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The article extended the idea of active vibration reduction of beams with symmetric modes to beams
with asymmetric modes. In the case of symmetric modes, the symmetric PZT (s-PZT) was used, and the
optimization of the problem led to the location of the s-PZT centre at the point with the greatest beam
curvature. In the latter case, the asymmetric modes that occur due to the addition of the point mass cause
an asymmetric distribution of the bending moment and transversal displacement of a beam. In this case,
the optimal approach to the active vibration reduction requires both new asymmetric PZT (a-PZT) and its
new particular distribution on the beam. It has been mathematically determined that the a-PZT asymmetry
point (a-point), ought to be placed at the point of maximum beam bending moment. The a-PZT asymmetry was
found mathematically by minimizing the amplitude of the vibrations. As a result, it was possible to formulate
the criterion of the maximum bending moment of the beam. The numerical calculations confirmed theoretical
considerations. So, it was shown that in the case of asymmetric vibrations, the a-PZTs reduced vibrations more
efficiently than the s-PZT.
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1. Introduction

The active reduction of the structure vibration is
realized with piezoelectric actuators (Hansen, Sny-
der, 1997; Fuller et al., 1997). The efficiency of re-
duction depends on two main parameters. First of
them is the distribution of PZT on the structure. The
second one is the geometric and physical quantities
of the PZT. To obtain the best vibration reduction
efficiency, both parameters should be optimized. Up
to now, many articles based on different ideas have
considered these topics, but all were dealt with sym-
metrical PZTs and symmetrical modes. There are two
main approaches to these problems, i.e. exact and nu-
merical approaches.

Exact analytical approach is used in (Barboni
et al., 2000) to find an optimal placement of symmet-
rical PZT on the flexural beam with various boundary
conditions. The review of mathematical modelling of

actively controlled piezo smart structures is presented
by Gupta et al. (2011). This problem was also solved
in (Brański, Lipiński, 2011; Brański, 2011; 2013)
using s-PZTs; the position of the internal activity point
was in the centre of s-PZT. It was shown that the
most effective location of s-PZT occurred in subdo-
mains with the largest curvatures and this location was
called optimal. The criterion was named as the crite-
rion of maximal curvature. The optimal distribution of
s-PZTs was deduced on the basis of heuristic premises
and strictly confirmed theoretically. The above crite-
rion which is right for a symmetrical structure, is not
valid for asymmetrical structures.

As part of the numerical approach, Hu and Li
(2018) used genetic algorithm to improve the perfor-
mance of multi-mode vibration control in cylindrical
shells; the position, size and rotation angle of the ac-
tuator were chosen as the optimization parameters.
Zhang et al. (2018) investigated the optimization,
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as a part of topology theory, of the electrode cover-
age over actuators attached to a thin-shell structure
to reduce energy consumption of the system. Yassin
et al. (2018) presented a hybrid optimization approach
based on a genetic algorithm, sequential quadratic pro-
gramming and particle swarm optimization combined
with a projected gradient techniques; the location of
the actuator centre and shape orientation were chosen
as optimization variables. Zorić et al. (2019) studied
optimization of position, size and orientation of the
actuators based on the Gramian controllability matrix
using particle swarm optimized self-tuning fuzzy logic
controller. Brand and Cole (2020) proposed optimal
actuator placement for controlling flexural vibration
of a thin rotating ring using cost function based on
time-weighted controllability Gramian. There are also
articles that numerically confirm the relationship be-
tween the beam bending moment and the optimal lo-
cation of the PZT (Augustyn et al., 2014; Fawade
et al., 2016). Fawade et al. (2016) investigated the lo-
cation of the PZT in three different places along the
length of the cantilever beam, the best result was ob-
tained when the actuator was closest to the fixed edge,
i.e. in the location where the beam bending moment
reaches maximum for the given boundary conditions.

In all the articles mentioned above, both in the
strict and numerical approach, the influence of PZT
asymmetry and its position on the effectiveness of the
vibration reduction was not considered. Neither pre-
cisely, mathematically justified, optimal these values
were indicated. Furthermore, numerical approaches do
not have an exact theory. Therefore, it is not possible
to precisely point out the geometrical and physical
parameters of PZT and its location on the structure
based on the structure vibrations, so as to ensure maxi-
mum efficiency of the vibration reduction. It seems
that this paper fills this gap in the problem of the ac-
tive vibration reduction, at least for one-dimensional
structures such as a beam.

