
relations for acoustic beams,

ω = ±(c0kz +
c30k

2
x

2(c20 −C
2
A)kz

) ,

take the form:

vx = ±
c30

(c20 −C
2
A)ρ0

∫ dz
∂ρ′

∂x
,

vz = ±(
c0ρ

′

ρ0
−

c30
2(c20 −C

2
A)ρ0

∫ dz∫ dz
∂2ρ′

∂x2
) ,

p′ = c20ρ
′,

B′
x = −

c20B0

(c20 −C
2
A)ρ0

∫ dz
∂ρ′

∂x
,

B′
z =

c20B0

(c20 −C
2
A)ρ0

∫ dz∫ dz
∂2ρ′

∂x2
.

(7)

The terms including partial derivative with respect to
x are of order

√
m, and these including the second

order derivative are of order m1. This case is purely
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acoustic in the absence of the magnetic field with the
non-zero leading order perturbations as follows:

p′ = c20ρ
′
= c0ρ0vz.

The relations of perturbations specify modes uniquely.
They reveal the difference between modes and may in-
dicate the type of a motion on a pair of the disper-
sion relations. To be specific, a wave propagating in
the positive direction of axis z is considered. Any non-
zero perturbation inherent to this mode is supposed to
be a function of the retarded time τ = t − z/c0, mz,√
mx. This choice of slow scale suggests that the spa-

tial variations occur more slowly along the axis z of
a beam than across the beam from the point of view
of an observer who moves at the speed c0 along the
axis of a beam (Rudenko, Soluyan, 1977; Hamil-
ton, Blackstock, 1988). Assuming the Mach num-
ber M and m of the same order, taking into account
nonlinear termsN1, ...,N8, discarding terms of the high
order in smallness and transforming equation from the
slow scale back to x, z yields an equation governing
the magnetosonic pressure:

∂

∂τ
(
∂p′

∂z
−

ε∣∣

ρ0c30
p′
∂p′

∂τ
)=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D2
∣∣,0c0

2

∂2p′

∂x2
, c0 > CA,

−
D2
∣∣,0c0

2

∂2p′

∂x2
, c0 < CA,

(8)

where
ε∣∣ =

γ + 1

2

is the parameter of nonlinearity,

D2
∣∣,0 =

c20
∣c20 −C

2
A∣

=
βγ

∣βγ − 2∣

is the squared parameter responsible for diffraction,
and

β =
2

γ

c20
C2
A

is the plasma-β which reflects the ratio of hydrostatic
and magnetic pressures. Equation (8) recalls the fa-
mous Khokhlov-Zabolotskaya (KZ) equation for an acous-
tic pressure in a slightly diverging beam in an ideal gas
(Kuznetsov, 1971):

∂

∂τ
(
∂p′

∂z
−

ε∣∣

ρ0c30
p′
∂p′

∂τ
) =

c0
2

∂2p′

∂x2
. (9)

Equation in the upper row of set (8) may be rearranged
into the KZ equation by the substitution X = x

D∣∣,0
.

Since D∣∣,0 > 1, the divergence is more pronounced in
the case of a plasma affected by a magnetic field. In
the planar case ( ∂

∂x
≡ 0), the links

ω = ±(CAkz +
C3
Ak

2
x

2(C2
A − c

2
0)kz

)

transform to the only link recalling that for the Alfvén
modes (B′

y = ∓
B0

CA
vy):

B′
x = ∓

B0

CA
vx.

It has a property which differentiates it from the Alfvén
modes. Namely, this mode reveals divergence while the
Alfvén mode refers to exact dispersion relations ω =

±CAkz and behaves like a planar wave.
The non-acoustic wave may be extracted from

Eq. (4) by means of making use of the set of variables
τ = t − z/CA, mz,

√
mx. One arrives at the dynamic

equation:

∂

∂τ
(
∂vx
∂z

−
3

2C2
A

vx
∂vx
∂τ

) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D2
∣∣,ACA

2

∂2vx
∂x2

, c0 < CA,

−
D2
∣∣,ACA

2

∂2p′

∂x2
, c0 > CA,

(10)
where

D2
∣∣,A =

C2
A

∣c20 −C
2
A∣

=
2

∣βγ − 2∣
.

Hence, the divergence may be anomalous in depen-
dence on the ratio of CA and c0 and the kind of a wave
mode. This relates to the signs minus in the right-hand
sides of Eqs (8) and (10) which reflect diffraction.

