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THE BOWED STRING AS THE TWO-TERMINAL OSCILLATOR

GUSTAW BUDZYNSKI, ANDRZEJ KULOWSKI

Institute of Telecommunication, Gdansk Technical University

The paper presents a method of the evaluation of the shape of bowed
string osecillations. The method employs the analogy between the bowed string
and the electrical, two-terminal oscillator. The velocity-dependent frietion force
between string and bow, investigated experimentally many years ago, was applied
as a stimulating funetion of the oscillator. The evaluated shapes and amplitudes
are in good agreement with experimental results.

1. Introduction

The analysis of the generating process of bow-sustained string vibrations
is a classical, but still valid subject in the field of both musical acoustics and
the theory of oscillations. The reality of this problem results from the fact
that the successive investigations yield merely approximate solutions because
the string vibration maintenance mechanism is highly complicated.

It should be remembered that the bow simultaneously generates transverse,
longitudinal and torsional vibrations of the string as well as of its fixed points,
with the consequent so-called octave vibrations [11]. All these vibrations in-
teract by superposition at the incommensurate frequencies of their individual
modes [8].

It is to be noticed, moreover, that the string corresponds to a distributed-
-constant system where propagation conditions affect the shape of vibrations.
Moreover, string vibrations are highly nonlinear due to nonlinear relation
between transverse, longitudinal and torsional elastic forces and their corre-
sponding displacements. Also the bow, vibrating jointly with the string, brings
other nonlinear effects into string motion [7]. Thus, many papers devoted
to the vibration theory of strings, deepening the analysis of various types of
nonlinearities, disregard the nonlinear problems which arise from the excita-
tion mechanism, i.e. from the bow-string excitation [14, 15].
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The complexity and difficulty of the bowed string vibration maintenance
analysis justifies the interest which accompanies subsequent trials of finding
approximate solutions of the problem.

Although the nature of bowed string oscillations has been thoroughly in-
vestigated already in the XIXth century by HeLvuoLrz [13] the mechanism
of itis excitation into self-sustained oscillations remained an ambiguous problem
for a long time. Successful trials of solving it up began about sixty years ago
with CHARRON’S thesis [3].

The author investigated with a special attention the dependence of the
friction force between bow and string upon their mutual velocity acting as the
so-called stimulating function in the process of vibrations generation (6]

Giving up to present here the results of numerous contributions to the
problem of the self-oscillating bowed string, it should be mentioned that rela-
tively frequent misinterpretations of cbserved phenomena may be found in the
literature of the subject. An interpretation of a typical oscillogram of the
string velocity versus time, where parts of the vibration period corresponding
to intervals of the steady and of the varying velocity are obviously interchan-
ged, may serve as an example [6]. This interpretation, given by authors of many
outstanding papers on the vibration theory of the violin, proves that some
important problems bere are still to be studied and explained.

A friction force versus velocity diagram, presented in a JASA paper [12],
provides another example. A continuous curve showing zero friction force at
zero relative velocity is given there, which is discrepant from all typical diagrams
of this kind and from measured characteristics of string-bow systems S8,

Friction characteristics at zero velocity have necessarily a discontinuity
called dead zone. It plays an essential role in vibrations maintenance, providing
proper conditions for a stimulating function exist.

So, it seemed reasonable to examine once more the problem of string
excitation by a bow, even in a simplified way.

Attempting an analytical formulation of the problem the following as-
sumptions have been accepted:

— only transverse vibrations are considered, as energetically prevailing,

— lumped-constant mechanical system is assumed as a string model,

— the damping of the free vibrating string is provided to be negligible
in comparison with the bowed string one.

