ARCHIVES OF ACOUSTICS
2, 4, 267 (1977)

THE EQUIVALENT AREA AND ACTIVE MASS OF MICROPHONE MEMBRANES

RUFIN MAKAREWI(QZ, JACEK KONIECZNY

Chair of Acoustics, A. Mickiewicz University (Poznan)

The paper presents a proposed method for determining the equivalent
area and active mass of microphone membranes. It is based on an energetic
definition of these parameters and assumes a flat piston. It requires a knowledge
of the phase distribution and also of the displacement amplitude and velocity
over the whole surface of the real membrane. The methodology of measuring
these quantities is the subject of a separate publication. In these considerations
the effect of the wavelength, the direction of incidence and the effect of the
membrane shape on the active parameters are taken into account. Indirectly,
the manner of mounting the membrane at its border has also been considered.

1 Inn;nduction

The equivalent diagrams of electroacoustic transducers are generally con-
structed in the form of analogue systems with lumped paramete-s. For the analy-
sis of microphones the active parameters of the membrane are determined by
means of lumped parameters, including the equivalent area and the active
mass.

In this paper analytical relations are derived which permit the determi-
nation of both parameters assuming that the shape of the membrane, its sur-
face density, the phase, displacement amplitude and wvelocity distributions
are known.

The theoretical arguments used to obtain the relations mentioned above
were based on the equivalence of the work of the acoustic field and the kinetic
energy of the real membrane, assuming a flat piston. This approach is not new
but, to the authors’ knowledge, the equivalent area and the active mass have
not been consistently defined up to the present time, according to the assumed
equivalence with the simultaneous assumption that the phase distribution,
the displacement amplitudes and velocities are given a priori. (It is assumed
very frequently for example that the equivalent area of a membrane is its
cross-section in a plane normal to the axis of symmetry).
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2, The equivalent area of a membrane

The equivalent area S, of a membrane is the area of a vibrating flat piston
with an amplitude of vibration (4,,) equal to the maximum amplitude of
displacement of the membrane, normal to its surface. It is of such an area that
the mechanical force exerted upon it by an evenly distributed acoustic pressure
field does the same work as the forces actually acting upon the membrane.

This definition differs from the definition of the equivalent area formulated
by ZYszKOWSKT [5] in that instead of the formulation «equal to the maximum
displacement of the membrane normal to its surface ...» there is the expresion
«...equal to the amplitude at the centre of the membrane». This difference
can be explained by the fact that the latter considers a particular case of
a vibrating membrane: that for which the amplitude decreases with distance
from the axis of symmetry of the membrane. In the general case which will be
considered in this paper, the maximum normal displacement amplitude need
not occur at the centre of the membrane.

The proposed definition uses the normal component of the displacement amp-
litude because, when the viscosity of the air is neglected, the work to be per-
formed by the tangential component of the displacement of the membrane is
equal to zero. .

It is assumed that the shape of the fixed membrane is described by the
function

2z =f(r;9), (1)

and the orientation of any element 48 of the membrane is determined by the
angle of inclination a(r, ¢) of the tangent at the point (r, ¢ , 2) (Fig. 1).

Az

Fig. 1. The membrane whose shape at rest is described by the function 2 = f(r, ¢) (in cylin-
drical coordinates). a(r, ¢) denotes the angle of inclination of the tangent to the membrane
at-the point (r, ¢, 2)
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The border of the membrane will be assumed to be i the plane (r,p) and
is deseribed by r = R(¢) (Fig. 2). This delineates the boundary of the area
defined by the function z (formula (1)).'

Fig. 2. The border of the mem-
brane in the plane (r, ¢) des- #

eribed by the function r = E(p)

Let us calculate the work performed by the vibrating membrane. In the
general case the displacement amplitude A of the element 68 depends on its po-
gition: A = A(r,¢). (The dependence on z can be neglected because of the
dependence z <> (r, ¢) via formula (1).)

If we neglect the influence of the viscosity of the air, then the force actmg
on the element 68 will only be related to the normal component of the deflection
amplitude 4, (r, ¢) (Fig. 3).