Thus, the aim of this paper is to formulate a new
criterion that would indicate the optimal distribution
of a-PZT on an asymmetrical structure. To achieve the
aim, asymmetric vibrations of the beam caused by ad-
ditional concentrated mass were considered (Brański,
2011; 2012). It is assumed that the beam is excited by
concentrated harmonic force with the first three modes
separately. Furthermore, the results of the research in
(Brański, 2013) are taken into account, i.e. it is more
effective to use one s-PZT than several s-PZTs. With
the above assumptions, a semi-analytical formula was
derived for the maximum reduction of vibrations. From
this formula follows the a-PZT asymmetry and its posi-
tion on the beam (determined via a-point). The asym-
metry of the a-PZT means that the forces on opposite
edges have different values and the a-point is not in
the centre of a-PZT. Determining of the a-point leads
to the determining different arms of forces on opposite

edges. The values of these forces, or more precisely the
values of the respective pairs of forces, were determined
assuming that the asymmetric moments of both pairs
of forces are equal. The effect of acting of the a-PZT
is measured by the reduction of vibration amplitude
which translates into reduction of the vibration, bend-
ing moment and shear force. The results were compa-
red to the results of s-PZT. It was assumed that the
dimensions a-PZT and s-PZT are the same and in both
cases the amounts of energy added to the systems are
identical.

The considered examples confirm the effectiveness
of the new criterion. To the authors’ knowledge, such
problem has not been considered yet.

2. Forced vibration of the set
beam-mass-actuator

The beam structure consists of a beam and a con-
centrated mass. Whereas the beam structure and the
PZT constitute a mechanical set beam-mass-actuator
(BMA). As far as concentrated mass, its addition en-
sures asymmetrical vibrations of the beam structure.
A beam simply supported at both ends was considered
(Khasawneh, Segalman, 2019), Fig. 1. The BMA
structure vibration equation is given by (Brański,
2011; Dhuri, Seshu, 2006; Kasprzyk, Wiciak, 2007;
Filipek, Wiciak, 2008):

EJD4u + (ρS + αm)D2
t u = −f, (1)

where
EJ = EbJb +EaJa ⟨H⟩0 ,

ρS = ρbSb + ρaSa ⟨H⟩0 ,

αm =mδ(x − xm).

(2)

PZT

Fig. 1. Geometry of the problem.

Symbols E, J , h, ρ, S mean the physical and geome-
trical parameters of the beam, actuators, i.e. Young’s
modulus, surface moment of inertia, thickness, mass
density, surface of the rectangular cross-section, respe-
ctively. Furthermore, some symbols are supplemented
with the following index b, a,m = [b]eam, [a]ctuator,
[m]ass, and ` – length of the beam, S = h1h2,
h1 – width, h2 – thickness, f = f(x, t) – excited force,
u = u(x, t) – transversal displacement of a beam at the
point x and at the moment t, D4

x(...) = ∂4(...)/∂x4,
D2
t (...) = ∂2(...)/∂t2, ⟨H⟩0 = H(x1 − x2) = H(x − x1) −

H(x − x2), H(x − x1) – the Heaviside step function in
point x1, and so on.
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Boundary conditions are described by the following
equations:

u(x, t) = 0, x = 0, D2
xu(x, t) = 0, x = 0, (3)

u(x, t) = 0, x = `, D2
xu(x, t) = 0, x = `. (4)

Initial conditions are assumed to be zero. Let be
the excited force in the form (Kozień, 2013):

f(x, t) = f0 exp(iωf t)δ(x − xf), (5)

where i = (−1)1/2, ωf is excited frequency, f0 is ampli-
tude of the force.

2.1. Eigenvalue problem

To this end, in Eq. (1) it is assumed that f = 0.
In addition, the actuator is omitted, assuming that its
weight and rigidity are small compared to the beam
and concentrated mass. According to Eq. (2) one has
EJ = EbJb and ρS = ρbSb. For harmonic vibrations
Eq. (1) leads to:

D4Xj − λ4jXj = 0, (6)

where j = {1,2} is the number of elements of the beam,
DXj ≡DxXj , D4Xj ≡D4

xXj , and so on.
The dispersion relationship is given by

λ4j = ω2(ρjSj)/(EjJj) = ω2/γj
and taking into account the above assumptions is λ1 =
λ2 = λ.

