ARCHIVES OF ACOUSTICS
3, 4, 283-292 (1978)

CORRELATION FUNCTION DETERMINATION FOR INHOMOGENEITIES
SCATTERING AN ACOUSTIC WAVE
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Department of Physical Acoustics, Institute of Fundamental
Technological Research, Polish Academy of Sciences (Warsaw)

A random inhomogeneous isotropic medium filling a domain immersed
in an infinitely extended homogeneous isotropic medium is considered. The
formulae describing the scalar potential of the scattered field are deduced for
small and large distances from the domain of the heterogeneous material.
The fluctuations of density and wave propagation veloeity (and also pressure
in the case of a nonviscous emulsion) are treated as random variables of the
space coordinates. The correlation funetion is calculated from the appropriate
farfield solution and expressed in terms of a scalar potential for the angular
distribution of the scattered wave. This general method is adapted for a non-
viseous random emulsion and the correlation function is expressed in terms of
the intensity angular distribution of the scattered wave.

List of symbols

¥’ — domain filled by the inhomogeneous medium
8’ — boundary of the domain V7’
r — position vector

p(r,t) — sealar velocity potential of an acoustic wave

gs and g,(r) — density of the homogeneous and heterogeneous medium, respectively

¢; and ¢,(r) — wave veloeity in the homogeneous and heterogeneous medium, respectively
{A> — mean value of a quantity 4

G4 (r) = A(r) — (A (r)) — fluctuation in a quantity 4 at a point »

y(#) — autocorrelation function (called shortly correlation funection)

L, — correlation length

B — volume concentration of the grains
F — equilibrium value of a quantity F
AF — acoustic disturbance of a quantity F
o — angular frequency

a — amplitude of oscillations

n  — unit vector in the direction of propagation of the incident wave
6 — angle of seattering

p  — pressure

7 — kinematic viscosity

I, - intensity of the incident wave

Iy, — intensity of the scattered wave
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1. Introduction

Several authors [1, 2, 5, 6] have considered the problem of finding the
secattered intensity and the scattering cross section in a random inhomogeneous
isotropic media from the incident acoustic wave and the correlation function [4].
In these previous works the scattering intensities have been calculated from
the appropriate farfield solutions, and the results have been expressed in terms
of correlation functions. The purpose of the present paper is to solve the inverse
problem of determining the correlation function from the angular distribution
of the acoustic field of a wave scattered in a random inhomogeneous isotropic
medium. The inverse problem under consideration is the analogue of the light
scattering problem discussed by Debye and Bueche [4].

In the present paper we start with the differential equation of motion for
the scalar wave p(r,t) in a heterogeneous medium, where the wave velocity
¢o(r) is a function of the position vector » and is independent of the time 1.
As a result we obtain an integral expression for the scalar scattered wave
Yoo (7, ). With the help of the correlation function [4] and use of the Fourier
integral transformation for odd functions we obtain, in the farfield approxi-
mation, a rather simple integral formula expressing the correlation function
in terms of |y (7, 1)|*)> or (| Vyg (7, )[*> and of the angle of scattering § where
{*> denotes an average. Next we consider the special case of acoustic wave
geattering in nonviseous emulsions. For this case we obtain an integral formula
expressing the correlation function in terms of the scattered intensity and the
angle of scattering. :

2, Basic assumptions and auxiliary notions

In discussing the problem under consideration in this paper, the random
heterogeneous isotropic material filling domain V" is assumed to be immersed
in an infinitely extended homogeneous isotropic material of density g,, where
the wave velocity ¢, is known and satisfies the following inequality:

[L—(ealea () =1 —[L+ (e0(r) —05)fe] | < Lloo(r) —05lfe} <1. (21)

Inequality (2.1) enables us to write with first order accuracy in

(00("“) _Gs) Jo, = (600(") +{Go(T)) — Ga) [¢s
the relation

U(r) =1—(efeo(r))® = U (r))+ 8T (r), (2.2)
where

U(r) = 2(eo(r)—¢,)[es) (2.3)
and

8T () = 2(eq(1) — {oo(7))) e (2.4)
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Furthermore, it is assumed that

KT (7)) < 180 (r)] <1 (2.5)
and

lesCs — go(7) co(7)| /0505 < 1, (2.6)

where p,(r) is the density of the medium filling domain V'.