2. Bow-string system as a two-terminal oscillator

String vibrations maintained by permanent bow motion are typical self-
-sustained oscillations. Therefore, a bow-string system may be analysed as
a mechanical oscillator. Although description methods of mechanical systems,
based on the theory of electrical oscillators, are not frequently applied, such
a procedure may be easily adopted by the use of electromechanieal analogies.
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The considered case of a string-bow oscillator may be presented as the
electrical circuit shown in Fig. 1. This circuit permits the formulation of me-
chanical string motion equations (2) as an equivalent of the electrical voltage-

Fig. 1. Two-terminal osecillating system: a) mechanical system, b) its electrical motional
analogue

-current equations (1). The corresponding quantities of (1) and (2) are coupled
by the motional analogy:

s ]/fr(u) (> -k (1)
dr c b Gl s

v =tlVLC, i=i,VL|0 = ®VLC,

where
i — variable quantity proportional to coil current i,, ® — magnetic flux in
the coil;
dv ]/ g, df
e s | F ) — —_— =P 2
v o, ( ). s T 5 (2)

t =tVO,M,, f=fVC M, =xlVCM,,

where

f — variable quantity proportional to force f’-applied to string compliance
(see Fig. 1), # — string displacement.

The nonlinear function F(v) of equation (2) represents the friction force
between the bow and the string as a function of the relative string velocity.
The function values found empirically by CHARRON [3] are presented in Fig. 2
given in their original form. It is obvious that this function does not depend
on the sense of the bow movement, hence the curve T'(v,) can be completed
antisymmetrically to the left.

Assuming the string absolute velocity as an independant variable, i.e.
transferring the curve 7'(v,) by the value of bow velocity V,, we obtain for-
mula (3). It performs the role of a stimulating function (see Fig. 3), like similar
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negative resistance functions do in typieal two-terminal electrieal oscillators [1],

Tysign(v+V,)

F s
O i kR

(3)

where V, denotes the bow velocity [m/s], & — the bow ecolophanying factor.
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Fig. 2. Friction force between bow and string as a function of its relative velocity [3]. The
dependence is given by the formula #(v,,) = T/(1+ kvy), where T, — static friction foree [N],
k — bow colophanying factor
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Fig. 3. Bow acting as the string stimulating function

3. Solution of the string motion equation

Equation (1), with nonlinearity given by formula (3), describes self-sus-
tained oscillations. The equation variables f(7) multiplied by a constant factor
(C,M,)'"? and wv(r) represent the string displacement and the absolute string
velocity. Since analytical solutions of this equation type are not available,
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a numerical method has been used. The method enables to calculate [10] steady-
_state values of v(r) and f(z). It is also possible to find limit cycles of the equa-
tion by means of the widely known Lienard’s graphical construction, as shown
in Fig. 4. .
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Fig. 4. Limit cycle of string vibrations. Exciting in intervals 1-2, 2-3, 4-5; damping in
intervals 3-4, 5-1
String velocity: a) does not exceed bow velocity, b) exceeds bow veloeity

Both numerical caleulations and graphical method confirm the possibility
of an increase of the string veloeity above the bow velocity [6]. Really, at ap-
propriately chosen movement parameters, one can observe an apparently
paradoxical phenomenon of the string preceding the bow during a part of
a period (Fig. 4b, ba). :
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Fig. 5. Shapes of solutions of string motion equations. The following values of the parame-
ters ¥, Ty, k of equation (3) are taken: a) 0.8; 0.1; 0.9; b) 0.4; 0.53; 0.415 (empirical values
[2, 3]); ¢) 0.2; 0.9; 0.9; d) 0.15; 1.8; 1.8; e) computer printout from which the function v (7)
shown in Fig. 5¢ has been derived. Other functions have been formed in a similar way
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Results of numerical calculations (see Fig. 5) show that the saw-tooth
shape of a string displacement as a function of time is not only one possible,
although it was just so presented in papers [8, 13].

Vibrations of the saw-tooth type can be produced only in a relatively
narrow range of parameter values which condition the oscillation maintenance.
Then the saw-tooth shape of vibrations seems to be a local rather than a general
property of a bowed string motion.

4. Concluding remarks

The presented method of the evaluation of the bowed string shape leads
to results being in accordance with those encountered in related papers [4, 5, 11].
Its application may permit to find several quantitative relations desecribing
more precisely properties of the vibrating bowed string.

Beside of musical acoustic applications this method may be useful in
studies on similar vibrations oceurring in mechanical system with frietional
stimulation.

Thus the bowed string may be used as a model of a vibrating system.
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