It is convenient to present the solution to Eq. (6)
in local coordinates, i.e. in x ∈ [0, ej]; in the separate
j-element the solution has the form, Fig. 2:

Xj(x) = ajK1(λjx) + bjK2(λjx) + cjK3(λjx)

+djK4(λjx), (7)

where Krylov functions Kκ(.), κ = {1,2,3,4} may be
found anywhere, e.g. (Kaliski, 1986).

Fig. 2. Geometry of the beam structure in local coordinates.

Boundary conditions have the form:
• at the left end of the 1st element:

X1(0) = 0, D2X1(0) = 0; (8)

• between 1st and 2nd elements:
X1(λ1e1) =X2(λ20),

DX1(λ1e1) =DX2(λ20),
E1J1D

2X1(λ1e1) = E2J2D
2X2(λ20),

E1J1D
3X1(λ1e1) =mω2X1(λ1e1) = E2J2D

3X2(λ20),
or

E1J1D
3X1(λ1e1) =mω2X2(λ20) +E2J2D

3X2(λ20);
(9)

• at the right end of the 2nd element:

X2(e2) = 0, D2X2(e2) = 0. (10)

Substituting Eq. (7) into boundary conditions Eq. (8)
it turns out that a1 = 0, c1 = 0. In the same way, the rest
of conditions given by Eqs (9) and (10) lead to the set
of algebraic equations and it may be written in the
matrix form:

Ac = 0, (11)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K2(λe1) K4(λe1) −K1 −K2 −K3 −K4

K3(λe1) K1(λe1) −K2 −K3 −K4 −K1

K4(λe1) K2(λe1) −K3 −K4 −K1 −K2

K ′(λe1) K”(λe1) −K4 −K1 −K2 −K3

0 0 K1(λe2) K2(λe2) K3(λe2) K4(λe2)
0 0 K3(λe2) K4(λe2) K1(λe2) K2(λe2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

and

Kκ =Kκ(0),

K ′(λe1) =K1(λe1) +
mω

(EJλ3)K2(λe1)
,

K ′′(λe1) =K3(λe1) +
mω

(EJλ3)K4(λe1)
.

The unknowns are collected in column matrix:

c = [b1, d1, a2, b2, c2, d2]T. (13)

To solve Eq. (11), one assumes that detA(λν) = 0
and it gives the set {λν}, ν = 1,2, ..., n. Based on a dis-
persion relationship one can calculated the frequency
{ων} of the beam structure: ω2

ν = λ4νγ.
Unknowns in matrix c, Eq. (13), are

b1 ∶ d1 ∶ a2 ∶ ... = (−1)α+1Mα1 ∶ (−1)α+2Mα2

∶ (−1)α+3Mα3 ∶ ..., (14)

where Mµκ is the minor of the Aαβ element of the
matrix A, α and β are labels of the rows and columns,
respectively.

Finally, the solution of Eq. (1) is given by:

Xν(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

b1K2(λνx) + d1K4(λνx), x ∈ [0, xm],

a2K1(ξνm) + b2K2(ξνm)
+ c2K3(ξνm) + d2K4(ξνm), x ∈ (xm, `],

(15)
where ξµm = λ(x − xm).

2.2. Forced vibration

Let be the excited force in Eq. (1) in the form
Eq. (5). The solution to Eq. (1) is assumed as:

u(x, t) =Xf(x) exp(iωf t). (16)
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Substituting Eqs (5) and (16) to Eq. (1) one obtains:

EJD4Xf(x) − ω2
f(ρS + αm)Xf(x) = −f(x). (17)

The solution to the above equation, i.e. forced vibra-
tions, is given by:

Xf(x) =∑
ν

CνXν(x), ν = 1,2, ..., n, (18)

where Cν – any constant, Xν(x) – Eq. (15).
After some calculation, constants Cν are expressed

(Brański, 2011):

Cν =
1

ω2
ν − ω2

f

Gν =
1

α2
ν

Gν =
1

ρS

1

α2
ν

1

β2
ν

Iν;f =C∗

ν Iν;f , (19)

C∗

ν =
1

ρS

1

α2
ν

1

β2
ν

, Iν;f = −
`

∫
0

f(x)Xν(x)dx,

ω2
ν =

EJ

ρS
λ4ν , β2

ν =
`

∫
0

X2
ν(x)dx.