The subsequent discussion uses a reference system with the origin at some
convenient point of the domain V'. It is assumed that the volume V' of the
domain filled by the inhomogeneities satisfies the inequality

(Vs L, (2.7)

where L, is the correlation lenght of the random inhomogeneities. The structure
of the heterogeneous material filling the domain V' is deseribed with the help
of the correlation function y g (r; —7,) which determines the manner in which
the fluctuation A in a quantity A4 at a given point r, is correlated with that
in another quantity B at a point r,. The fluctuation 6F(r,) in a quantity F
at a point », is given by the formula

OF (1g) = F (1) — {F(1)). (2.8)
‘When the material is isotropie, y,p(ry—7,) is a function of |r;—r,| and

is independent of direction. The correlation function y,z(r;—,) for an iso-
tropic material is defined [4] by

{84 (r1) 6B(73)) = yp(2) (04 (r,) 0B(ry)), (2.9)
where
X =1r—r. (2.10)
By comparing this equation with the condition
lim (04 (ry) 0B(r,—=)) = (34 (r,)0B(r)) (2.11)
and defining the correlation length L, by
lirél (8A (1)) 6B(ry—x)> = (BA(r)6B(r))/e, (2.12)
Wty
we obtain:
limy, g(@) =1, limy (@) =1le (e = 2.718...). (2.13)
x>0 z—+Lg

Formulae (2.9) and (2.13) are also applicable in the case of B being the
~ pame quantity as 4. Then

(8A () 0A (r — =)y = (6A(0)6A(x)) = y(w){(d4(r))® (2.14)

and y(z) is called the autocorrelation fumction. y(x) measures the degree of
correlation between the fluetuations at two points as a function of the distance
of their separation.
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The heterogeneous material considered is assumed to be a two-phase ma-
terial. One of the phases consists of isolated grains randomly distributed in
the matrix of the other phase in the domain V'. The fluctuations 484 (r),
dB(r), ... in quantities A4, B, ..., respectively, are the result of fluctuations
3p(r) in the volume concentration f(r) of the grains. For 44 (r) we have:

SA(r) = (M(ﬁ)) 8 it B <1. (2.15)
8 Jp=o
Substituting equation (2.15) into (2.14) we obtain
9A\?
(BA(0)34 (@)> = y(@) (a—ﬁ)ﬁ (3) (2.16)

It can be verified that

0A 0B
wam@y =0 (55) (55) <omm. @an
0B lg=o\ 0B |30
Thus the autocorrelation function y(z) is adequate to describe all correla-
tions if the fluctuations 84 (r), 8B(r), ... can be expressed in the form of equ-
ation (2.15). In this case an average of the type {44 (0) B (2)> can be also re-
duced to the mean-square fluctuation {(48)?). As a result of the asumption
(2.7) we have on the boundary 8’ of the domain V':
dy ()
V(@) zesr = 0, ——; =0. (2.18)
m xes!
The acoustic wave under consideration in the present paper are assumed
to be monochromatie, i.e. all the acoustic disturbances AF(r,?) associated
with the waves at a given point » are simple sinusoidal functions of time of the

form

AF(r, t) = éconst(r), AF =F-F, (2.19)

where o is the angular frequency of the wave and F is the equilibrium value
of a quantity F. It is assumed that

|AF(r,t)[F(r)] < 1. (2.20)

3. Angular distribution of the scalar scattered wave

The existence of a velocity scalar potential y(r,?) for an acoustic wave
in the heterogeneous medium under consideration is postulated. The equation
of motion for the scalar potential y(r, t) is postulated [7] to be

oty(r,t)

e (3.1)

Vigp(r, t) = (¢(r"))
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where i = 0 if » is within the domain V', i = ¢ and ¢,(r) = ¢, = const it * is
outside the domain V' or on the boundary & of V.
By substituting

p(r,t) = tp(’l")e‘"" = ‘P(r)ﬂ‘kscs‘r k, = wle,, (3.2)
we obtain the equation

(V2 +E)p(r) = K U(r)g(r), (3.3)

which the function @(r’) must satisfy. U(r) is given by formula (2.2); U(r)
being different from zero only if » is within the domain V’. Furthermore, the
scalar potential y(r, t) is taken as the sum of a monochromatic travelling plane
wave (primary or incident wave) with another one superposed (called the
scaltered wave).

