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The preparation of an experiment is described and measured values of elastic constants
of the piezoelectric LiTaO3 crystal, which belongs to the rhomboedral symmetry system,
are given. As the experimental method, the Brillouin laser light scattering was applied
and the constants from the hypersonic range of frequencies were measured. Appropriate
conditions for the experimental configurations were determined by the use of a formalism
based on the looking for eigenvalues of a so-called “characteristic matrix” which is a
function of direction of the acoustic wave propagation and the elastic constants of the
medium. Not all the measurement results are in full agreement with calculations based
on ultrasonic data. A dispersion in the velocity of the acoustic waves can be observed
for some direction of propagation due to the elastic constant changes in the hypersonic
frequency range.

1. Introduction

Brillouin light scattering experiments have been well known for many years as a very
useful method for the observation of acoustic phonons in the hypersonic range, both
in transparent (bulk phonons) [1–4] and nontransparent media (surface phonons) [5–6].
From the quantum point of view, the creation and annihilation processes of phonons by
photons are responsible for the typical Brillouin spectrum in that lines of lowered and
increased frequency can be observed.

The present calculations are based on the classical theory of elasticity and classical
electrodynamics, and in particular on the Newton’s second law and momentum conser-
vation which connects the wave vector of the incident light ~k with the wave vector of the
scattered light ~k′ and the wave vector of the acoustic wave ~q

~q = ~k′ − ~k. (1)

The equation of motion of the acoustic wave is given in the following form

Tij,j = ρüi , (2)
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where Tij is the stress tensor, ρ is the density of the medium, and ui is the displacement
at the given point caused by the acoustic wave. The left side of the above equation, which
is the spatial derivative of the stress tensor, is equal to

Tij,j = cE
ijklSkl,j − iχjenijEn,j (3)

and was derived from the formula

Tij = cE
ijklSkl − enijEn , (4)

where, both in (3) and (4), we can recognize the elasticity tensor cE
ijkl obtained at the

condition of a constant electric field, at the strain tensor Skl, the piezoelectric tensor enij

and the electric field En induced by the acoustic wave due to the piezoelectric effect.
The χj are components of a unit-length-vector in the direction of the wave vector. This
vector appears in both the displacement given by

ui = u0i

[
ei(~χ·~r−ωt) + e−i(~χ·~r−ωt)

]
, (5)

and in the stress-induced electric field

En = E0nei(~χ·~r−ωt). (6)

The equality of phases in the displacement and in the electric field formulas means that
the electric field is coupled by a component parallel to the direction of the acoustic wave
propagation. Taking into account the dependence of the dielectric displacement on strains
in a piezoelectric medium

Dm = emklSkl + εS
mnEn , (7)

where εS
mn is the dielectric constant (at constant strain) and taking advantage of the first

Maxwell equation Dm,m = 0, where Dm are the components of the electric induction
vector, we have

emklSkl,m + εS
mnEn,m = 0. (8)

In this way, we obtain a formula for the electric field

En,j = −enklSkl,m

iχmεS
mn

= −emklχkχmul

iχmεS
mn

, (9)

in that we have taken into account Eq. (5) and the following simple formulas

Skl,j = uk,lj = −χlχjuk (10)

and
Skl,j = ul,kj = −χkχjul (11)

derived from the definition of the strain tensor

Skl = 0.5 · (uk,l + ul,k). (12)

By substituting (3), (9) and (11) into the equation of motion (2) the following relation
can be obtained

−cE
ijklχjχluk − enijemklχnχm

εS
mnχmχn

· χjχluk = −ω2ρukδik (13)
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which is equivalent to a set of three independent linear equations, corresponding to
three acoustic waves of different polarization. The equations result from the following
determinant ∣∣∣∣

(
cE
ijkl +

enijemklχnχm

εS
mnχmχn

)
χjχl − ω2ρδik

∣∣∣∣ = 0. (14)

The above equation defines the elastic constants modified by the piezoelectric effect and
named in the literature as piezoelectrically stiffened elastic stiffness coefficients [7] or
effective elastic constants [8]; an eigenproblem for the characteristic matrix defined as
Qik = cef

ijklχjχl [8, 9, 10] can be recognized. Equation (14) can now be rewritten as
follows

|Qik −Xδik| = 0. (15)

The eigenvectors ~γ of the Qik matrix describe states of polarization of the acoustic waves;
a square root of the eigenvalues X, divided by the density of the medium, informs us
about the speeds of sound.

