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In this paper, we propose using a propeller modulation on the transmitted signal (called sonar micro-
Doppler) and different support vector machine (SVM) kernels for automatic recognition of moving sonar targets.
In general, the main challenge for researchers and craftsmen working in the field of sonar target recognition
is the lack of access to a valid and comprehensive database. Therefore, using a comprehensive mathematical
model to simulate the signal received from the target can respond to this challenge. The mathematical model
used in this paper simulates the return signal of moving sonar targets well. The resulting signals have unique
properties and are known as frequency signatures. However, to reduce the complexity of the model, the 128-
point fast Fourier transform (FFT) is used. The selected SVM classification is the most popular machine
learning algorithm with three main kernel functions: RBF kernel, linear kernel, and polynomial kernel tested.
The accuracy of correctly recognizing targets for different signal-to-noise ratios (SNR) and different viewing
angles was assessed. Accuracy detection of targets for different SNRs (−20, −15, −10, −5, 0, 5, 10, 15, 20) and
different viewing angles (10, 20, 30, 40, 50, 60, 70, 80) is evaluated. For a more fair comparison, multilayer
perceptron neural network with two back-propagation (MLP-BP) training methods and gray wolf optimization
(MLP-GWO) algorithm were used. But unfortunately, considering the number of classes, its performance was
not satisfactory. The results showed that the RBF kernel is more capable for high SNRs (SNR = 20, viewing
angle = 10) with an accuracy of 98.528%.
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1. Introduction

Due to the increasing use of automatic target recog-
nition systems in various military and commercial in-
dustries, the issue of classification and automatic target
recognition has become one of the favorite interests
of craftsmen and activists in this field (Ehrman,
Lanterman, 2020; Smith et al., 2007). The most im-
portant advantage of using these systems is eliminat-
ing the human role from the target identification and
detection processes (Bhanu, 1986). One of the most
important reasons for replacing these systems with sys-
tems controlled by human operators is a slow human
reaction, low reliability, and high dependence on men-
tal conditions (Zhou et al., 2022). The main element

of many defense and military missions in the sea is the
automatic detection and identification of sonar targets
(Liu et al., 2019). The complex physical properties
of sonar targets and the heterogeneous conditions of
sound propagation at sea have led to many features
being extracted to identify and detect sonar targets
(Khishe, Safari, 2019). Obviously, with increasing
the dimensions of the feature vector, the dimensions
of the data also increase (Saffari et al., 2022a).

The first challenge that sonar researchers face is ob-
taining reliable datasets (Dong et al., 2021; Glover,
Laguna, 2008). Creating a sonar dataset generates
high costs (Chen et al., 2022; Waite, 2002). Ac-
cording to the research, the sonar datasets are usu-
ally acquired by performing a sonar collection scenario
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in a real environment (Kaveh et al., 2019; Qiao et al.,
2021; Saffari et al., 2022b; Wu et al., 2021). Another
solution for collecting sonar datasets is to use a cavi-
tation tunnel (Khishe, Mosavi, 2019; Khishe, Mo-
hammadi, 2019; Khishe, Safari, 2019). The most
important disadvantage of using these methods is the
presence of noise in the environment. In other words,
the dataset is reliable and can be used for practical
systems that perform well even in high-noise environ-
ments. One of the main motivations of this paper is
to provide a practical model for simulating the emit-
ted signals from sonar targets with the ability to ad-
just the SNR value and the target angle of view of the
sonar receiver.

The next step after preparing the data is extracting
the signal’s attribute. All submarines have propellers
for propulsion. When acoustic signals are propagated
toward the target (floating propeller), the propeller’s
rotation reflects the transmitted signal (Clemente
et al., 2013). It can be said that this signal is unique;
in other words, it is known as the corresponding float-
ing frequency signature (Chen, Li, 2022; Tahmoush,
2015). The phenomenon of modulation of rotating
parts (propeller) is known as sonar micro-Doppler.
This phenomenon, called radar micro-Doppler, is wi-
dely used to classify aerial targets such as heli-
copters (Anderson, 2004; Mamgain et al., 2018) and
ground targets such as tanks (Foued et al., 2017;
Molchanov et al., 2013). Unfortunately, we have not
found any researches on the classification of sonar tar-
gets and in particular naval vessels using sonar micro-
Doppler. Therefore, one of the main goals of this re-
search is to investigate the effect of using this method
in the automatic recognition of sonar targets for prac-
tical application.

