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Non-invasive techniques for the assessment of respiratory disorders have gained increased importance in
recent years due to the complexity of conventional methods. In the assessment of respiratory disorders, machine
learning may play a very essential role. Respiratory disorders lead to variation in the production of speech
as both go hand in hand. Thus, speech analysis can be a useful means for the pre-diagnosis of respiratory
disorders. This article aims to develop a machine learning approach to differentiate healthy speech from speech
corresponding to different respiratory disorders (affected). Thus, in the present work, a set of 15 relevant
and efficient features were extracted from acquired data, and classification was done using different classifiers
for healthy and affected speech. To assess the performance of different classifiers, accuracy, specificity (Sp),
sensitivity (Se), and area under the receiver operating characteristic curve (AUC) was used by applying both
multi-fold cross-validation methods (5-fold and 10-fold) and the holdout method. Out of the studied classifiers,
decision tree, support vector machine (SVM), and k-nearest neighbor (KNN) were found more appropriate
in providing correct assessment clinically while considering 15 features as well as three significant features
(Se > 89%, Sp > 89%, AUC > 82%, and accuracy > 99%). The conclusion was that the proposed classifiers may
provide an aid in the simple assessment of respiratory disorders utilising speech parameters with high efficiency.
In the future, the proposed approach can be evaluated for the detection of specific respiratory disorders such
as asthma, COPD, etc.
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1. Introduction

The sound produced by humans to express lan-
guage orally is called speech. As the respiratory system
is the power source, thus, for the production of speech,
to produce vibration in the vocal cord, sufficient airflow
is required (Dogan et al., 2007). Different breathing
patterns depend on the purpose and nature of speech
production. As speaking occurs only during exhalation,

to increase the time available for speech production,
breath out is slower and breath in is fast. Any kind
of airway inflammation can affect the sound of voice
quality. Disorders of the respiratory system may affect
any of the structures and organs which have to do with
breathing (Mohamed, El Maghraby, 2014). Human
speech analysis is a wide research area that helps in
medical condition diagnosis affecting the speech pa-
rameters (Dixit et al., 2014). As per the Global Initia-
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tive for Chronic Obstructive Lung Diseases (GOLD),
respiratory diseases are affecting 400 million worldwide
(Halpin et al., 2020). To treat respiratory disorders
promptly and appropriately, correct diagnosis is essen-
tial. Initially, diagnosis involves auscultation, i.e., the
use of a stethoscope for examining lung sounds. Ana-
log filtering and sound amplification is the basic re-
quirement of standard stethoscopes to be interpreted
by trained professionals. Then the pulmonary function
test (PFT) which measures lungs volume and capacity,
airflow rates, and gas exchange is performed. PFT can
be done by two methods: spirometry or plethysmogra-
phy. Along with these, chest X-rays and CT scans are
performed. Still, misdiagnosis, under-diagnosis, and
delayed diagnosis may occur in the treatment. The rea-
son may involve the expertise needed for performing
PFT and auscultation, overlapping among the disease,
and the complexity of the disease. The prediction of
the disease in the initial stage is very important in the
medical field, as death may occur if a proper treatment
got delayed.

Thus, we proposed a computerised analysis of speech
signals for normal individuals and patients affected by
different respiratory disorders.

1.1. Literature review

A comparative study between parametric and
non-parametric methods, involving the mathemati-
cal transformations in the analysis of speech for
the detection of disease has been demonstrated in
(Sonu, Sharma, 2012). Mel-frequency cepstral coeffi-
cient (MFCC) for feature extraction and dynamic time
warping (DTW) for feature matching were used. Al-
though it was a time-consuming process, voice signal
could be an alternative approach for respiratory disor-
der analysis.

A comparison of the performances of various clas-
sifiers such as Gaussian mixture model (GMM), mul-
tilayer perceptron (MLP) neural networks, support
vector machine (SVM), and hierarchical fuzzy signa-
ture (HFS) along with the usage of a hybrid classifier,
which also reduced the dimensionality, was reported in
(Alghowinem et al., 2013). It was observed that the
best performance was given by using SVM with GMM
as the hybrid classifier. Out of the three fusion meth-
ods, it was observed that while associating with HFS,
MLP, and GMM, the performance of score fusion was
better, while for SVM, the performance of decision fu-
sion was the best. Feature fusion resulted in very poor
performance as compared to other methods.