The elastic constants can be expressed in a matrix form. Its well known symmetry
for the rhomboedral crystal,

cij =




cE
11 cE

12 cE
13 cE

14 0 0

cE
12 cE

11 cE
13 −cE

14 0 0

cE
13 cE

13 cE
33 0 0 0

cE
14 −cE

14 0 cE
44 0 0

0 0 0 0 cE
44 cE

14

0 0 0 0 cE
14 0.5

(
cE
11 − cE

12

)




, (16)

is however changed for the effective elastic constants modified by the piezoelectric effect

cef
ij =




cef
11 cef

12 cef
13 cef

14 0 0

cef
12 cef

22 cef
23 cef

24 0 0

cef
13 cef

23 cef
33 0 0 0

cef
14 cef

24 0 cef
44 0 0

0 0 0 0 cef
55 cef

56

0 0 0 0 cef
56 cef

66




. (17)

The main purpose of this work was the measurement of the elastic constants of the
LiTaO3 piezoelectric crystal by Brillouin laser light scattering. This consists in measuring
the changes of the photon frequencies by inelastic scattering on acoustic phonons near
the origin of the first Brillouin zone.

The article provides information about four kinds of scattering configurations labeled
by A, B, C, D (Fig. 1) in which the angle between the direction of the incident and
scattered light was equal to π/2.
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Fig. 1. Graphic definition of the experimental configurations useful for the determination of the elastic
constants. Descriptions: ~k – wave vector of the incident light, ~k′ – wave vector of the scattered light. The

figure provides also components of the wave vector of the acoustic wave (χj).

2. The experimental-scattering configurations

The present section provides detailed information about the characteristic matrix for
the mentioned experimental configurations and its eigenvalues. The eigenvalues contain
information about frequency, polarization and velocity of the acoustic wave and, conse-
quently, information about the investigated elastic constants.

The measurements were done on an arrangement the main elements of which are as
follow: a single-mode ion-argon laser working at 514.5 nm with a power of about 100 mW,
a scanned Fabry–Perot single-pass pressure interferometer and a device for single photon
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counting (PTI-614 analog-digital unit from Photon Inc.) with a Hamamatsu R-4220P
photomultiplier. The systematic error of the phonon frequency measurement, induced by
the experimental arrangement and the numerical treatment of the data, was equal to
0.15 GHz. The statistical errors depended on the specific measurement and were in the
range from 0.04 GHz to 0.27 GHz; in most cases, however they were equal to 0.08 GHz.
The total error (standard deviation) for the measured frequency was calculated for the 0.7
level of confidence. All the spectra were achieved in the linear range of pressure changes
[11, 12]. This means that the time scale is linearly proportional to frequency.

2.1. The A configuration — determination of the elastic constant cE
11

The A configuration (see Fig. 2a) is suitable for the determination of the cE
11 elastic

constant. It can be calculated from the Q11 element of the characteristic matrix because
Q11 = cE

11. The other values of the characteristic matrix elements are as follows:

Q22 =
[
0.5 · (cE

11 − cE
12

)
+

e16e16

εS
11

]
,

Q33 = cE
44 +

e15e15

εS
11

,

(18)
Q23 = cE

14 +
e15e16

εS
11

,

Q31 = 0, Q12 = 0,

where eij are the piezoelectric tensor elements written in the double-index formalism.
The eigenvalues of the Qij matrix are equal to

X1 = cE
11 ,

X2/3 = 0.5

[(
0.5(cE

11 − cE
12) + cE

44 +
e16e16 + e15e15

εS
11

)

±



(
0.5(cE

11 − cE
12) + cE

44 +
e16e16 + e15e15

εS
11

)2

(19)

− 4

[(
0.5(cE

11 − cE
12) +

e16e16

εS
11

)(
cE
44 +

e15e15

εS
11

)
−

(
cE
14 +

e15e16

εS
11

)2
]1/2





.

It is easy to see that the equation cE
11 = X1 determines the investigated elastic

constant. The acoustic wave frequency observed experimentally, associated with the X1

eigenvalue, was equal to 33.74±0.16 GHz. The other eigenvalues are smaller. This means
that a quasi-longitudinal acoustic wave was responsible for the X1 value. The X2 and
X3 values provide information about the quasi-transverse waves of frequency f and the
velocity v. The formulas adequate for these parameters are as follows:

f =
n

λ

√
2X

ρ
(20)
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Fig. 2. Example of the Brillouin spectrum of the LiTaO3 crystal: a) A configuration — full spectral
range FSR equal to 75 GHz. Descriptions: L – longitudinal wave, T1 – quasi-transverse wave, T2 –
quasi-transverse wave, b) A configuration — full spectral range FSR equal to 37.5 GHz. Descriptions:
T1 – quasi-transverse wave, T2 – quasi-transverse wave, c) B configuration — full spectral range FSR
equal to 75 GHz. Descriptions: L – longitudinal wave, T – transverse wave, d) B configuration — full

spectral range FSR equal to 37.5 GHz. Description: T – transverse wave.