(20)

Thus, the problem of the beam vibration with con-
centrated mass, excited with the force f(x, t) is solved.
If the excited force is given by Eq. (5), in steady state
f(x) = f0δ(x − xf), the Iν;f = Iν;0 and instead of
Eq. (18) one has:

Xf(x) =∑
ν

C∗

ν Iν;0Xν(x) =∑
ν

Aν;0Xν(x). (21)

3. Beam vibration reduction by actuators

3.1. Beam vibration reduction by s-PZT

It is well known from (Hansen, Snyder, 1997;
Fuller et al., 1997; Brański, 2011; Przybyło-
wicz, 2002; Gosiewski, Koszewnik, 2007) and refe-
rences cited therein, that the actuator-beam interacts
approximately with moments of the couples of forces.
Since the beam vibration equation is the forces equa-
tion, then to consider the action of the actuator on the
beam, two moments are replaced with two couples of
forces, Fig. 3. Next, the separate forces are taken into
account in the Eq. (1). Hence, the total load is the sum
of the load force expressed by Eq. (5) and the forces
interacting between actuators and the beam, so it is
given by:

f(x) = −f0δ(x − xf) + [fsδ(x − x1s)
−2fsδ(x − xs) + fsδ(x + x2s)] , (22)

where x1s = xs − `s/2, x2s = xs + `s/2, xs is the loca-
tion of the actuator internal activity point; an expres-
sion in the square bracket is the sum of interacting
forces actuators-beam.

To calculateXf(x), Eq. (18), the Aν;f instead Aν;0,
is calculated for f(x) given by Eq. (22). Details of the

Fig. 3. External actuator pairs of forces with the same arms.

solution may be found in (Brański, 2012), hence in
explicit form:

Aν;f = C∗

ν (−f0Xν(xf) + `2sfsD2Xν(xs))
= Aν;0 +Aν;s. (23)

It should be noted that if the mode is symmetrical,
then (Brański, 2011):

D2Xν(x) = ±κsν;max. (24)

The κsν;max is the maximum curvature of the mode
Xν(x) at the point x = xs; κ = D2X/(1 + (DX)2)3/2
(Fichtenholtz, 1999). The sign of the κsν;max is con-
tractual, namely, if the bending of the beam is positive,
the sign is positive and vice versa.

The reduction of the Aν;f leads to the reduction
of the beam vibration; a value zero of Aν;f means the
total reduction. Necessary condition for a minimum
value of Aν;f(xs) is:

DAν;f(x) = 0, x = xs. (25)

The point where the condition is satisfied is called
a stationary point.

A sufficient condition of minimum of the Aν;f =
Aν;f(xs) is

D2Aν;f > 0, x = xs. (26)

From the system of Eqs (25) and (26), the xs is cal-
culated for which the amplitude Aν;f(xs) has a mini-
mum value and therefore the reduction of vibrations
is maximum. It should be recalled that in the case of
symmetrical vibrations, the center of the s-PZT must
be placed at the maximum curvature of the structure.

3.2. Beam vibration reduction by asymmetric
actuator (a-PZT)

Now, let us take into account a-PZT with different
arms, Fig. 4, i.e.:

M = fs`s =M1 +M2 = f1`1 + f2`2. (27)

In this case, instead of Eq. (22), one has:

f(x) = −f0δ (x − xf) + [f1δ(x − x1a)
−(f1 + f2)δ(x − xa) + f2δ(x − x2a)], (28)

where x1a = xa − `1, x2a = xa + `2.
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Fig. 4. External actuator pairs of forces with different arms.

In this case, Iν;f in Eq. (20) is replaced by I ′ν;f :

I ′ν;f = −
`

∫
0

f(x)Xν(x)dx

= −f0Xν(xf) + [f1Xν(x1) − (f1 + f2)Xν(xa)

+ f2Xν(x2)] = −Iν;0 + I ′ν;a. (29)

Substituting Eq. (27) into square brackets and after
some calculations one has:

1

`2
f1 [`2Xν(x1a) − (`1 + `2)Xν(xa) + `1Xν(x2a)]

= `
2
1

`2
f1D

2Xν(x1a), (30)

where D2Xν(x1a) replace the forward finite difference
(FFD) at the point x1a (Quarteroni, 2009). To give
the interpretation a technical character, first of all it
should be noted that the bending moment of the beam
is related with second derivative D2Xν(x1a), hence:

EJD2Xν(x1a) =Mν(x1a). (31)

In this way, based on Eq. (18), the problem of vi-
bration reduction by asymmetrical PZT is solved.