When a wave of angular frequency o falls onto the membrane, then the
instantaneous value of the displacement of the element 48 from its equilibrium

Fig. 3. Components of the displacement amplitude of an element of the membrane 68 located
at the point (r, @, 2), in the normal direction 4, (r, p) and in a direction A, (r, ) parallel to
the z-axis
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position in a normal direction (Fig. 3) is a function of' the form
§ = A, (r, g)o o,

where 0(r, ¢) defines the phase of the displacement of the element 8. If the
acoustic pressure in the proximity of the element 48 is denoted by p, then the
work performed in displacing this element through a distance

dE = iwd,(r, p)e@tinm
is
oL = {p(r, ¢, 2)08}ds =
= {p(r,p,2)08}ind, (r,p)e @D @)

It can be seen from Fig. 3 that 68 cos a(r, ¢) is the projection of the surface
08 onto the plane (r, @), i.e.

08 cos a(r, @) = rdrdy,
whence
rdrdy

~ cos a(r, )’ 3)

The work dL done by forces acting on the whole membrane during a time
df is the sum of the components 4L obtained for all the individual elements 8.
Thus expression (2) must be integrated over the whole surface of the mem-
brane 8:

dL = ioddt [[p(r, ¢, 9) 4, (r, p)¢""P08.
S

It can be seen from equation (3) that the integration over the surface

of the membrane can be replaced by an integration over the area which is
its projection onto the plane (r, ¢):

Sian . Biv) i
. ' A i0(r, @)
dL :icoe“‘"dtf d(pf i h 28 AT L (4)
J g cosa(r, ¢)

If we further assume that a plane wave is propagating in a direction de-
fined by the wave vector k with modulus |k| = ¢ (where ¢ is the sound veloeity),
then at the point whose position is defined by the vector d (Fig. 4) the instant-
aneous value of the pressure will be

p = poei{mt+kd}. (5)

In a eylindrical coordinate system (7, ¢, 2) the components of the vector
d are the following:

d,=rcosp, d, =rsing, d, ==z
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Using the notation of Fig. 4 the components of the vector k take the form
v

0] @ bt
kx:?sindcos-y, k, =—sindsiny, Kk, =-—0co8d.
¢ e

Using the definition of the scalar product ab = a,b.+a,b,+a,b, Wwe
obtain

kd = % (r cosg 8ind cosy + 7 sing sind siny 4z cosd)

= —C: {r sind cos (¢ — ) + 2 cosd}.

Tig. 4. The angles y and & describing the direction of propagation of the plane wave, i.e.
the direction of the wave vector k s

Substituting in equation (5), we obtain an expression for the acoustic
pressure acting on the surface of the membrane, z = f(r, ¢), as

P(r,¢) = poe’ exp i {%r- 8ind cos(p —y) + C-U—f—(z;’—w cos 6}. (6)

It can be seen from Fig. 4 that this expression gives the magnitude of
the acoustic pressure at any point on the membrane only when the angle 4 is not
too large. The limiting value 8, of this angle, at which equation (6) is still
valid, depends on the curvature of the membrane described by the angle
a(r, ¢). The smaller this curvature is (i.e. the flatter the membrane), then greater
is the value of the boundary angle 6, (Fig. 5). It is possible to define d, as the
angle which is formed by the tangent, corresponding to the maximum value
of the angle a, with the positive z-axis. If the wave falls at an angle greater
than 4, certain areas of the membrane are in the «geometrical shade». To define
the value of the pressure there, it is necessary to use the complicated diffrac-
tion theory. In this paper we shall not consider such conditions, assuming
that the angle of incidence is always smaller than the boundary angle d,.
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Returning to equation (4), describing the work performed by the real
membrane in a time dt, we may substitute the pressure p(r, ¢) given by equation
(6) and obtain

27 R(p) 3 (r )
ar-= @'wg”‘"‘dtf dcpf i exp i{wr/c sind cos (¢ — y) +
0 cos a(r, @)
-+ MGOMJPG(T, (p)} rdr. (7)
! ¥4
M

ey
d-(1) o @
*7_ Josy
) 1) 2)
g /q'max>a'(max
-_—
M\
—

Fig. 5. The effect of the boundary angle d; on the maximum value of the angle of inelination
of the tangent to the membrane A

In view of the definition accepted for the equivalent area, we calculate
in turn the work performed by the moving flat piston. It will be assumed that
this piston has an area S8, (this is the equivalent area we wish to evaluate)
and vibrates with an amplitude equal to the maximum displacement amplitude
A,, under the action of the incident plane wave of amplitude p,.