An acoustic analysis for asthmatic and normal per-
sons in which jitter, shimmer, noise to harmonic ratio
(NHR), and harmonic to noise ratio (HNR) showed
significant variation was reported in (Teixeira, Fer-
nandes, 2014). Jitter, shimmer, and HNR values for
males and females were recorded. The result obtained

on vowel comparison was found to have no difference
between jitter values but there was a difference for
shimmer and HNR values.

For the diagnosis of chronic diseases, different al-
gorithms of classification have been applied to the
database of diseases and the results are very promising.
Still, a novel classification technique is needed. The dif-
ferent methods of acoustic feature extraction and clas-
sification that can help in detecting the disease in the
prior stage are to be developed so that the process of
diagnosis can be simplified.

The different methods of acoustic feature extrac-
tion and classification that can help in detecting the
disease in the prior stage leading to the discrimination
between the voice of healthy and unhealthy persons
were discussed in (Saloni et al., 2014). Digital sig-
nal processing (DSP) techniques were used for feature
extraction whereas vector quantization (VQ), DTW,
SVM, GMM, and artificial neural network (ANN) were
used for feature classification. It was observed that
different classification techniques may not be com-
pared directly due to being measured on a different
database.

An automatic disease diagnosis system that was
adaptive based on SVM was developed in (Gürbüz,
Kılıç, 2014). For the detection of disease in a bet-
ter way, a new kind of SVM, “Adaptive SVM” has
been introduced, showing 100% correct classification
rates. The result showed that the proposed method
demonstrated a higher success rate than an adap-
tive method as compared to non-adaptive methods. The
method was not disease-specific and as practical as it
separates the bias parameters space into subfragments.

To determine the level of asthma, a numerical for-
mula was demonstrated in (Walia, Sharma, 2016).
Voice parameters like jitter, shimmer, fundamental fre-
quency, and maximum phonation time were used for
generating the formula. On analysis, it was found that
the jitter value was low for healthy and high for asth-
matic patients while maximum phonation time was
vice versa.

The myAirCoach decision support systems design
aspects were proposed in (Kocsis et al., 2017) with
the focus on the analysis of three machine learning ap-
proaches (SVM, random forests, AdaBoot) as support
tools. In comparison with SVM and AdaBoot, the ran-
dom forests algorithm shows better accuracy.

SVM, Naïve Bayes, decision tree, and ANN are
considered to be the most widely used classifiers for
chronic disease prediction, but Jain and Singh (2018)
put focus on adaptive and parallel classification sys-
tems that enhance the rate of success and reduce the
time taken in making the decision. In this proposed
method only for feature selection, the filter method was
found to be more efficient. However, by applying hy-
brid approaches to disease databases, redundant, noisy,
and insignificant features may be reduced.
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After applying machine learning to self-manage-
ment asthma, it was found that both Naïve Bayes and
logistic regression-based classifiers provided the high-
est accuracy (AUC > 0.87) in (Tsang et al., 2020).
Asthma Mobile Health Study (AMHS) dataset was
used. Several prevailing machine learning classifiers,
both probabilistic and deterministic models and linear
and non-linear were used. Along with AUC, geomet-
ric mean accuracy (GMA) was employed due to the
skewed nature of the data.

A feasible method of disease detection using analy-
sis of voice was proposed in (Gore et al., 2020). For
feature extraction, MFFC and feature matching DTW
were applied. Various voice analyses were presented
and verified to track characteristics variation in pa-
tients’ voices.