3.1.2. Case c0 = CA

The links of perturbations inherent to the disper-
sion relation ω = ± (c0kz −

c0kx
2

+
3c0k

2
x

8kz
) (this is the

case CA = c0), take the forms:

vx = ±(−
c0ρ

′

ρ0
+
c0

2ρ0
∫ dz

∂ρ′

∂x
+
c0

4ρ0
∫ dz∫ dz

∂2ρ′

∂x2
),

vz = ±(
c0ρ

′

ρ0
+
c0

2ρ0
∫ dz

∂ρ′

∂x
−
c0

8ρ0
∫ dz∫ dz

∂2ρ′

∂x2
),

p′ = c20ρ
′, (11)

B′
x =

B0

ρ0
ρ′ −

5B0

8ρ0
∫ dz∫ dz

∂2ρ′

∂x2
,

B′
z = −

B0

ρ0
∫ dz

∂ρ′

∂x
.

The case c0 = CA is especial, it is not a limit of the
general case and represents the type of motion com-
bining Alfvén and acoustic properties. In particular,
vx and vz are of the same order. Operating on the
variables τ = t − z/c0, mz,

√
mx, one concludes that

there are no physically meaningful perturbations in
this form. Any perturbation of the form ϕ(τ,mz,mx)
is a solution to Eq. (4). The conclusion is that there is
no leading order diffraction in this case and the dy-
namic equation for the vx is as follows:

∂vx
∂z

−
γ

2c20
vx
∂vx
∂τ

= 0. (12)
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It describes a perturbation in a planar wave and has
unusual parameter of nonlinearity different from that
in the pure acoustic case.

3.2. Perpendicular wave vector and the equilibrium
magnetic field

In the case θ = π/2, k∣∣ = kx, k⊥ = kz, one arrives at
the leading order dispersion relations:

ω = ±(C⊥kx +
(C4
⊥ − c

2
0C

2
A)k

2
z

2C3
⊥kx

) ,

C⊥ =
√

c20 +C
2
A.

(13)

A perturbation in pressure in the mode propagating
in the positive direction of axis x is described by the
dynamic equation (we seek perturbations as functions
of τ = t − x/C⊥, mx,

√
mz and account for nonlinear

distortion of a wave):

∂

∂τ
(
∂p′

∂x
−

ε⊥
ρ0C3

⊥
p′
∂p′

∂τ
) =

D2
⊥C⊥
2

∂2p′

∂z2
, (14)

where

D2
⊥ =

c40 +C
4
A + c

2
0C

2
A

(c40 +C
4
A)

2
= 1 −

2βγ

(βγ + 2)2
.

The parameter of nonlinearity ε⊥ depends on the equi-
librium parameters of a plasma (Chin et al., 2010;
Nakariakov et al., 2000):

ε⊥ =
3C2

A + (γ + 1)c20
2C2
⊥

=
9 + 4γβ

8 + 4γβ
ε∣∣.

Equation (14) may be rearranged into the KZ equa-
tion by substitution X = x

D⊥
. Since 3

4
< D2

⊥ < 1, the
divergence is usual but less manifested in the case of
a plasma affected by a magnetic field. All conclusions
concerning linear and nonlinear dynamics of perturba-
tions in an acoustic beam can be generalised in the
case of a plasma affected by a magnetic field in view of
the transversal scaling.

4. Thermal self-action of sound beams

The magnitude of a magnetosonic pressure is larger
in the vicinity of a beam’s axis than on the perip-
hery. That leads to more effective nonlinear excitation
of the entropy mode in this area, that is, to magne-
toacoustic heating. Enlargement in temperature en-
tails a change in the local speed of sound propagation.
Some kind of a thermal lense forms in the vicinity of
axis of a beam. In turn, these uneven variations dis-
tort the wave front. In order to study unusual features
of perturbations which associate with the anomalous
divergence, we focus on the parallel propagation with
the speed c0. Usually, a magnetosonic beam undergoes

thermal self-defocusing specific for beams in the gases
due to the positive thermal coefficient:

δ =
1

c0

∂c0
∂T

∣
p
,

which equals 1
2T0

(T0 designates the equilibrium tem-
perature). Some damping mechanism along with non-
linearity is a necessary condition for nonlinear transfer
of wave energy into the non-wave entropy mode. We
consider exclusively thermal conduction χ among these
mechanisms. The system of equations which describes
nonlinear thermal self-action of a beam, is as follows:

∂

∂τ
(
∂p′

∂z
−
δT ′

c0

∂p′

∂τ
−
γ + 1

2ρ0c30
p′
∂p′

∂τ

−
(γ − 1)χ

2CP c30ρ0

∂2p′

∂τ2
) = ±

D2
∣∣,0c0

2

∂2p′

∂x2
, (15)

∂T ′

∂t
−

χ

ρ0CP

∂2T ′

∂x2
=
c0
Cp
Fms, (16)

where Fms designates the averaged over period mag-
netosonic force:

Fms =
(γ − 1)χ

CP c50ρ
3
0

⟨(
∂p′

∂τ
)