and

v =

√
X

ρ
, (21)

where n is the refractive index of the medium for an ordinary beam, X is the eigenvalue
of the characteristic matrix and ρ is the density of the medium. In the present paper,
numerical results were obtained for the wave vector of the acoustic wave |~χ| = 1. Figures
2a and 2b show examples of the Brillouin spectra for two different full FSR spectral
ranges of the Fabry–Perot interferometer [12]. The spectrum in Fig. 2a shows all three
lines arising from one longitudinal and two quasi-transverse acoustic waves. The FSR
chosen for the next spectrum (Fig. 2b) enables a detailed observation of the two quasi-
transverse frequency waves. The signal from the longitudinal wave is hidden in the strong
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peak resulting from elastic scattering (the Rayleigh line). Table 1 gives the values of the
calculated eigenvectors, eigenvalues, frequencies and velocities from the elastic constants
of Smith et al. measured ultrasonically [13], as well as a comparison with the results of
the present measurements [14].

Table 1. Comparision of the acoustic wave velocity and frequency calculated from the values of the elas-
tic constants measured ultrasonically with the velocity and frequency calculated from the hypersonic
values of the elastic constants for the A configuration. Eigenvectors (~γ) and eigenvalues (X1, X2, X3)

calculated from the ultrasonic elastic constants.

Descriptions Longitudinal wave Quasi-transverse wave Quasi-transverse wave
(X1) (X2) (X3)

Calculated eigenvectors [1, 0, 0] [0, −0.6043, 0.7967] [0, 0.7967, 0.6043]

Calculated eigenvalues (1010 Pa) 23.30 12.97 8.30

Calculated velocities (m/s) 5592 4172 3338

Calculated frequencies (GHz) 33.97 25.35 20.28

Measured velocities (m/s) 5554± 26 4214± 28 3352± 25

Measured frequencies (GHz) 33.74± 0.16 25.60± 0.17 20.36± 0.15

Measured eigenvalues (1010 Pa) 22.98± 0.21 13.23± 0.18 8.37± 0.13

2.2. The B configuration – determination of the elastic constants cE
33 and cE

44

The Q33 element of the characteristic matrix provides information about the elastic
constant cE

33. The cE
44 value can be determined from the Q11 and Q22 elements which are

equal to one another. All the elements of the characteristic matrix and its eigenvalues
are written as follows:

Q11 = cE
44 , Q22 = cE

44 , Q33 = cE
33 +

e33e33

εS
33

,

Q23 = 0, Q31 = 0, Q12 = 0,
(22)

X1 = cE
44 ,

X2 = cE
44 , (23)

X3 = cE
33 +

e33e33

εS
33

.

It is obvious that the equation cE
33 = X3−e33e33/εS

33 is useful for the determination of
the elastic constants cE

33. The values of the piezoelectric eij constants were taken from Ref.
[8] and from Ref. [9, 13] for comparison. There are no information about the experimental
errors in these papers. Therefore the results of current calculations were doubled in
this case. The experiment acoustic wave frequency, responsible for the X3 eigenvalue
measurement, was equal to 36.43±0.19 GHz. The remaining eigenvalues are smaller. This
means that a quasi-longitudinal acoustic wave was responsible for the X3 value. The X1

and X2 provide information about frequencies and velocities of the quasi-transverse waves
(23). Their frequencies are equal but possess perpendicular polarizations. The values are
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equal to 20.94 ± 0.16 GHz. In this way, the waves are degenerated. Brillouin spectra
similar to those of the A configuration can be found in Figs. 2c and 2d. Table 2 contains
the values of the calculated eigenvectors, eigenvalues, frequencies and velocities from the
elastic constants measured ultrasonically, as well as with the results of measurements for
the B configuration for comparison.

Table 2. Comparision of the acoustic wave velocity and frequency calculated from the values of the elas-
tic constants measured ultrasonically with the velocity and frequency calculated from the hypersonic
values of the elastic constants for the B configuration. Eigenvectors (~γ) and eigenvalues (X1, X2, X3)

calculated from the ultrasonic elastic constants.

