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In this paper, a 2D numerical modeling of sound wave propagation in a shallow water medium that acts as
a waveguide, are presented. This modeling is based on the method of characteristic which is not constrained by
the Courant–Friedrichs–Lewy (CFL) condition. Using this method, the Euler time-dependent equations have
been solved under adiabatic conditions inside of a shallow water waveguide which is consists of one homogeneous
environment of water over a rigid bed. In this work, the stability and precision of the method of characteristics
(MOC) technique for sound wave propagation in a waveguide were illustrated when it was applied with the
semi-Lagrange method. The results show a significant advantage of the method of characteristics over the finite
difference time domain (FDTD) method.
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1. Introduction

The propagation of sound in the sea has been stud-
ied to an extreme degree from the beginning of the
Second World War, when it was realized that insight
into this matter was indispensable to the successful
performance of anti-submarine warfare working. These
early estimations were fastly converted into construc-
tive, albeit primeval, forecasting tools. Naval neces-
sities motivate progress in all features of underwater
acoustic modeling, especially the modeling of sound
propagation. The investigation of sound wave propaga-
tion in seawater is essential for understanding and fore-
casting all underwater acoustic phenomena. The essen-
tiality of wave propagation models is intrinsic in the
ranking of acoustic models is illustrated in Fig. 1.

Sound propagation depends on the physical charac-
teristics and the environment (Hosseini et al., 2018).
Many studies have been done on the physical characte-
ristics of shallow waters such as the Persian Gulf. Such
environments create an almost homogeneous layer of
water due to the shallow depth and turbulence caused
by wind and tides (Khalilabadi et al., 2015; Khali-
labadi 2016a; 2016b; 2016c; Mahpeykar, Khalila-
badi, 2021; Mollaesmaeilpour et al. 2019). In this

Fig. 1. Relationship between the environmental
and acoustic models.

paper, a new method for simulating sound propagation
within such environments is discussed. Simple intuitive
developments have been given to present the physics
of acoustic propagation in shallow water layer. The
structure of a simple waveguide has been illustrated in
Fig. 2.
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Fig. 2. Fundamental of a general waveguide.

Resulting from the computer programming evo-
lution, numerical methods of wave propagation have
been studied widely (Matsumura et al., 2017). For
high-performance soundwave field prediction, the pro-
gression of the precise numerical method is an essential
subject (Ara et al., 2011; Matsumura et al., 2015;
Oshima et al., 2014).

Regarding the evolutionary process of studying and
modeling waves in waveguides and shallow water, espe-
cially in recent years, we can mention the latest works.
Kirby and Duan (2018) used modeled the sound wave
propagation in the seawater using a normal mode ap-
proach and by finite elements method. Then they used
a semi-analytical method for simulating the wave pro-
pagation in a waveguide (Duan, Kirby, 2019).

Jena et al. (2019) proposed a new solution of wave
equations arising in shallow water wave propagation.
Li et al. (2019) presented one method based on multi-
layer boundary element for direct numerical modeling
of acoustic wave propagation in shallow water areas.

Duan and Kirby (2020) calculated the character-
istics of edge waves in 3D Plates using another nu-
merical approach. Wang et al. (2020) predicted sound
intensity vector field in shallow water waveguide using
a prediction method. Li et al. (2021) determined the
characteristics of sound wave propagation in shallow
water waveguides for very low-frequency waves.

2. Materials and methods

The aim of this investigation is to illustrate the
stability and precision of the method of characteristics
(MOC) technique (Fievisohn, Yu, 2016; Liu, 2021;
Mazumdar, Gupta, 2018; Song et al., 2020; Sub-
botina, Krupennikov, 2017) with semi-Lagrange
method (Jiang et al., 2020; Cho et al., 2021; Piao
et al., 2018; Saadat et al., 2020) applied for sound
wave propagation in a waveguide. The waveguide is
a homogeneous water layer overlying a rigid sea bot-
tom (Jihui et al., 2020; Li et al., 2021; Verlinden
et al., 2017).

In numerical method, the MOC is a method to solve
the partial differential equations (Cao, Liu, 2020;
Jewell, 2019; Kauffmann et al., 2018; Twyman,
2018). In most cases, this technique applies to the
first-order equations, albeit generally the MOC is re-

liable for each hyperbolic partial differential equation.
The technique is reducing a partial differential equa-
tion to a group of ordinary differential equations along
which the solution process can be integrated from
some initial data given on an appropriate hyper-surface
(Ali et al., 2020; Ayas et al., 2019; Gao et al., 2021;
Costa et al., 2021).