The next step after feature extraction is the classi-
fier design. There are two general approaches to clas-
sifying data (Koturwar et al., 2015). The first meth-
od is to use definitive computational methods, which
have very high reliability and definitely achieve the
best results, but the disadvantage of these methods
is clearly seen when the size of the data increases
(such as sonar dataset). Then the spatial and tem-
poral complexity increases (Lakhwani, 2020). There-
fore, this method does not work well for sonar data
(Cai et al., 2021). The second approach is to use ar-
tificial intelligence (Jin et al., 2020). The main sub-
set of artificial intelligence is machine learning (Liu
et al., 2019; Sclavounos, Ma, 2018). One of the most
popular supervised learning algorithms is support vec-
tor machine (SVM) (Uddin et al., 2019). SVM has
a relatively simple training phase and, unlike neural
networks, does not fall into local maxima (Xu et al.,
2019). In addition, it works relatively well for high-
dimensional data and, despite providing the optimal
answer, has less time and space complexity than spe-
cific methods (Berthold et al., 2018; Gaye et al.,

2021). According to the explanations given in this pa-
per, sonar micro-Doppler and SVM will be used for the
automatic recognition of sonar targets. In order to have
a fair and comprehensive comparison, considering that
in references (Saffari et al., 2022c; 2022d) artificial
neural network has been used to classify sonar targets,
in this article (Kazimierski, Zaniewicz, 2021), two
types of MLP-NNs with two types of BP and GWO
training are used (Wawrzyniak, Stateczny, 2017;
Zhang et al., 2020).

The paper is organized in such a way that the sec-
ond part explains SVM. In the third section, the micro-
Doppler phenomenon is introduced. The fourth part
introduces the automatic sonar detection system using
sonar micro-Doppler. In the fifth part, the simulation
results are presented. The sixth part is the conclusion.

2. Support vector machines

SVMs are supervised learning algorithms and a sub-
set of heuristic algorithms (Kavzoglu, Colkesen,
2009). In SVM, hyperplanes usually separate the two
classes and the training data set of a hyperplane are
determined. The generalizability can then be verified
using the test dataset. SVMs have been able to per-
form powerfully in many applications (Uddin et al.,
2019; Xu et al., 2019).

To classify a data set with dimensional D, a D-1
hyperplane is required. Figure 1 shows the different hy-
perplanes separating two different classes. However,
only one optimal hyperplane divides data into two
classes with the longest distance (Fig. 2). All points
that limit the width of the margin are called sup-
port vectors. SVMs in binary class mode seek to find
a hyperplane so that the distance between the mem-
bers of each class to the optimal hyperplane is maxi-
mum. For example, it is assumed that a set of train-
ing data with a D sample is represented by {xi, yi}
and (I = 1,2, ...,D), where x ∈ RD is a D-dimensional
space and y ∈ {−1,+1} is a class label (Kavzoglu,
Colkesen, 2009). The optimal hyperplane perfor-
mance is to maximize margins. This hyperplane is de-
fined as w ⋅ xi + b = 0, where w determines the orienta-
tion of the hyperplane in space, x is the points on the
hyperplane, b is the bias of the distance of hyperplane

Fig. 1. Linear separation of data by different hyperplanes.
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Fig. 2. Optimum hyperplane and support vectors
for linearly separable data.

from the origin (Fig. 2). Equations (1) and (2) are the
equations of a separating hyperplane for the separable
state of two classes:

w ⋅ xi + b ≥ +1 for all y = +1, (1)

w ⋅ xi + b ≤ −1 for all y = −1. (2)