Descriptions Longitudinal wave Transverse wave Transverse wave
(X3) (X1) (X2)

Calculated eigenvectors [0, 0, 1] [1, 0, 0] [0, 1, 0]

Calculated eigenvalues (1010 Pa) 28.45 9.40 9.40

Calculated velocities (m/s) 6180 3552 3552

Calculated frequencies (GHz) 37.54 21.58 21.58

Measured velocities (m/s) 5997± 31 3447± 26 3447± 26

Measured frequencies (GHz) 36.43± 0.19 20.94± 0.16 20.94± 0.16

Measured eigenvalues (1010 Pa) 26.79± 0.27 8.85± 0.14 8.85± 0.14

2.3. The C configuration – determination of the elastic constant cE
66

The C configuration is suitable for the measurement of the elastic constant cE
66. Its

value is given by the Q11 element of the characteristic matrix. All the elements of the
characteristic matrix and its eigenvalues are as follows:

Q11 =
1
2

(
cE
11 − cE

12

)
, Q22 = cE

11 +
e22e22

εS
11

, Q33 = cE
44 +

e15e15

εS
11

,

Q23 = −cE
141 +

e22e15

εS
11

, Q31 = 0, Q12 = 0,
(24)

X1 =
1
2

(
cE
11 − cE

12

)
,

X2 =
1
2

[
cE
11 + cE

44 +
e22e22 + e15e15

εS
11

−
((

cE
11 + cE

44 +
e22e22 + e15e15

εS
11

)2

−4 ·
((

cE
11 +

e22e22

εS
11

)(
cS
44 +

e15e15

εS
11

)
−

(
−cE

14 +
e22e15

εS
11

)2
))1/2


, (25)

X3 =
1
2

[
cE
11 + cE

44 +
e22e22 + e15e15

εS
11

+

((
cE
11 + cE

44 +
e22e22 + e15e15

εS
11

)2

−4 ·
((

cE
11 +

e22e22

εS
11

)(
cS
44 +

e15e15

εS
11

)
−

(
−cE

14 +
e22e15

εS
11

)2
))1/2


.



STUDY OF THE ELASTIC PROPERTIES 31

The acoustic wave frequency observed in the experiment and responsible for the
measurement of the eigenvalue X1, was equal to 21.45 ± 0.19 GHz. The values of the
calculated eigenvectors, eigenvalues, frequencies and velocities as well as a comparison
with hypersonic results of measurements for the C configuration are given in Table 3.

Table 3. Comparision of the acoustic wave velocity and frequency calculated from the values of the elas-
tic constants measured ultrasonically with the velocity and frequency calculated from the hypersonic
values of the elastic constants for the C configuration. Eigenvectors (~γ) and eigenvalues (X1, X2, X3)

calculated from the ultrasonic elastic constants.

Descriptions Quasi-longitudinal wave Quasi-transverse wave Transverse wave
(X3) (X2) (X1)

Calculated eigenvectors [0, −0.9857, −0.1688] [0, 0.1688, −0.9857] [1, 0, 0]

Calculated eigenvalues (1010 Pa) 24.39 10.88 9.30

Calculated velocities (m/s) 5722 3821 3533

Calculated frequencies (GHz) 34.76 23.21 21.46

Measured velocities (m/s) − 3946± 44 3530± 31

Measured frequencies (GHz) − 23.97± 0.31 21.45± 0.19

Measured eigenvalues (1010 Pa) − 11.60± 0.26 9.28± 0.16

2.4. Indirect determination of the elastic constant cE
12 from the A and C configurations

The elastic constant cE
12 was calculated from the following condition

cE
12 = cE

11 − 2 · cE
66 , (26)

where the cE
12 value was taken from the A configuration (19) and that of cE

66 from the C
configuration (25).

2.5. The D configuration. Indirect determination of the elastic constant cE
14 from the C,

B and D configurations and indirect determination of the elastic constant cE
13 from

the A, B and D configurations

All the elements of the characteristic matrix (not equal to zero) and their eigenvalues
for the D configuration are as follows:

Q11 =
1
2

(
cE
66 − cE

44

)
+ cE

14 ,

Q22 =
1
2

(
cE
11 +

e22e22

εS
11 + εS

33

)
+

1
2

(
cE
44 +

e15e15

εS
11 + εS

33

)
+

1
2

(
−cE

14 +
e22e15

εS
11 + εS

33

)
,

(27)

Q33 =
1
2

(
cE
44 +

e15e15

εS
11 + εS

33

)
+

1
2

(
cE
33 +

e33e33

εS
11 + εS

33

)
,

Q23 =
1
2

(
−cE

14 +
e22e15

εS
11 + εS

33

)
+

1
2

(
cE
13 + cE

44 +
e22e33 + e15e15

εS
11 + εS

33

)
,
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X1 = Q11 ,

X2 =
1
2

[
Q22 + Q33 +

√
Q2

22 + 4Q2
23 − 2Q22Q33 + Q2

33

]
, (28)

X3 =
1
2

[
Q22 + Q33 −

√
Q2

22 + 4Q2
23 − 2Q22Q33 + Q2

33

]
.