2

⟩. (17)

T ′ denotes perturbation of temperature which in the
case of periodic excitation satisfies the inhomogeneous
diffusion Eq. (16). The acoustic force which is valid
for all kinds of exciters has been derived by (Leble,
Perelomova, 2018). Equation (15) resembles Eq. (1)
(Rudenko, Sapozhnikov, 2004) but differs by the
right-hand part which may be negative and includes
the scaling coefficient D2

∣∣,0.
In the cases when nonlinear effects dominate over

diffraction, the “fast time” may be eliminated in the
frames of geometric acoustics. The subsequent analysis
which shows the pecularities of anomalous divergence
will be done for the example of cylindrically symmetric
beam, since the theory is well developed in this partic-
ular case (Rudenko, Sapozhnikov, 2004). Introduc-
ing new variables R = r

D∣∣,0
and the eikonal ψ(x, r) (r is

the transversal to the direction of a beam coordinate)
and substituting:

p′ = (x, r, θ = τ − ψ(x, r)/c0),

one arrives at the limit of short wavelengths small in
comparison with the scale of thermal inhomogeneties
to the equation:

∂

∂θ
(
∂p′

∂z
−
γ + 1

2ρ0c30
p′
∂p′

∂θ

−
(γ − 1)χ

2CP c30ρ0

∂2p′

∂θ2
±
∂p′

∂R

∂ψ

∂R
± p′

∂2ψ

∂R2

−
1

c0

∂p′

∂θ
(
∂ψ

∂z
±

1

2
(
∂ψ

∂R
)

2

+ δT ′)) = ±c0
∂2p′

∂R2
. (18)
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In the frames of geometrical acoustics, one sets the
right-hand side of Eq. (18) zero and arrives at the sys-
tem:
∂p′

∂z
−
γ + 1

2ρ0c30
p′
∂p′

∂θ
−

(γ − 1)χ

2CP c30ρ0

∂2p′

∂θ2
±
∂p′

∂R

∂ψ

∂R
±p′

∂2ψ

∂R2
= 0,

(19)
∂ψ

∂z
±

1

2
(
∂ψ

∂R
)

2

+ δT ′ = 0.

The upper sign in the previous and next formulas de-
signates the normal diffraction, and the lower sign con-
cerns the unusual case. Equation (19) describes among
other formation and propagation of a sawtooth wave
with a finite shock front with the magnitude A and the
frequency ω, so as:

p′(z,R, θ) = A(z,R)

⋅(−
ωθ

π
+ tanh(

(γ + 1)CP
2(γ − 1)χ

A(z,R)θ)),

−
π

ω
≤ θ ≤

π

ω
. (20)

Substituting Eq. (20) into (19) and (17) and letting
χ → 0 (this makes the wave saw-tooth shaped) results
in equations:

∂A

∂z
+

A2

P0zs
±
∂A

∂R

∂ψ

∂R
±A

∂2ψ

∂R2
= 0,

Fms =
(γ + 1)ω

3πc50ρ
3
0

A3,

(21)

where

zs =
2πc30ρ0
ωP0

is the shock formation distance, and P0 is the ini-
tial magnitude of magnetosonic pressure at the axis of
a beam. Equation (21) may be resolved by assuming
the parabolic wave form (where f(z, t) is some func-
tion):

ψ(z,R, t) = φ(z, t) ±
R2

2

∂

∂z
ln f(z, t)

with the solution:

A =
P0

f(z, t)
Φ(

R

a0f(z, t)
)

⋅
⎛

⎝
1 +

1

zs
Φ(

R

a0f(z, t)
)

z

∫
0

dy
f(y, t)

⎞

⎠
,

where a0 is the initial beam radius, and Φ is responsible
for the pressure transversal distribution, A(z = 0,R) =

P0Φ(R/a0). The eikonal equation takes the form:

±
∂2f

∂z2
= δT2f, (22)

where T2 is the coefficient in the transversal expansion:

T ′ = T0 −
R2

2
T2(z, t). (23)

4.1. Non-stationary self-focusing

In the case of small thermal conductivity, when the
diffusion term in Eq. (16) may be neglected, a variation
in temperature takes the form:

∂T ′

∂t
=

(γ + 1)ω

3πc40ρ
2
0CP

A3.

The function f follows from Eqs (22) and (23):

f5
⎛
⎜
⎝

1 +

Z

∫
0

dy
f(y,Θ)

⎞
⎟
⎠

4

∂

∂Θ
(

1

f

∂2f

∂Z2
) = ±1, (24)

where the following dimensionless quantities are intro-
duced:

Z =
z

zs
, Θ =

t

t0
, t0 =

(γ + 1)ωρ0CPa
2
0T0

4πc20P0
.