The problem formulated above, of calculating ¢(r) when k, and U(r) are
known, is the same, apart from the factor % on the right-hand side of equation
(3.3), as the quantum mechanical problem of finding de Broiglie waves connected
with the stationary elastic scattering of spinless particles. On using a suitable
method (e.g. a Green’s function method) [3], the solution of equation (3.3)
is found to be

(P(’l‘) a e‘ksvr'i'tpm(r): ks - ksn! (34)

where n is the unit vector in the direction of propagation of the incident wave
¢™s™. The incident wave is the solution of equation (3.3) for U(r) = 0. Assum-
ing that

™™ > |@go(r)], (3.5)
we obtain for the sealar potential of the scattered wave the formula
Peo(T) = (L[r) A (r)e™s", (3.6)
where
i3 r pileg ' Jikg(lr—r'|—7)
Amy=--2 | ety dsr, (3.7)
im > r—r

the integration being over the volume of element
AV’ = @*r' = da’ dy’ dz’

in the scattering domain V’. By = we denote the position vector of a point
within the domain V', while by r — the position vector of an “observation
point” (r may be within the domain V' as well as outside this domain). The
additional assumption of the “farfield” approximation

k,(r)22r €1, || < r|, (3.8)
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enables us to write the expression for A(r) as

Bk k: n AH ’
A = - J' U (r') 65" @, (3.9)
where
K =[n—(r/r)]k,, K = 2ksin(0/2), (3.10)

6 being the angle between the vectors r and k, (the angle of scattering). Con-
dition (3.8) means that we are considering only the solution valid outgide the
domain V' at large distances r from the inhomogeneities.

Assumptions (2.1), (2.5) and formulae (2.2), (2.3), (2.4), (2.15) enable us
to write, with first order accuracy,

OE)TEDy = U 8T (1)) = y@) (0T (1)), @ =m—1, (3.11)

where

(BT ) = (Z—g :_0<(6ﬁ)’> it f <1 (3.12)
From (3.6), (3.9), (3.10), (3.11) it follows that
(rul =2 [y@d=drar, 8.13)
where 6
B = k(60 (r"))%) 1672, (3.14)

By introducing the new variables
o = (%o Yo» %) = 11— &[2 = 1, +2[2,

the integrations over @, ¥,, % and over all directions can be performed. Per-
forming these integrations (K being the polar axis), and using the Fourier
integral transformation for odd functions, we obtain:

g in K.
»(@) = (r2/2n2BY) f gD E2 s’;mmdﬁ. (3.15)
0
Using (2.13) and the well-known formula
NG i R (3.16)
0 x s
we obtain finally
3 sin K F =
yia) = [ [y B2 2 || [CouiErar [, 30
0 1]

o = const, r = const.
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Using formulae (3.6), (3.9), (3.10) the expression for Vg, (r) can be found.
Finding this expression and performing the same mathematical operations
which had given equation (3.17) from equations (3.6), (3.9), (3.10), we obtain
finally

sin Ko
Kz

y(@) = [f(IV%t"‘>K2 dK]-[f<{v¢,c|2>K=dK]", (3.18)

o = const, r = const.

Formulae (3.17) and (3.18) permit us to determine the correlation function
y(x) from the angular distribution of the scalar potential and the gradient of
the scalar potential of the wave scattered by a random inhomogeneous isotropic
medium, respectively.

4. Angular distribution of the intensity of the acoustic wave scattered
by a nonviscous emulsion

The case of a nonviscous emulsion will be considered as an example of a two-
-phase random heterogeneous material filling the domain ¥'. In the present
model an emulsion is considered as a mixture of two chemically non reacting
and nonviscous fluids, one of which is not soluble in the another. One fluid
is coherent and volumetrically dominant and the other is dispersed in the
forms of grains randomly distributed in the matrix fluid. The fluctuations
dey(r') and

Bo(1') = Bo(r') — @o(r')> (4.1)

(where g, (') is the equilibrium value of the density g,(r’) within the domain V')
are the results of fluctuations 8 in the volume concentration § of the grains.
In accordance with the basic assumptions of the present paper, the emulsion
filling the domain ¥’ is assumed to be immersed in an infinitely extended fluid
of density g,, where the wave velocity ¢,(r) = ¢, = const is known. It is
thus also assumed that inequalities (2.1), (2.5) and (2.6) are valid. Furthermore,
it is assumed that

|800(1")] /<00 (')) < 1. (4.2)

The linearized acoustic equations of the system under consideration may
be obtained from the general equations of flow, by omitting all the higher order
terms in small acoustic disturbances. The acoustic disturbances under consi-
deration in the present paper are assumed to be the periodie fluctuations, of
the form given by equations (2.19)—(2.20), in the density Apo(r,?), pressure
Ap(r,t) and the velocity »(r,t) of the liquid about the equilibrium values

o(r,t) =e(r), B(r,1) =p, =const, wv(r,i)=0, (4.3)
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respectively. The fluctuations are assumed to be adiabatic, i.e.

do(r,1)
dt
subject to the rules given under equation (3.1) for ¢ = 0 or i =3s.