The aforementioned inequalities can be summed up
in relation (3):

yi(w ⋅ xi + b) − 1 ≥ 0. (3)

Support vectors are all points that exist in two par-
allel hyperplanes with the optimal hyperplane and are
defined by the function (w ⋅ xi + b) ± 1 = 0. If there is
a hyperplane and Eq. (3) is established, the classes
are separated linearly. Therefore, the margin between
these aircrafts is 2/∥w∥, distance to the nearest point.
Minimize ∥w∥2 with the limit of Eq. (3) found the opti-
mal hyperplane. Therefore, the following optimization
problem must be solved to calculate the optimal air-
craft hyperplane:

min [
1

2
∥w∥

2
] . (4)

Of course subject to restrictions:

w ⋅ xi + b ≥ 1 and y ∈ {−1,+1} . (5)

Figure 3 shows the classification of separable non-
linear data. For such data, it is certainly not possible to

Fig. 3. Nonlinear separation of data.

classify data in two classes linearly. Therefore, in such
cases where it is not possible to use a hyperplane with
linear equations on the data, nonlinear decision levels
should be used. Therefore, ξ slack variables replace the
optimization problem (Fig. 4):

min [
∥w∥2

2
+C

r

∑
i=1

ξi] ,

considering the following limitations:

yi(w ⋅ xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1,2, ...,N, (6)

where C is a constant parameter and balances between
two criteria, error minimization and margin maximiza-
tion. Slack variables ξi show the distance of classified
points from the optimal hyperplane cloud. If it is not
possible to use a hyperplane with linear equations, it
may be mapped into a high-dimensional space (  ِ D)

The simplest kernel function is a linear kernel. inner product of 𝑥𝑖 ∙ 𝑥𝑗 and the constant

coefficient C represents the linear kernel. The relation (8) represents the linear kernel function. 

𝐾(𝑋𝑖 ∙ 𝑋𝑗)= 𝑋𝑖 ∙ 𝑋𝑗 (8)

 Polynomial kernel

D)
through some nonlinear mapping functions (∅).

Hyperplanes 
w · x1 +  b =  ±1

Optimum hyperplane 
w · x1 +  b =  0

X

Y
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b

ξ

Fig. 4. Introducing slack variable for nonlinear data
and generalization of the solution.

As shown in Fig. 5, the point x can be represented
as ∅(x) in the feature space. Complex computations
(∅(x) ⋅ ∅(xi)) are reduced using a kernel function.
Therefore, the decision function for classification is as
follows:

f(x) = sign(
z

∑
i

aiyi ⋅K (X,Xi) + b) , (7)

where each z of the training case, there are Xi vectors
that indicate the spectral response, aiyi are Lagrange
multipliers, andK (X,Xi) is the kernel function, ai de-
pends on parameter C and its value is determined by it.

Kernel functions can be classified into four groups.
In the following, 4 groups of SVM kernels are pre-
sented:

– linear kernel: the simplest kernel function is a lin-
ear kernel. Inner product of Xi ⋅Xj and the con-
stant coefficient C represent the linear kernel.
Equation (8) represents the linear kernel function:

K (Xi,Xj) =Xi ⋅Xj ; (8)
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Fig. 5. Mapping of the data sets to the high-dimensional
space with a kernel function.

– polynomial kernel: data separation is not possible
linearly when useful features are not extracted or
the amount of noise is high. To solve this problem,
data must be mapped in different feature spaces
so that they can be separated linearly. One of the
kernel functions used in nonlinear separation is
the polynomial kernel:

K (Xi,Xj) = (γXi ⋅Xj +C)
d
, (9)

where C ≥ 0 represents a free parameter in the
polynomial that trades off the impact of higher-
order versus lower order terms;

– RBF kernel: the Gaussian kernel or RBF kernel is
shown in Eq. (10):

KRBF (Xi,Xj) = exp (−γ ∣Xi ⋅Xj ∣
2
) , (10)

where γ is a parameter that used to set the spread
of the kernel.