The elastic constant cE
14 was calculated from the following formula

cE
14 = X1 − 1

2
· (cE

66 + cE
44), (29)

where the X1 value was taken from the D configuration (28) and the remaining values,
cE
66 and cE

44, were taken from the C (25), and B configurations (23), respectively.

Table 4. Comparision of the acoustic wave velocity and frequency calculated from the values of the elas-
tic constants measured ultrasonically with the velocity and frequency calculated from the hypersonic
values of the elastic constants for the D configuration. Eigenvectors (~γ) and eigenvalues (X1, X2, X3)

calculated from the ultrasonic elastic constants.

Descriptions Quasi-longitudinal wave Quasi-transverse wave Transverse wave
(X2) (X3) (X1)

Calculated eigenvectors [0, −0.9857, −0.1688] [0, 0.1688, −0.9857] [1, 0, 0]

Calculated eigenvalues (1010 Pa) 24.39 10.88 9.30

Calculated velocities (m/s) 5722 3821 3533

Calculated frequencies (GHz) 34.76 23.21 21.46

Measured velocities (m/s) − 3946± 44 3530± 31

Measured frequencies (GHz) − 23.97± 0.31 21.45± 0.19

Measured eigenvalues (1010 Pa) − 11.60± 0.26 9.28± 0.16

Table 5. Summary of the measurements of the elastic constants of the rhomboedral LiTaO3 crystal.
Comparision of the measured (hypersonic) and ultrasonic values of the elastic constants.

Elastic Experimental Measured elastic Ultrasonically measured Ultrasonically measured
constant configuration constant cE

ij elastic constant cE
ij [13] elastic constant cE

ij [8]
(1010 Pa) (1010 Pa) (1010 Pa)

cE
11 A 22.98± 0.21 22.98 23.3

cE
33 26.48± 0.27a 27.98 27.5

B
25.84± 0.26b

cE
44 B 8.85± 0.14 9.68 9.4

cE
66 C 9.28± 0.16 9.29 9.3

cE
12 A, C 4.42± 0.53 4.40 4.7

cE
14 D, B, C 0.45± 0.29 −1.04 −1.1

cE
13 5.36± 0.47a 8.12 8.0

D, A, B
5.05± 0.44b

a – The piezoelectric constants eij were taken from Reference [13] and permittivities εS
ij were taken from

Reference [9].
b – The piezoelectric constants eij and permittivities εS

ij were taken from Reference [8].
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The cE
13 value is hidden in the X3 eigenvalue (28), and in the Q23 element of the

characteristic matrix. To solve this problem, the values of the elastic constants cE
33 and

cE
44 must to be taken from the B configuration and the cE

11 is available from the A
configuration, so that the cE

13 elastic constant is calculated indirectly from 4 values.
Therefore their experimental error is relatively large and equal to 8.8%. Table 4 shows
the values of the calculated eigenvectors, eigenvalues, frequencies and velocities from
the ultrasonic data as well as a comparison with results of the measurements. Table 5
contains values of the measured elastic constants, their experimental errors as well as a
comparison with ultrasonic values.

3. Conclusions

A description of the appropriate choice of configurations required for the measurement
of the elastic constants of a rhomboedral piezoelectric crystal was given above. As an
example, the LiTaO3 crystal was investigated. The appropriate configuration means that
calculated quantities, such as eigenvalues of the characteristic matrix, frequencies and
velocities of hypersonic acoustic waves, possess a simple interpretation. This means that
the velocities and frequencies depending on the elastic constants in an evident form and
not only by pure numerical values. The discussion of a contrary example can be found
in Ref. 10.

The general conclusion is that the elastic constants cE
33, cE

44, cE
14, cE

13, for the hypersonic
range stayed weaker, if to compare their values with values measured ultrasonically, then
the subsequent values of velocities stayed lower. The elastic constants cE

11, cE
13, cE

66 are
not changed.

It was shown that the formalism based on the determination of the eigenvectors and
eigenvalues is very effective and provides a simple physical interpretation. The eigen-
vectors describe states of polarization of the acoustic wave and the square root of the
eigenvalues divided by the density of the medium informs about the speeds of sound.
However the presented calculations, based on the classical theory of elasticity and a
comparison with the Brillouin scattering measurements can not describe the divergences
obtained. More theoretical investigation is required to explain these facts in details.

We hope that the considerations and data given here are detailed enough to provide
an adequate description of the nature of the phenomenon.
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