Substituting Eq. (29) into Eq. (18), the reduction
vibration is obtained:

X ′

f(x) = ∑
ν

C∗

ν I
′

ν;fXν(x) =∑
ν

C∗

ν (−Iν;0 + I ′ν;a)Xν(x)

= ∑
ν

A′

ν;fXν(x), (32)

where, in explicit form,

A′

ν;f = C∗

ν (−Iν;0 + I ′ν;a)

= C∗

ν (−f0Xν(xf) +
`21
`2
f1
Mν(x1a)
EJ

)

= Aν;0 +A′

ν;a. (33)

The reduction of the A′

ν;f leads to the reduction of
the beam vibration; a value zero of A′

ν;f means the to-
tal reduction. So, quite similar like above, the A′

ν;f has
minimum when A′

ν;a compensates Aν;0, but A′

f ;ν ≥ 0.
Since `1 = xa −x1a, `2 = x2a −xa = x1a + `s −xa then

instead of Eq. (33) one has:

A′

ν;f = C∗

ν (−f0Xν(xf) +
(xa − x1a)2

(x1a + `a − xa)
f1
EJ

Mν(x1a))

= A′

ν;f(x1a, xa). (34)

Necessary conditions for a minimum value of
A′

ν;f(x1a, xa) are:

DA′

ν;f(x,xa) = 0, x = x1a
DA′

ν;f(x1a, x) = 0, x = xa.
(35)

A sufficient condition of minimum of the A′

ν;f =
A′

ν;f(x1a, xa) is:

D2
1A

′

ν;fD
2
aA

′

ν;f − (D2
1A

′

ν;f)
2 < 0, (36)

where D1(⋅) =Dx1a(⋅), Da(⋅) =Dxa(⋅).
From the system of Eqs (35) and (36), the (x1a, xa)

are calculated, for which the amplitude A′

ν;f(x1a, xa)
has a minimum value and therefore the reduction of vi-
brations is maximum. Hence, the asymmetry of a-PZT
is found. This way, the distribution and asymmetry of
a-PZT were theoretically determined, ensuring maxi-
mum reduction of structure vibration.

Note, that in the case of asymmetrical vibrations,
the a-point of the a-PZT must be placed at the maxi-
mum bending moment of the structure.

4. Reduction effectiveness coefficients

The effect of PZT acting is measured by the reduc-
tion of three parameters, i.e. the vibration, bending
moment, and shear force. However, it should be noted
that the reduction of amplitude of vibrations trans-
lates into the reduction of these parameters. Therefore,
it is enough to present the amplitude vibration reduc-
tion. To determine the reduction of the amplitude, the
reduction coefficient is formulated:

Rν;A = Aν;0 −Av;f
Aν;0

⋅ 100%, (37)

where Aν;0 – vibration amplitude without PZT; the vi-
bration is excited only by f0(xf), Av;f – vibration am-
plitude with PZT; the vibration is excited only f0(xf)
and reduced by PZT. The coefficient Rν;A is the first
measure of the vibration reduction; hence next reduc-
tion coefficients follow, i.e. mode Rν;X , bending mo-
ment Rν;M , and shear force Rν;Q. Forms of these coef-
ficients are the same like Eq. (44) and they are obvious.

5. Analytical and numerical calculations

To justify the utility of a-PZT and demonstrate
its advantage over s-PZT, measured via RA, following
groups of researches are performed:
1) center of s-PZT is changed,
2) asymmetry and a-point of a-PZT are changed.
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In both cases, the objective functions are formulated
and optimal solutions are obtained by minimizing
them. All calculations are performed separately for the
first three modes {Xν} = {X1,X2,X3}.

In calculations the following data are assumed:

` = 1 m, ρ = 2700 kg ⋅ m−3,

S = 2.5 ⋅ 10−4 m2, E = 69 ⋅ 109 Pa,
h1 = 0.05 m, h2 = 0.005 m,

J = (h1h32)/12 m4, xm = 0.39`,

γ = 53.2407 m4 ⋅ s−2.

Next, based on equation detA(λν) = 0, the set of
eigenvalues {λν} are calculated and

{λν} = {2.7121, 5.9945, 9.1517, 11.6305, 15.6784, ...}.

Hence

{ων} = {53.6686, 262.1975, 611.1207, 987.0076,
1793.6011, ...}.