In this paper, the One-vs-All (OVA) method is used
for classification.

3. Micro-Doppler

Micro-motions, such as vibrations or rotations of an
object or structure on an object (Saffari et al., 2022b;

Yang et al., 2006), cause changes in the extra frequen-
cies on the signal, leading to sidebands on the object’s
Doppler frequency (Saffari et al., 2022b; Tahmoush,
2015). This phenomenon is called sonar micro-Doppler.
Recent research has shown that micro-Doppler tech-
niques can identify or classify a target with its micro-
Doppler properties. To explore the micro-Doppler pro-
perties of an object, time-frequency analysis is used to
provide information about these local properties over
time and frequency (Smith et al., 2007). In most cases,
the micro motion has a unique signature object. Micro-
motion is created directly by the dynamic motion pro-
perties of an object, and the micro-Doppler proper-
ties are a direct reflection of micro-motion. Therefore,
a micro-Doppler signature can be used to classify an
object with unique motion characteristics (Yang et al.,
2006).

3.1. Theory

The analytic signal of a pure tone s(t) is defined
as the signal ŝ (t), such that s(t) 1/4Real{ŝ (t)}, and is
generally expressed in a polar format as (Chen et al.,
2014):

ŝ (t) = ej2πf0t. (11)

A target moving at a constant radial velocity u has the
following Doppler shift relative to the sonar (or radar)
system:

fD = 2f0
v

Cs
, (12)

where f0 is the carrier frequency of the active sensor
and Cs is the speed of propagation of sound in water
(or air). If the target has a number M parts and each
part moves at a velocity component vi(t), the Doppler
shift is the sum of each single Doppler shift:

fD(t) =
M

∑
i=1

2f0
vi(t)

Cs
. (13)

For such a target, the analytical signal of the echo re-
turn is as follows:

ŝR (t) = ej2πf0t ⋅ ej2πfD(t)t. (14)

Mixing the received signal ŝR (t) with the conjugate of
the transmitted signal ŝ (t) is as follows:

ŝR (t) ⋅ ŝ (t)
∗
= ej2πfD(t)t. (15)

The aforementioned relation makes it possible to ex-
tract the Doppler signature from the data. This is the
signal component that contains the micro-Doppler in-
formation on the target, which can be used for target
recognition and classification.
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4. Design of automatic sonar target recognition
system using sonar micro-Doppler signature

Like any other pattern recognition system, design-
ing an automatic sonar target recognition system has
the following steps.

4.1. Data acquisition

One of the severe challenges for sonar research is the
lack of reliable data. On the other hand, such things as
the complex and heterogeneous environment of the sea,
as well as the presence of unwanted signals in the
sea (noise, clutter, and resonance) are the motivation
for preparing a simulated data set using the mathema-
tical model of the return signal of the rotation of the
propeller. The targets tested are according to Table 1.

Table 1. Information on reference targets.

Number Type Model
1 Container ship Emma Maersk
2 Container ship MV Barzan
3 Container ship MSC Oscar
4 Oil tanker Front Century
5 Oil tanker Seawise Giant
6 Passenger ship Motorboat
7 Passenger ship Oasis of the seas
8 Passenger ship Leading Atlas
9 Cruise Harmony of the Seas

10 Tugboat ASD TUG 2913
11 Tugboat Chinese oceanic tug boat
12 Research vessel Nathaniel B. Palmer

13 Autonomous
underwater vehicle

Tech 475 AUV

14 Military Torpedo No. 1
15 Military Torpedo No. 2
16 Military Logistic Support
17 Military Littoral Combat Ship No. 1
18 Military Littoral Combat Ship No. 2
19 Military Destroyer No. 1
20 Military Destroyer No. 2
21 Military Frigates
22 Military Aircraft Carrier
23 Military light submarine
24 Military semi-heavy submarine
25 Military heavy submarine

Different types of vessels were used in selecting
the samples, including container vessels, tankers, pas-
sengers, cruises, autonomous underwater vehicles, tug-
boats, different classes of navy ships, submarines, and
military torpedoes to evaluate the performance of the
proposed model.