For the passive assessment of pulmonary func-
tions, two algorithms were proposed in (Chun et al.,
2020). One of them was used for distinguishing be-
tween healthy and affected with pulmonary disease and
the other one to estimate the FEV1/FVC (Forced Ex-
piratory Volume to Forced Vital Capacity) ratio us-
ing speech features. Data sets from the research study
and in-clinic study were used to develop and validate
the algorithms. It was observed that the classifica-
tion accuracy was obtained to be 73.7% while the F1
score was 84.5%. Also, a mean absolute error of 8.6%
was observed with FEV1/FVC ratio in regression ana-
lysis.

Even though so much work has already been done
in the speech analysis area and respiratory disorders
but still, less work has been done for combining both.
In the speech area, recognition and emotional patterns
have been considered while the respiratory function
is generally assessment done using lung sounds. So,
this paper deals with the assessment of respiratory
disorder using speech parameters by comparing diffe-
rent classifiers on the same dataset. As per the liter-
ature survey, the main drawback was the use of va-
rious datasets which makes the comparison even more
complicated.

Therefore, for the comparison of classifiers, there is
a need of using the same dataset.

In this article, we have compared 5 classifiers on
the basis of multifold cross-validation and the hold-
out method, and 15 features were extracted from the
speech of each of the 20 participants.

Summary of the study contribution:
– in this study, we have proposed a speech signal-

based detection of affected speech. Different
speech features were extracted from the speech
signal and evaluated using classification tech-
niques to detect abnormalities in the speech pa-
rameters;

– we also implemented and evaluated different ma-
chine learning classifiers capable of differentiating
healthy speech and affected speech.

2. Materials and methods

This section presents different steps involved in the
systematic classification of speech features.

2.1. Data collection

The dataset comprises speech samples of 20 indi-
viduals aged between 24–65 years, 10 healthy (6 males
and 4 females), and 10 patients (10 males and 0 fema-
les). All the participants have given their written con-
sent.

Samples were recorded using Goldwave software
with the sampling frequency of 11 025 Hz by a micro-
phone located 2–3 cm in front of the participant’s lips.
The participants were asked to repeat specified words
in Hindi while sitting and to adopt pitch and loudness
with which they were usually comfortable. Each indi-
vidual recorded the speech for two minutes in a contin-
uous manner. Only one recording was obtained from
each patient.

The database consisting of a sustained phonation
was created. The input signal waveforms of healthy
and affected people’ speech are shown in Fig. 1.
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Fig. 1. (a) Healthy person’s input signal waveform;
(b) affected person’s input signal waveform.

From Fig. 1 it was observed that for the healthy per-
son, the waveform was uniform but for the affected
person, the waveform contains deformities.

For the lung assessment, a spirometry test had been
performed before speech recording for all participants.
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This test estimates the amount of air that can be
breathed in and breathed out of the lungs, as well as if
the air can be blown out of the lungs, fast and easily.
In spirometry, participants were asked to inhale deeply
and hold for 6 seconds then exhale completely. Thus,
the forced expiratory volume in 1 second (FEV1), de-
fined as the amount of air that can be forced from
the lungs in one second, and peak expiratory flow rate
(PEFR) which measures how much air flows through
the bronchi and displays the level of obstruction in the
lungs, were recorded.

All the participants were subjected to a spirometry
test before categorising them as healthy or affected un-
der clinical supervision. The values of FEV1 and PEFR
were used as the gold standard to differentiate the two
groups. A participant was considered affected if the
values of FEV1 and PEFR were observed to be less
than 60.

The vital information such as age, gender, height,
weight, occupation, and medical history was also noted
down and included in the final analysis other than
spirometry.

2.2. Feature extraction

A set of 15 speech features, namely, formant frequen-
cies, F1, F2, and F3, pitch, intensity, jitter (rap, %),
mean autocorrelation, jitter (local, %), mean NHR,
shimmer (local, %), mean HNR, amplitude mean (Pas-
cal), total energy (Pa2 ⋅ s), mean power (intensity), and
standard deviation in a channel (Pascal) was extracted
with the help of PRAAT software.

The following speech parameters are explained as
follows:

– Formant frequencies: speech producing different
frequency components of the sound signal is called
formant frequencies.