The basic equations have been written in cylindri-
cal coordinates. For surface and bottom boundary con-
ditions we consider free pressure in the surface and
a rigid sea bed. 1D Euler and continuity equations un-
der the circumstances adiabatic environment can be
written in these forms:

ρ
∂u

∂t
= −

∂p

∂x
, (1)

∂p

∂t
= −ρc2

∂u

∂x
. (2)

By multiplying Eq. (1) by ±c2 and collect with Eq. (2),
we can obtain:

∂f+

∂t
+ c

∂f+

∂x
= 0, (3)

∂f−

∂t
− c

∂f−

∂x
= 0, (4)

where

f+ = ρcu + p, (5)

f− = ρcu − p. (6)

Equations (1) and (2) are advection equations with
soundwave speeds of +c and −c, respectively. The pa-
rameters f+ and f− are advection along its character-
istics. Thus new amounts at the subsequent time can
be calculated by finding the up-wind amounts along
with characteristics as illustrated in Fig. 3.

Fig. 3. Plan of advection.

The Courant–Friedrichs–Lewy (CFL) condition
(Ascher, van den Doel, 2013; Domingues et al.,
2013; Hersh, 2013; Jeltsch, Kumar, 2013; Lax, 2013;
LeFloch, 2013; Rhebergen, Cockburn, 2013;
Schneider et al., 2013) can be written as:

c0∆t
√

(1/∆r)2 + (1/∆z)2 ≤ 1. (7)

If CFL = 1, f+ and f− propagate the quantities
from one specific cell to the next cell in time iterations.
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If the CFL number is not a natural number, we can
apply the constrained interpolation profile (CIP) tech-
nique (Matsumura et al., 2017; Yabe et al., 2001).
Therefore by addition and subtracting the Eqs (5)
and (6), the pressure and particle velocity can be writ-
ten as:

p =
f+ − f−

2
, (8)

u =
f+ − f−

2ρc
. (9)

In 2D cases, we can solve these equations by a di-
rectional splitting technique (Gendre et al., 2017;
Nakamura et al., 2001). At the first, the equation
of advection can been solved in the range direction,
then this equation can be solved in depth direction.

The numerical model designed in this study, uses
square grids. In this model, all of the physical quanti-
ties (the particle velocity and pressure) are collocated.

3. Results and discussion

The numerical model prepared in this research was
implemented in a homogeneous seawater layer overly-
ing a rigid seabed with a depth of 100 m. The projector
and the receiver established at a same depth (50 m).

Figure 4 illustrates the sound wave propagation in
this waveguide during running the model program. The
model also calculate the transmission loss [dB] versus
range [km].

Fig. 4. Sound propagation in the waveguide during running
the program.

The comparison of transmission loss between the
model and theory is shown in Fig. 5. As seen in this
figure, the range lowers than about 1 km where all
modes have propagated, the model is well matches the

Fig. 5. Comparison between theory and model
for transmission loss.

theory. As the range increases the difference between
theory and model increases.

Then we changed the setup and put the source at
the bottom. Figure 6 shows the sound propagation
in the waveguide during running the program in this
condition, and Fig. 7 shows the comparison of trans-
mission loss between model and theory for this sta-
tus. As discussed above, in the lower ranges where all
modes have propagated, the model well matches the
theory, and as the range increases the difference be-
tween theory and model increases.

Fig. 6. Sound propagation in the waveguide during running
the program.

Fig. 7. Comparison of transmission loss between model
and theory.

4. Conclusions

In this research, the propagation of acoustic waves
within a waveguide is modeled using the MOC. The re-
sults compared with the finite difference time domain
(FDTD) method. By examining the findings and mod-
eling results, the following facts can be drawn:

• There is no difference in computational time be-
tween the MOC method and the FDTD per itera-
tion, however, the FDTD is bound by more severe
CFL conditions.

• When a rectangular mesh is used, the maximum
amounts are so large that FDTD will take at least
1.4 times the calculation time required.

• In the method of characteristics, the phase proper-
ties of are more precise than the FDTD method.
At low frequencies, this difference is not signifi-
cant, but with increasing frequency, this difference
becomes significant.
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• It is determined by comparison of transmission
losses that in the lower ranges where all modes
have propagated, the model and the theory will
be compatible. But as the range increases, the dif-
ference between model and theory will increase.
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