4.2. Extracting feature vectors

To generate a data set of return signals from the
rotating part (propeller) of sonar targets, which is dis-
cussed in Subsec. 4.1, a suitable mathematical model
(Eq. (16)) was used to simulate the return signal from
the propeller:

sr(t) =
N−1

∑
n=0

Ar(L2−L1)e
j(β)

⋅ sinc(
4π

λ

(L2−L1)

2
cos (θ) sin(ωrt+

2πn

N
)),

β = ωct −
4π

λ

⋅ (R + vt +
L1+L2

2
cos (θ) sin(ωrt+

2πn

N
)).

(16)

The parameters used in Eq. (16) are described in
Table 2.

Table 2. Relationship parameters (16).

Parameters Descriptions
sr(t) Return signal in time
N Number of blades
Ar A normalizing factor
L1 The distance from the beginning of the

blades to the center of rotation
L2 The distance from the end of the blades

to the center of rotation
ωc Radian frequency of the transmitted sig-

nal
λ The wavelength of the transmitted signal
R The distance from the center of rotation

to the sonar receiver
v Target speed relative to sonar receiver
θ Target viewing angle
ωr Radian frequency of rotation

Figure 6 shows how to obtain a return signal using
Eq. (16).

Ө

ωr

Sonar transmitter and receiver

N = 3

L 2L1

R

Fig. 6. How to obtain a return signal using Eq. (16).

The feature extracted from these signals is the Com-
ponents 128-point from FFT. The structure of the fea-
ture vector expresses the target in the viewing an-
gle (θ), and the SNR specified as follow:
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feature vector = [f1, f2, f3, ...,

f126, f127, f128](SNR,θ), (17)

where each of its components corresponds to a point of
128-point FFT in the angle of view and the specified
SNR.

The reference classes correspond to the twenty-five
objectives of Table 1. Samples of each class include
feature vectors in nine SNRs (20, 15, 10, 5, 0, −5, −10,
−15, and −20 dB) and eight viewing angles (10, 20, 30,
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[Fig. 7.]

40, 50, 60, 70, and 80 degrees). Each class contains
30 samples in SNR and specified viewing angles. Thus,
there are 2160 samples in each class (corresponding to
each target) for all SNRs and viewing angles. In total,
the dataset contains 54,000 samples.

Figure 7 shows samples of simulated acoustic sig-
nals and frequency signatures from sonar micro-Dop-
pler at different SNRs for target No. 8.

Figure 8 shows the effect of the viewing angles on
the return signal at SNR = −20 for target No. 8.
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Fig. 7. Samples of simulated acoustic signals and frequency signatures of sonar micro-Doppler in different SNRs
for target No. 8.
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Fig. 8. Effect of the viewing angles on the return signal at SNR = −20 for target No. 8.

4.3. How to decide on a sonar target

This paper uses the three main kernel functions
RBF, linear, and polynomial SVM classifier.

4.4. How to add noise

Noise mixed with the return signal from the target
is assumed to be white Gaussian noise (Zhong et al.,
2022), and its random samples are simulated using uni-
form random variables. The power of the noise changes
with the change of its variance. Different SNR ratios
are performed by separately changing the noise power
for each target. The signal strength for each target is
its corresponding power at the same viewing angle.

5. Simulation results

In this section, the results obtained from the simu-
lated system are analyzed. The results of the classifica-

tion are the average of 15 program executions for each
of the experiments. Each experiment assumes that the
target angle of view and the SNR ratio is known. Due
to the random nature of noise, in order to get the refer-
ence information in each SNR ratio as comprehensive
as possible, the operation of generating random noise
samples is performed 30 times. 70% of the samples are
used to form a reference class related to a specific tar-
get and the other 30% are used as experimental data
(unknown targets).