– Pitch: pitch is defined as the ordering of sound
property on a scale that is frequency-related.
Thus, the relative highness or lowness of a tone
is considered pitch.

– Intensity: the power of sound per unit area is
known as intensity. Also defined as the amplitude
of the vibrations that affect loudness.

– Jitter: jitter may be defined as frequency parame-
ters variation from cycle to cycle.
Relative jitter or local jitter is defined as the ratio
between the average differences between consecu-
tive periods, relative to the overall average period.
It is given in percentage:

Jitter (relative) =

1
N−1

N−1

∑
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N

∑
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⋅ 100, (1)

where Ti is extracted F0 period lengths, N is num-
ber of extracted F0 periods.

Jitter (rap): the average absolute difference be-
tween a period and the average of it and its two
neighbors, divided by the average period is defined
as jitter (rap). It is expressed as a percentage:

Jitter (rap) =
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– Shimmer: it may be represented as the parameters
associated with the variation of the amplitude of
the sound wave.
Shimmer relative: the ratio between the average
absolute difference between the amplitudes of con-
secutive periods and the average amplitude is de-
fined as shimmer relative, given in percentage:

Shimer (relative) =

1
N−1

N−1

∑
i=1

∣Ai −Ai+1∣

1
N

N

∑
i=1
Ai

⋅ 100, (3)

where Ai is extracted peak-to-peak amplitude
data, N is number of extracted fundamental fre-
quency periods.

– Mean autocorrelation: the relationship between
the current values of variables and their past va-
lues is measured by autocorrelation. The correla-
tion coefficient is usually denoted ρ. For variables,
x and y, each contains N values:

ρ =
∑
i
(xi − µx)(yi − µy)

Nσxσy
, (4)

where the means of x and y are given by µx and
µy, and their standard deviations are given as σx
and σy.

– Harmonic to noise ratio (HNR): the periodic com-
ponents of speech sound divided by non-periodic
components is represent by harmonic to noise ra-
tio:

HNR = 10 ⋅ log10

ACV (T )

ACV (0) −ACV (T )
, (5)

where the autocorrelation coefficient consisting of
all signal energy at the origin is given by ACV (0),
and the autocorrelation component related to the
fundamental period is given by ACV (T ).

– Noise to harmonic ratio (NHR): hoarseness can be
measured effectively by noise to harmonic ratio:

NHR = 1 − autocorrelation. (6)

– Amplitude mean: it is the amplitude of the vi-
brations that affects loudness which is the size of
oscillations of the vocal folds.
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2.3. Statistical significant analysis

Now, to determine the statistical significance of ex-
tracted features, statistically significant analysis using
Statistical Package for Social Sciences (SPSS) was ap-
plied. Each study has a confidence level of 95% and
a p-value of <0.05 considering being statistically sig-
nificant.

2.4. Classification

Classification is a process in which the class of given
data points is predicted and along with targets, in-
put data are also provided. This type of classification
comes under the category of supervised learning.

Thus, to understand the given input variables re-
lated to the class, a classifier utilises some training
data.

There are several classification algorithms varying
in the nature and application of available data.

In the present study, the following classification al-
gorithms were evaluated:

– KNN with all the kernels,
– SVM with all the kernels,
– decision tree,
– logistic regression,
– linear discriminant.

As these algorithms represent a variety of classifiers’
algorithms, they were chosen (Kuncheva, 2014) and
also some of them had performed well in previous stu-
dies (Caruana, Niculescu-Mizil, 2006).

After all the statistically significant features were
obtained, they were used for the classification of
healthy and affected speech. For this, different super-
vised machine learning techniques were applied, ex-
plained as follows:

– Decision tree: as the name specifies, the classifica-
tion or regression models are built in the form of
a tree structure in the decision tree method. The
method applied an if-then rule set that is both
mutually exclusive and exhaustive for the classifi-
cation. One at a time the training data are used
for learning the rule sequentially.