It is assumed [1] that the equations of flow in the case under consideration
have the following form:

)
2D

’ (4.4)

—‘—I%—{— o(r, )ydive(r,t) =0, (4.5)
s Dy vy <o (4.6)

dt

In order to determine the range of applicability of the nonviscous emulsion
approximation given by equations (4.5) and (4.6), we have to introduce appro-
priate dimensionless variables into Navier-Stokes equation. In this way it
can be verified that the nonviscous emulsion approximation is justified if

Liw/n » 1, Lloo(r')>[n> 1, 2n{e(r'))[e > a, (4.7)

where 7 is the kinematic viscosity and a is the amplitude of the oscillations.
Combining equations (4.4), (4.5) and (4.6) we obtain [1] the first order acoustic
-equation
0* dp(r, 1)
a2
where ¢;(r) = ¢,(r') and VIng(r) # 0 if r is within the domain V', and ¢;(r)
= ¢, = const and VIng(r) = 0 if » is outside the domain ¥’ or on the boundary
of V.
By substituting

VE(dp(r, 1) = (o(r))~* +VIng(r)- V(dp(r, 1)), (4.8)

Ap(r,t) = Ap(r)e'™t = Ap(r)e™sd, (4.9)
we obtain
(V2+K;) Ap(r) = kg Uy(r) Ap(v), (4.10)
where U,(r) is given, to the first order, by the expression
Up(r) = U(r)+(1/k5 < (r))) V(da(r)- V, (4.11)

k, and U(r) are given by formulae (3.2) and (2.2), respectively.

The pressure disturbance Ap(r,t) is taken as a sum of a monochromatic
travelling plane wave (the incident wave) P,e““"**" gsuperposed on another,
called the scattered wave, Ap,(r)e’. Thus the solution of equation (4.10)
is taken as

Ap(r) = Pye™s™ 4 Ap,,(r). (4.12)
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The incident wave Pye™s™

of U,(r) = 0. The assumption
|4pgs (1)] < |Pye™s™| (4.13)

is the solution of equation (4.10) for the case

leads to
Apgy (1) = (1[r) 4, (r) ™", (4.14)

where A, (r) is given by formula (3.7) if U(r) is replaced by U, (r), and ¢™s -
is replaced by Pye™s”. Using the assumptions (2.1), (2.5), (2 6), and (3.8),
we arrive at the approximate (to first order) integral expression

C_BP, (. o) ik, iy 5
4,(r) ==~ f[z o Gk V(é@('r))]e ddr, (4.15)

Vf

where K is given by formula (3.10). These same assumptions together with
the assumptions of (2.18) and formulae (2.16), (3.11) and (3.12) enable us to
write, with first order accuracy,

B .
Upe )1y = =2 [ y(@)o o, (4:16)
7

where

ks Py V' aco(r)) k- K (aatr')) ]
i o 2 , (417
» = g m>[ ( ST RGN\ 0 hud? U1

and @ is given by formula (3.11). In the case of liquids (emulsion) the following
inequality [3] is valid:
k,-K 6@(?")) i 2 (Oco(r'))
v, :
Oy N0 - gl

ks@(r)> \ 0B 5|
Thus B, may be calculated, with the desired degree of accuracy, from the

following formula:
4 p2 2
B, = B qopm [ (4.19)
=0

(4.18)

1672

Formula (4.16) then agrees with the relevant formula given in [5].
Substituting into (4.16), (4.19) the relations

Iy = APy, I = A{|dps(r)]*), A = const, (4.20)
we obtain, after integrating in all directions (K being the polar axis):

oy k4V 2 dey(r') 2 @ 4
Ly = Lo <(36) >[c'( & )M] of oy (@) sinKods,  (4.21)
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where I, and I, denote the intensity of the incident and scattered waves,
respectively. This relation can be regarded as an integral equation for the
correlation function y(z). Using the Fourier integral transformation for odd
function and formulae (2.13), (3.16) we finally obtain

i ~ , Sin Ko ' g . el
y(@) = [ of LR dK] [ of IK dK] : (4.22)

w = const, r = const.
Formula (4.22) enables us to determine the correlation function y () from
the angular distribution of the intensity of the wave scattered by a random
isotropic nonviscous emulsion.

5. Final remarks

Tt has been shown that it is possible to determine the correlation function
y(z) from the angular distribution of the scattered scalar potential. This may
be done using formula (3.17). However, formula (3.17) has rather theoretical
value. In contrast to formula (3.17) the basic results of sections 3 and 4 have
a practical value. With the help of formulae (3.18) and (4.22), their value can
be seen in the fact that those enable us to determine the correlation function
y(«) from the appropriate measurements of the angular distribution of the inten-
gity of the wave scattered by a random isotropic granular medium. The function
() which drops from 1 to 0 indicates the average extension of inhomogeneities.
As a measure for their size we could adopt the value L, of # for which y(x) .
becomes equal to 1/e.
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