In general, according to the simulation results, it
can be seen that in the SVM classifier, the RBF ker-
nel works better for optimal conditions in which the
noise level is lower. As the amount of noise increases,
the linear kernel provides better results. Therefore,
RBF, linear, and polynomial kernels performed better
in terms of classification accuracy. Table 3 shows the
results of the classification with the classifiers SVM-
RBF, SVM-linear, and SVM-polynomial.
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Table 3. The results of the classification with the classifiers SVM-RBF, SVM-linear, and SVM-polynomial.

SNR [dB] Kernel Angle 10○ Angle 20○ Angle 30○ Angle 40○ Angle 50○ Angle 60○ Angle 70○ Angle 80○

linear 93.008 92.016 91.696 90.160 90.192 88.672 86.960 81.520
20 polynomial 94.432 94.800 94.096 92.736 92.480 91.440 84.592 77.872

RBF 98.272 97.920 98.416 97.920 98.352 97.760 97.936 74.288
linear 92.688 92.032 91.088 90.272 91.136 87.776 84.864 79.056

15 polynomial 92.016 92.096 91.840 90.672 90.848 88.864 80.480 70.656
RBF 98.240 97.776 98.528 97.840 98.176 95.552 71.808 52.720
linear 92.144 91.600 89.088 89.088 88.640 86.720 81.968 75.024

10 polynomial 87.824 87.600 86.384 85.536 84.048 82.416 74.432 64.144
RBF 91.504 89.328 83.104 86.992 73.536 62.240 50.112 38.672
linear 90.032 89.760 87.136 88.832 86.992 82.688 75.664 75.488

5 polynomial 81.904 82.176 79.136 81.264 78.448 71.328 63.200 58.096
RBF 56.464 57.280 54.512 57.392 51.232 42.944 34.576 33.168
linear 82.912 83.936 83.984 80.464 81.056 77.072 74.208 64.256

0 polynomial 70.240 71.216 71.248 69.488 70.912 64.640 59.488 53.136
RBF 46.128 31.776 48.480 42.192 40.912 37.184 30.560 31.440
linear 83.200 82.624 78.976 78.336 76.976 74.800 74.448 66.224

−5 polynomial 68.576 67.056 67.488 63.280 63.280 60.304 58.656 53.232
RBF 38.720 34.720 39.312 38.720 35.424 43.904 38.960 44.992
linear 70.864 69.520 67.584 65.680 69.488 70.944 66.816 68.560

−10 polynomial 53.776 52.384 50.080 51.040 50.816 50.784 51.136 48.656
RBF 26.512 30.016 22.576 29.696 34.896 24.464 32.256 27.952
linear 68.784 69.376 69.296 70.016 63.904 63.024 66.464 58.672

−15 polynomial 46.544 49.920 47.360 48.752 44.736 45.840 49.120 46.144
RBF 25.808 24.544 28.496 30.992 22.208 24.832 15.104 12.688
linear 70.112 73.568 69.312 67.840 67.440 66.752 64.576 62.304

−20 polynomial 48.160 45.056 48.656 46.800 45.072 48.128 52.208 49.568
RBF 21.712 23.200 31.632 28.000 18.656 34.736 20.592 33.600

However, in terms of use in real environment with
a lot of noise, linear, polynomial, and RBF kernels per-
form better.

Figure 9 shows the correct recognition rate for dif-
ferent SNR ratios at a 10○ viewing angle for the three
SVM classifier kernels, and Fig. 10 shows the correct

Angle = 10°

Signal-to-noise ratio [dB]

So
re
of
re
co
gn
iti
on

[%
]

Angle [°]

So
re
of
re
co
gn
iti
on

[%
]

SVM-RBF
SVM-Polynomial
SVM-Linear

SVM-RBF
SVM-Polynomial
SVM-Linear

SNR = +20 dB

Fig. 9. Comparison of correct recognition rate for differ-
ent SNR ratios at a 10○ viewing angle for the three SVM

classifier kernels.
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Fig. 10. Comparison of correct recognition rate for different
viewing angles at SNR = 20 dB for the three SVM classifier

kernels.

recognition rate for different viewing angles at SNR
= 20 dB for the three SVM classifier kernels.