– SVM: for classification and regression problems,
support vector machines are widely used. Figure 2
represents the SVM in a two-dimensional space.
By constructing a hyperplane, it separates two
classes of a sample to distinguish class members
from non-members (Byun, Lee, 2002). A hyper-
plane is constructed as the decision plane in SVM,
separating the positive (+1) and negative (−1)
classes with the largest margin. The maximum
margin of separation between the two classes is an
optimal hyperplane, where the margin is the sum
of the distances from the hyperplane to the closest
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Fig. 2. Representation of SVM in a two-dimensional space.

data points of each of the two classes. These clos-
est data points are called support vectors (SVs).
The optimal separating hyperplane is represented
by the solid line in Fig. 2.

In a variety of classification and regression theo-
ries, SVM has been successfully used (Sapankevych,
Sankar, 2009):

– Logistic regression: to model the conditional prob-
ability, the logistic function is used by the statisti-
cal model and this is known as logistic regression.
Basically when the target variable’s value is cat-
egorical then this classification algorithm is used.
Thus, most commonly used when the data in ques-
tion has binary output.
The formula is given:

P =
1

1 + e−(a+bX)
, (7)

where P is the probability of 1 (the proportion of
1 s), e is the base of the natural algorithm, a and b
are parameters of the models, and X is the inde-
pendent variable related to the logistic curve.

– Linear discriminant: linear discriminant analysis
is a simple and effective supervised classification
method, used to create machine learning models
(Amaral et al., 2012). It is used for modelling
differences in groups, i.e., separating two or more
classes.

– KNN: KNN method that uses data and classifies
new data points based on similarity measures is
considered to be the simplest method applied for
regression and classification problems (Amaral
et al., 2013). Classification is done by a maximum
vote from its neighbors. KNN was briefly defined
in the previous works, as KNN calculates the dis-
tance between data points. For this, the simple
Euclidean distance formula is generally used:

d(p, q) = d(q, p) =

¿
Á
ÁÀ

n

∑
i=1

(qi − pi)
2, (8)
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where p and q are two points in Euclidean n-space, qi
and pi are Euclidean vectors, starting from the origin
of the space (initial point), n is n-space.

The block diagram and overall proposed strategy
are depicted in Fig. 3.

Fig. 3. Flowchart of the proposed classification approach.

The dataset has been divided into 67% training and
33% testing parts in the case of the holdout method,
while in the case of the multifold cross-validation pro-
cess both 5-fold and 10-fold have been used. After clas-
sification, the healthy speech was distinguished from
the affected speech signals.

2.5. Performance evaluation

2.5.1. Data division protocol

Two groups of the dataset were formed to evaluate
the performance of the proposed classifier models. One
group was used for training purposes while the other
was used for testing, and k-fold cross-validation and
the holdout were applied as two data division proto-
cols. The holdout is the most common method out of
the several existing in which the given dataset has two
groups divided randomly. The train set will be used to
train the data set, and the unseen test data will be used
to test its predictive power. 67% of the samples were
used for training while 33% were used for testing. The
common problem that generally occurs in most of the
models in machine learning is over-fitting. So, to verify
that the model is not overfit, k-fold cross-validation can
be conducted in which random partition of the data set
into k manually exclusive groups each approximately of
the same size is made. For testing, one is kept, while for
training others are used (Refaeilzadeh et al., 2009).
The experiments were conducted with the 5-fold and
10-fold cross-validation.

2.5.2. Performance measures

After training the data, the testing was performed
and the following performance parameters were used
for evaluation. Accuracy, recall, specificity, true posi-
tive rate, sensitivity, false positive rate, precision, and
the area under the receiver operating characteristic
(ROC), and the area under curve (AUC) are some
well known performance criteria (Fawcett, 2006). In
this paper, we have selected accuracy, sensitivity, speci-
ficity, and AUC for ROC curves as they are generally
applied in medical diagnoses:

– Accuracy: accuracy is obtained by dividing all the
correct predictions by the total number of predic-
tions:

Accuracy =
TP +TN

TP +TN + FP + FN
, (9)

where TP – true positive, TN – true negative, FP
– false positive, FN – false negative.