Based on the Eq. (15), shapes of the first three modes
are shown in Fig. 5. The figure shows that all modes are
asymmetrical. The length of all actuators is the same,
`s = 0.2`, f0 – the amplitude of the excited force is
chosen by empirical way to obtain meaningful deflec-
tions of separate modes: {f0;ν} = {f0;1, f0;2, f0;3} =
{0.15, 0.8, 2} N, m = 0.3 kg – concentrated mass is
distributed on the each modes as follow: {xm;ν} =
{xm;1, xm;2, xm;3} = {0.39, 0.85, 0.45} ⋅ `.

Fig. 5. Eigenfunctions (modes): 1 – X1, 2 – X2, 3 – X3.

5.1. Vibration reduction via s-PZT

With a fixed length `s and fixed energy added to
BMA by s-PZT, only the s-PZT centre is optimized.
For each mode Xν , the goal function is Aν;f(xs),
Eq. (23). By minimizing Aν;f(xs), an optimal posi-
tion s-PZT expressed by xs;ν is obtained. A necessary
condition for minimum value of Aν;f(xs) is given by
Eq. (25), hence:

DAν;f(x) = `2s
fs
EJ

DMν(x) = 0, x = xs, (38)

where the Eq. (31) is taken into account.

A sufficient condition of minimum of the Aν;f(xs)
is given by Eq. (26), hence D2Mν(x) > 0, x = xs. First
of all, the bending moments Mν(x) of separate modes
are calculated, Fig. 6. Then, based on the necessary
condition, Eq. (38), and sufficient one, xs;ν are found.

Fig. 6. Bending moments Mν(x) of the modes:
{Mν} = {M1, 0.5M2, 0.5M3}.

As a result, optimal positions of s-PZT expressed
by the internal activity point xs;ν are obtained,
namely: {xs;ν} = {xs;1, xs;2, xs;3} = {0.39, 0.85, 0.45}.

5.2. Vibration reduction via a-PZT

For a-PZT length and an energy added by a-PZT
to BMA, are the same like for s-PZT for each mode,
respectively. Hereunder, the a-PZT position on the
beam, expressed by xa, and its asymmetry, expressed
by x1a or x2a, here x1a, are calculated. Exact values of
xa and x1a can be found from Eqs (35) and (36). But
here the optimization problem is solved numerically,
where the goal function is A′

ν;f(x1a, xa), Eq. (34). By
minimizing A′

ν;f(x1a, xa), an optimal position xa and
asymmetry, here expressed by x1a, are obtained. Re-
sults are presented in Fig. 7, where red solid points
show the xa and x1a values calculated by Eqs (35)
and (36). Based on Eqs (35) and (36), these problems
are solved numerically; results are shown in Fig. 7.

5.3. Efficiency of vibration reduction

First, the distribution of s-PZT (red) and a-PZT
(blue) on separate modes is shown in Fig. 8. The dis-
tribution of s-PZT and a-PZT is the same and
is given by {xs;1, xs;2, xs;3} = {xa;1, xa;2, xa;3} =
{0.39, 0.85, 0.45} m. Figure 8 shows the effect of ac-
tive vibration reduction via separate PZTs.

Figure 8 shows that separate xs;ν points indicate
centres of s-PZTs, but the same points indicate a-PZTs
asymmetry and this asymmetry is strictly specified.
Furthermore, the efficiency of a-PZT is greater than
that of s-PZT; quantitative results are presented in
the Table 1.
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a) b)

c)

Fig. 7. a) The A′ν;f = A
′

ν;f(x1, xa) for the first mode shape; b) the A′ν;f = A
′

ν;f(x1, xa) for the second mode shape,
c) the A′ν;f = A

′

ν;f(x1a, xa) for the third mode shape.

a) b)
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Fig. 8. Undamped mode (black), after acting s-PZT (red) and a-PZT (blue):
a) first mode shape, b) second mode shape, c) third mode shape.

Table 1. Mode reduction coefficient Rν;X , `s = 0.2 m.

s-PZT a-PZT
fs [N] xs [m] Rν;X [%] {f1, f2} [N] {`1, `2} [m] xa [m] Rν;X [%]

X1 1.3830 0.39 98.50 {2.9551, 0.9027} {0.0468, 0.1532} 0.39 99.89
X2 1.3800 0.85 95.74 {0.9256, 2.7112} {0.1491, 0.0509} 0.85 99.82
X3 1.0900 0.45 94.93 {1.8167, 0.7786} {0.0600, 0.1400} 0.45 99.71

5.4. LQR controller design

Simulating the LQR control algorithm requires first
deriving state space equations which were constructed

from the equations of motion as (Parameswaran
et al., 2015; Le, 2009):

ẋ = Ax +Bu, (39)



562 Archives of Acoustics – Volume 47, Number 4, 2022

y = Cx, (40)

where x – state vector, y – output vector, u – input
vector, A – system matrix, B – control matrix, C –
output matrix.