The boundary and initial conditions for initially non-
focused beam are as follows:

f(Z = 0,Θ) = f(Z,Θ = 0) = 1,
∂f

∂Z
(Z = 0,Θ) = 0.

Equation (24) recalls the dynamic equation (Eq. (22)
in Rudenko, Sapozhnikov, 2004) but has a different
meaning. The sign plus corresponds to the normal de-
focusing in gases, and the sign minus corresponds to
anomalous divergence. Hence, the unusual divergence
corresponds to the focusing which specifies majority of
liquids (apart from water).

4.2. Stationary self-focusing

We consider stationary temperature field in Eq. (16),
so that ∂T ′

∂t
= 0. An equation for the unknown function

f takes the form:

⎛
⎜
⎝

1 +Π

Z

∫
0

dy
f(y)

⎞
⎟
⎠

3

f2
d2f

dZ2
= ±Π3, (25)

where

z0 =
π2c50ρ0

3T0χ(γ + 1)2ω2
, Z =

z

z0
, Π =

z0
zs
.

The boundary conditions for an initially unfocused
beam are:

f(Z = 0) = 1,
df
dZ

(Z = 0) = 0.

Hence, the case of anomalous divergence may be con-
sidered as usual with the normal divergence but with
the negative coefficient, −δ (Eq. (20) in (Rudenko,
Sapozhnikov, 2004)). In this case, unusual focusing
of a beam in a gaseous plasma occurs. This corresponds
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to the sign minus on the right of Eq. (25). For a Gaus-
sian at Z = 0 beam, Φ(ξ) = exp(−ξ2), and the charac-
teristic width of a beam is defined as the transversal
distance at which the peak pressure is less e times its
value at the axis:

a

a0
= f

¿
Á
Á
Á
ÁÀlog

⎛
⎜
⎝
e + (e − 1)

Z

∫
0

dy
f(y)

⎞
⎟
⎠
.

Figure 2 shows the characteristic width of a beam in
the case of stationary and non-stationary thermal self-
action in the normal (defocusing) and unusual cases
(focusing). Numerical calculations of Eqs (24) and (25)
with the appropriate initial and boundary conditions
have been undertaken in Mathematica.

a)

Z

Π

Π

b)

θ

θ

θ

θ

Z

Fig. 2. Dimensionless width of a beam which is planar at
a transducer: a) stationary self-action, b) non-stationary

self-action.

5. Concluding remarks

The unusual diffraction behaviour of magnetohy-
drodynamic beams in a plasma is discovered. The
beams oblique to the magnetic field do not reveal
diffraction. The beams directed along the magnetic
field (this is the case θ = 0) may behave unusually
in dependence to the ratio of the sound speed c0 and
the speed of Alfvénic mode CA. In particular, the un-
usual diffraction (that means the minus sign by the
diffraction term) specifies a sound beam which propa-
gates with the speed c0 if CA > c0. The discrepancy
of a beam during parallel propagation is more mani-
fested as compared to the Newtonian case. As for mag-
netosound beam propagating perpendicularly to the
magnetic field with the speed

√
c20 +C

2
A, it reveals nor-

mal but somewhat smaller diffraction than a Newto-
nian beam. Probably, the unusual cases do not have

counterparts in the wave theory. The links of pertur-
bations which specify every mode on par with disper-
sion relations in the cases of parallel or perpendicular
propagation are derived. They depend on the equilib-
rium parameters of a plasma. In general, these links
include integral operators and may be used as indica-
tors of individual kinds of plasma motion. The magne-
tosonic modes are p-modes, that is, a perturbation in
pressure is not zero for these modes. It is discovered
that the case C = c0 = CA is very special. The links
of perturbations combine properties of acoustic and
magnetic modes, Eqs (11). A beam does not undergo
diffraction and behaves as a planar wave with especial
parameter of nonlinearity γ/2.

The nonlinear thermal self-action is also adjusted
by transversal scaling. One may suppose that the ther-
mal self-action may occur unusually if a beam diverges
unusually. It turns out that the anomalous diffraction
operates in such a way that it changes the sign of ther-
mal coefficient δ. This corresponds to the thermal fo-
cusing of a beam instead of defocusing which normally
takes place in all gases, that is, to the negative ther-
mal coefficient δ. The stationary and non-stationary
self-action is considered. The only damping mechanism
which is taken into account, is the thermal conduction
of a plasma. The thermal self-action leads to forma-
tion of thermal lenses with the exception of the case
C = c0 = CA when it leads to formation of a heated flat
layer. In this case, diffraction is not of importance in
concerning to a beam itself and to the thermal effects
in its field. The non-acoustic beams propagate with the
speed CA, which also depends on the temperature. But
it is not a leading order coupling of these modes with
the entropy mode. Hence, this is not a case of thermal
self-action.
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