– Sensitivity: sensitivity is calculated by dividing
true positive by true positive plus false negative:

Sensitivity =
TP

TP + FN
. (10)

– Specificity: true negative divided by the sum of
true negative and false positive is defined as speci-
ficity:

Specificity =
TN

TN + FP
. (11)

– Area under curve (AUC): to evaluate the perfor-
mance, a single value metric is used, known as area
under ROC curve, plotted between true positive
rate (TPR) on the y-axis and false positive rate
(FPR) on the x-axis at the various thresholds.

3. Results and discussion

Table 1 presents an independent sample t-test ap-
plied to the database of 15 features. The detailed
statistics of various features were divided into two
classes, i.e., class 0 (healthy) and class 1 (affected) us-
ing SPSS software.

It has been observed that t-values and df -values did
not provide any significant variances but sig (2-tailed)
provided values of mean autocorrelation to be 0.011
and 0.012 when equal variance was assumed and when
it was not assumed, respectively, as presented in Ta-
ble 1. Similarly, mean NHR values were achieved to be
0.009 and 0.010, and mean HNR values were 0.000 for
both the cases, i.e., when equal variance was assumed
and when it was not assumed. This test shows that
only the mean autocorrelation, mean NHR, and mean
HNR were statistically evident in the healthy and af-
fected speech (p-value < 0.05 and confidence interval
of 95%), while the rest features were not statistically
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Table 1. t-test for equality means.

Independent samples test

Speech features Conditions
t-test for equality of means

sig (2-tailed)

F1
Equal variances assumed 0.838
Equal variances not assumed 0.839

F2
Equal variances assumed 0.137
Equal variances not assumed 0.145

F3
Equal variances assumed 0.425
Equal variances not assumed 0.426

Pitch
Equal variances assumed 0.448
Equal variances not assumed 0.451

Intensity
Equal variances assumed 0.973
Equal variances not assumed 0.973

Jitter (local)
Equal variances assumed 0.190
Equal variances not assumed 0.190

Jitter (rap)
Equal variances assumed 0.319
Equal variances not assumed 0.333

Shimmer (local)
Equal variances assumed 0.365
Equal variances not assumed 0.367

mean Auto Correlation
Equal variances assumed 0.011
Equal variances not assumed 0.012

mean NHR
Equal variances assumed 0.009
Equal variances not assumed 0.010

mean HNR
Equal variances assumed 0.000
Equal variances not assumed 0.000

Amplitude mean [Pa]
Equal variances assumed 0.617
Equal variances not assumed 0.621

Total energy [Pa2 ⋅ s] Equal variances assumed 0.672
Equal variances not assumed 0.672

mean Power (intensity) in air [dB]
Equal variances assumed 0.971
Equal variances not assumed 0.971

Standard deviation in the channel [Pa]
Equal variances assumed 0.763
Equal variances not assumed 0.764

significant. Hence these three features were considered
for further classification.

Four performance measures, namely: accuracy, sen-
sitivity, specificity, and AUC were used for evaluation
under three data division protocols, namely: 5-fold,
10-fold, and the holdout. MATLAB software was used
to perform this step.

Table 2 shows the performance of various classifier
models using 5-fold, 10-fold, and the holdout cross-
validation when 15 features were considered. It was
observed that in 5-fold and 10-fold, the decision tree
achieved the highest values of classification accuracy of
90%. The other performance measures, namely, sensi-
tivity and specificity were found to be 90%, and AUC
was 0.82. Whereas logistic regression and linear dis-
criminant achieved the lowest values. Cubic KNN also

shows 90% classification accuracy in the case of the
5-fold method. Also, coarse KNN achieved the least
value of classification accuracy and AUC, i.e., 0.5, but
achieved the highest value for specificity, i.e., 100%,
and zero value for sensitivity.

It was found that in the holdout method, decision
tree, linear discriminant, all the kernels of SVM (except
quadratic SVM), and weighted KNN achieved 100%
sensitivity. Zero specificity was observed in fine Gaus-
sian SVM and fine KNN. Also, zero sensitivity was
again observed in the case of coarse KNN along with
50% of accuracy and 86% of specificity. The decision
tree achieved the highest accuracy of 83%.