Minimizing the cost function:

J =
∞

∫
0

(yTQy + uTRu)dt, (41)

leads to obtaining a control gain of the LQR. Q and R
are the power matrices. System input signal is defined
as u = −R−1BTPx where P is the solution of the Ric-
cati equation (Zhang, Schmidt, 2012). The LQR con-
troller was designed for both s-PZT and a-PZT with
the following data:

A = [ 0 1
−ω2

ν 0
], (42)

Bs-PZT = ka [
Xν (x1s) − 2Xν (xs) +Xν (x2s)

0
], (43)

Ba-PZT = ka
`s

2`1`2

⋅ [
`2Xν (x1a) − (`1 + `2)Xν (xa) + `1Xν (x2a)

0
], (44)

C = ks
csbs(xt2 − xt1)

[
X ′

ν (xt2) −X ′

ν (xt1)
0

], (45)

where ka = 1
2

Ed31(h2+ha)
ρS(1+mXν(xm))

, ha is thickness of the
actuators, ha = 0.005 m, d31 is piezoelectric coef-
ficient for PZT-5H, d31 = −320 ⋅ 10−12 m/V, ks =
−bs (hs + h2/2) (k231/g31), xt1, xt2 are coordinates of
the sensor edges, bs is length of the sensor, bs = 0.1 m,
hs is thickness of the sensor, hs = 0.005 m, k31 is cou-
pling coefficient for PZT-5H, k31 = 0.44, g31 is piezo-
electric coefficient for PZT-5H, g31 = −9.5 ⋅ 10−3 V/m,
cs is capacitance per unit area of the sensor cs =
400 ⋅ 10−9 F/cm2.

Data for the power matrices was chosen as:

Q = [
1.8625 ⋅ 104 0

0 0
],

R = {R1, R2, R3} = {0.1, 1, 1}.
(46)

Figures 9–11 show the effect of s-PZT and a-PZT
in the time domain.

Fig. 9. Before vibration reduction (black), after acting s-PZT (red) and a-PZT (blue); first mode
shape.Fig. 9. Before vibration reduction (black), after acting

s-PZT (red) and a-PZT (blue); first mode shape.

Fig. 10. A zoomed part of Fig. 9 for the first mode shape; s-PZT (red), a-PZT (blue).Fig. 10. A zoomed part of Fig. 9 for the first mode shape;
s-PZT (red), a-PZT (blue).

a)

b)

Fig. 11. (a) Open-loop s-PZT (black), closed-loop s-PZT (red);
(b) open-loop a-PZT (black), closed-loop a-PZT (blue);

first mode shape.

The Table 1 shows that the vibration reduction effi-
ciency with s-PZT, measured by mode reduction coef-
ficients Rν;X , decreases with increasing the mode num-
ber.

6. Conclusions

The article presented the exact theory of the ac-
tive vibration reduction of asymmetrical beam vibra-
tions. To achieve this, the a-PZT was worked out and
located at the point of the beam with the maximum
bending moment. This made it possible to formulate
the criterion of the maximum bending moment to ob-
tain the optimal solution to such a problem. Quanti-
tatively it was justified that under the same geometri-
cal and physical conditions, the a-PZT provides better
efficiency than standard s-PZT. Based on the exact
formulations and numerical considerations, the follow-
ing conclusions, can be enumerated:
1) The criterion of the maximum bending moment

solves the problem of the optimal vibration re-
duction of asymmetric beam vibrations.

2) The criterion shows the asymmetry of a-PZT and
its position on the beam; all optimization param-
eters are strictly defined.
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3) The a-PZT reduces vibrations more effectively
than the s-PZT assuming that the dimensions of
both actuators and the amount of energy added
to the system is the same in both cases.

The results of the paper can be used directly in
practice or be a reference point for further considera-
tions, i.e. to reduce vibration of other one-dimensional
structures. In next studies, the idea of criterion of the
maximum bending moment will be used to active re-
duction of vibrations of two-dimensional asymmetrical
structures.
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