For a more comprehensive comparison, Table 4
presents the target recognition results using MLP-BP
and MLP-GWO.
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Table 4. The results of the classification with the classifiers MLP-BP and MLP-GWO.

SNR [dB] Classifier Angle 10○ Angle 20○ Angle 30○ Angle 40○ Angle 50○ Angle 60○ Angle 70○ Angle 80○

20
MLP-BP 13.60 19.60 20.00 15.10 16.80 18.39 14.43 11.22

MLP-GWO 17.13 17.00 16.26 17.00 17.00 17.00 13.03 13.01

15
MLP-BP 14.39 11.66 13.60 8.79 11.61 12.40 7.19 5.6

MLP-GWO 17.18 17.16 17.00 17.00 17.14 17.01 13.57 13.02

10
MLP-BP 11.51 11.62 10.41 9.94 8.42 7.12 8.82 7.83

MLP-GWO 17.17 17.05 17.01 17.04 17.02 17.01 13.00 13.00

5
MLP-BP 8.41 9.34 4.00 8.46 10.81 9.63 6.47 7.19

MLP-GWO 17.16 17.55 17.01 17.27 17.02 17.00 13.03 12.87

0
MLP-BP 7.19 7.87 5.20 7.19 6.80 4.39 4.39 4.80

MLP-GWO 17.16 17.01 17.27 17.26 17.01 17.00 13.00 12.34

−5
MLP-BP 3.21 4.00 5.62 6.40 6.00 4.00 5.20 5.20

MLP-GWO 17.14 17.40 17.40 17.01 17.40 17.02 13.01 13.00

−10
MLP-BP 3.60 2.80 4.00 7.60 6.00 4.00 2.41 4.82

MLP-GWO 17.13 17.14 17.20 17.01 17.06 17.03 16.35 16.07

−15
MLP-BP 3.15 4.39 2.82 4.00 3.20 4.00 6.89 3.20

MLP-GWO 16.07 16.80 15.62 16.71 14.80 14.75 14.68 13.80

−20
MLP-BP 3.20 4.12 5.69 3.20 5.61 5.54 3.11 3.59

MLP-GWO 15.00 15.87 15.28 13.94 13.96 13.67 13.69 12.94

As shown in Table 4, MLP-BP has shown poor per-
formance. The results for MLP-GWO are better than
MLP-BP. However, in both classifiers, the results are
not satisfactory. One of the reasons for the poor per-
formance of neural networks is the number of classes.
Obviously, increasing the number of classes causes an
increase in the probability of errors and, as a result,
a decrease in performance.

6. Conclusion

This paper uses a new method of using sonar micro-
Doppler to automatically detect moving sonar targets.
In other words, when the signal hits the propeller,
each propeller has a unique effect on the signal ac-
cording to its own metrics. Then, by transferring the
signal to the frequency domain, its useful properties
were extracted. Movable sonar targets were classified
using linear kernels, RBF and polynomial SVM classi-
fiers. The simulation results showed that the RBF ker-
nel is significantly suitable for positive signal-to-noise
ratios. For values with more noise, the linear kernel
has different and significant performance compared to
the other two kernels. Using GWO algorithm for neu-
ral network training improved the performance of the
classifier compared to using BP for training, but over-
all, the result of using neural networks was not satis-
factory. Therefore, the approach of using neural net-
work is not suitable for this problem. However, due to
the new idea of using sonar micro-Doppler to classify
moving targets, the need to consider other machine
learning methods and artificial intelligence techniques

to improve the classifier performance in all SNRs and
viewing angles is strongly noticeable.

Some of the topics that will be explored for future
research are as follows:

– improving the performance of SVM classifiers us-
ing metaheuristic algorithms;

– use other machine learning algorithms to improve
accuracy;

– use of hybrid classifiers to achieve more accurate
accuracy for sensitive applications;

– use deep learning to improve classifier perfor-
mance.
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