Table 3 shows the performance evaluation of three
significant features obtained by statistical analysis us-
ing SPSS, namely: mean NHR, mean HNR, and mean
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Table 2. Performance of various classifiers using 15 features under different data division protocols.

Data division protocol Classification techniques
Performance measures

Accuracy [%] Sensitivity [%] Specificity [%] AUC

5-fold

Decision tree 90 90 90 0.82
Linear discriminant 45 40 50 0.45
Logistic regression 45 40 50 0.45
Linear SVM 75 80 70 0.70
Quadratic SVM 65 70 60 0.67
Cubic SVM 45 40 50 0.68
Fine Gaussian SVM 45 60 30 0.41
Medium Gaussian SVM 80 80 80 0.80
Coarse Gaussian SVM 75 80 70 0.75
Fine KNN 60 60 60 0.60
Medium KNN 85 90 80 0.89
Coarse KNN 50 0 100 0.50
Cosine KNN 85 80 90 0.86
Cubic KNN 90 90 90 0.89
Weighted KNN 75 90 60 0.83

10-fold

Decision tree 90 90 90 0.82
Linear discriminant 55 50 60 0.49
Logistic regression 40 50 30 0.42
Linear SVM 65 70 60 0.66
Quadratic SVM 75 90 60 0.82
Cubic SVM 60 60 60 0.67
Fine Gaussian SVM 50 80 20 0.41
Medium Gaussian SVM 80 80 80 0.81
Coarse Gaussian SVM 80 80 80 0.49
Fine KNN 55 60 50 0.55
Medium KNN 70 90 50 0.84
Coarse KNN 50 0 100 0.50
Cosine KNN 80 80 80 0.84
Cubic KNN 70 80 60 0.78
Weighted KNN 75 90 60 0.81

Holdout

Decision tree 83 100 71 0.83
Linear discriminant 67 67 75 0.67
Logistic regression 67 67 75 0.67
Linear SVM 67 100 60 0.56
Quadratic SVM 50 67 67 0.56
Cubic SVM 67 100 60 0.78
Fine Gaussian SVM 50 100 0 0.67
Medium Gaussian SVM 67 100 60 0.89
Coarse Gaussian SVM 67 100 60 0.44
Fine KNN 50 100 0 0.50
Medium KNN 67 67 75 0.67
Coarse KNN 50 0 86 0.50
Cosine KNN 50 67 67 0.56
Cubic KNN 50 33 80 0.61
Weighted KNN 67 100 60 0.56
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Table 3. Performance of various classifiers using 3 significant features under different data division protocols.

Data division protocol Classification techniques
Performance measures

Accuracy [%] Sensitivity [%] Specificity [%] AUC

5-fold

Decision tree 90 90 90 0.82
Linear discriminant 75 70 80 0.76
Logistic regression 75 70 80 0.69
Linear SVM 85 90 80 0.87
Quadratic SVM 80 80 80 0.84
Cubic SVM 70 70 70 0.67
Fine Gaussian SVM 80 70 90 0.89
Medium Gaussian SVM 80 80 80 0.85
Coarse Gaussian SVM 85 90 80 0.85
Fine KNN 85 90 80 0.85
Medium KNN 85 100 80 0.79
Coarse KNN 50 0 100 0.50
Cosine KNN 85 90 80 0.84
Cubic KNN 85 90 80 0.79
Weighted KNN 85 90 80 0.85

10-fold

Decision tree 90 90 90 0.82
Linear discriminant 80 80 80 0.92
Logistic regression 75 70 80 0.81
Linear SVM 85 90 80 0.86
Quadratic SVM 85 90 80 0.81
Cubic SVM 70 70 70 0.63
Fine Gaussian SVM 75 70 80 0.87
Medium Gaussian SVM 80 80 80 0.84
Coarse Gaussian SVM 85 90 80 0.85
Fine KNN 80 80 80 0.80
Medium KNN 85 90 80 0.85
Coarse KNN 50 0 100 0.50
Cosine KNN 85 90 80 0.90
Cubic KNN 85 90 80 0.82
Weighted KNN 85 90 80 0.84

Holdout

Decision tree 100 100 100 1.00
Linear discriminant 80 67 100 1.00
Logistic regression 80 67 100 0.83
Linear SVM 100 100 100 1.00
Quadratic SVM 100 100 100 1.00
Cubic SVM 80 100 50 0.50
Fine Gaussian SVM 80 67 100 0.83
Medium Gaussian SVM 100 100 100 1.00
Coarse Gaussian SVM 80 100 67 1.00
Fine KNN 80 67 100 0.83
Medium KNN 60 33 100 1.00
Coarse KNN 40 0 100 0.50
Cosine KNN 100 100 100 1.00
Cubic KNN 60 33 100 1.00
Weighted KNN 80 67 100 1.00
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autocorrelation that showed significant variance. The
same procedure was adopted and the result was shown.

Table 3 summarises the performance measures of
various classifier methods when only three significant
features were considered using different data division
protocols. It was found that 90% of classification accu-
racy was shown by a decision tree in 5-fold as well as
10-fold cross-validation. The other performance mea-
sures, namely, sensitivity and specificity were 90%, and
AUC was 0.82. Again, coarse KNN showed the small-
est value of classification accuracy, i.e., 50%, and AUC
to be 0.5 but gave the highest value for specificity, i.e.,
100%, and zero value for sensitivity.

Whereas in the holdout method it was found that
decision tree, linear SVM, quadratic SVM, medium
Gaussian SVM, and cosine KNN have shown classifi-
cation accuracy, sensitivity, and specificity to be 100%,
and AUC to be 1. Specificity was found to be 100% in
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Fig. 4. ROC plots for various classifiers: a) decision tree (hold and method); b) cosine KNN (10-fold);
c) cubic KNN (5-fold).

almost all the classifiers except cubic SVM and coarse
Gaussian SVM. Coarse KNN achieved zero sensitivity,
40% accuracy, 0.5 AUC along with 100% specificity.

On analysing Tables 2 and 3, it was observed that
sensitivity, accuracy, specificity, and AUC were found
to be high in the case of the decision tree as com-
pared to the rest of the classifiers. Similarly, the hold-
out method was found to be the best performer out of
all the three data division protocols considering both
15 features and three significant features.

It was also observed that, out of all the kernels of
KNNs, coarse KNN, and out of all the kernels of SVMs,
fine Gaussian SVM was giving poor performance throu-
ghout the experiment.

The diagnostic capability of classifiers and features
can be determined using TPR and TNR. A plot bet-
ween TPR and TNR is called receiver operating cha-
racteristics (ROC). Figure 4 shows the result of the
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best three ROC analyses. It was observed that the AUC
of 1 was obtained by the holdout method for the deci-
sion tree and the AUC of 0.90 and 0.89 were achieved
by k-fold methods for KNN classifiers and verified in
the results of Tables 2 and 3.

The best three ROC curves observed during the
analysis were represented in Fig. 4.

4. Conclusion

It has been observed that on comparing different
classifiers for all features, accuracy, specificity, sensi-
tivity, and area under the curve performance measures
for 5-fold, 10-fold cross-validation, and the holdout
method, the decision tree achieved 90–100% classifi-
cation accuracy. Further, SVMs and KNNs achieved
the lowest accuracy between 40 and 70%. The holdout
method had given a promising result.

Similarly, on comparing the accuracy with three
significant features almost the same result was shown
by both the 5-fold and 10-fold cross-validation meth-
ods for all the various classifiers. For the decision tree,
it was again 90%, for SVM and KNN it was found to be
90–100%. But for logistic regression and linear discrim-
inant, the performance improved to 80–90%. Again,
the holdout method had given almost perfect results.

Thus, it is concluded that using different machine
learning techniques, a comparative analysis of classi-
fiers shows that the decision tree was effective as clas-
sification accuracy achieved 90% along with the hold-
out data division protocol for classification of speech
of healthy and affected individuals.
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