The instantaneous value of the acoustic pressure on its surface is P
and the instantaneous value of the displacement is 7= A, e The work done
by the forces acting on the piston in time dt is

dL = {p8,}dn = iwp,e**8,A4,,. (8)

According to the definition accepted for the equivalent area 8,, this work
should be equal to the work performed by the forces acting on the membrane.,
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From (7) and (8) we obtain

2 R(g)

A, (r, @) l WY =
£ =14 f st B (o =
Uf ® PRTTET R cosl 2 siné cos (@ —y) -+

+6(r, qa)} rdr.
It can be seen from Fig. 3 that

A,(r,p) = A,(r, @) cos a(r; @), (10)

where A, (r, ) and A4,(r, ¢) denote components of the displacement amplitude
in the normal and z-axis directions, respectively.
Using this equation in formula (9), we finally obtain

2n R(g)

1 A (r, ¢) wr .

S = cnatray | [ o cost sing eos(p—y)+
ﬁOSG(TU, (Po) : : Az(lrﬂ: '900) 2

+M cosd -0 (r, 99)} rdr. )

In this formula f(r, p) determines the distance of each point of the mem-
brane at rest from the plane (r, ¢) (Fig. 1); R (¢) is the function describing the
shape of the border of the membrane on the plane (r, @) (Fig. 2). The angles &
and y determine the direction of the incident wave (Fig. 4), and A4, (», ) denotes
the amplitude of deflection of the membrane in the direction of z-axis, measured
in the neighbourhood of any point of the membrane (ry @). A (79, o) and a(ry, @,)
denote, respectively, the deflection amplitude in the direction of z-axis and
the angle of inclination of the element 88 (Fig. 3) in the proximity of the point
which is vibrating with maximum amplitude. in the normal direction 4,,.
Thus, assuming that 4, (r, ¢) is measurable, in order to determine the coordi-
nates of the point (r,, p,) and, consequently, A,(r,, ¢,) and a(r,, @), it i8 ne-
cessary to use equation (10), since only in this way we can find the maximum
value of the normal component 4,,. Equation (11) contains the quantity 6(r, ¢)
which denotes the phase of vibration of individual points of the membrane.

In order to define the equivalent area of the membrane, induced to vibrate
by a plane wave of angular frequency w, which falls onto the membrane from a
direction determined by the angles (y, 0) (Fig. 4), we must know the distri-
bution of vibration amplitudes 4,(r, p) and phases 0(r, @) at each point of
the membrane, whose shape is described by the functions f(r, @) and R(g) (the
angle a(r, ») can be determined from f(r, ¢)).

In the particular case of the membrane having axial symmetry or its
being excited by a plane wave propagating along the axis of symmetry, know -
ledge of the phases is superfluous. It can be assumed that 6 = 0 for each point,
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i.e. that the instant value of the displacement is
E = A(r)e™.

If the axis of symmetry of the membrane coincides with z-axis (Fig. 6),
then 6 = 0 and from (11) we obtain

R
27 A, (r) of (r)
8 oo (fAz(rn) cos{ : }rd’r, (12)

where E is the radius of the circle constituting the border of the membrane,
J{r) — the function describing its shape in the plane (r, z), and 7, — the point
at which the values of the normal component 4,(r,) = 4,(r,) cosa(r,) is the
greatest (a(ro) is the angle of inclination of the tangent at the point r,).

Fig. 6. The cross-section of an axially symmetrical membrane in the plane (r, 2); f(0) is the
fanetion deseribing the shape of the membrane for r = 0

If the wavelength A is considerably greater than the «height» of the mem
brane f(0) (Fig. 6), then

R 1
¢ A

In this case, after a series expansion of the function cos {of(r)/e}, it follows
from (12) that :
R ot R 2 4
8, ~ 2% { =(7) Pl oS ‘ I wf(fr)_} Shaltk rdr, (13)
cosa(ry) J A,(r,) cosa(ry) J | ¢ | 4,(r)

he second term being considerably smaller than the first.
If the maximum value of the amplitude occurs at the centre of the mem-
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brane (r, = 0), then cosa(r,) = 1 and we can make the approximation

R
A,(r)
B 211!22(0) rar. (14)

As was stated at the beginning, it is very often assummed that the equi-
valent area of the membrane S, is equal to the area of its projection onto the
plane (r, ¢), i.e. 8, = nR? (Fig. 6). From the relations which have been derived
from the definition of the equivalent area, on the assumption of the equivalence
of the work performed by the real membrane and a flat piston, it can be seen
that the equivalent surface cannot be equal to the projected one. For instance,
in considering equation (13) we see that S, = =R? only when the membrane is
flat (f(r) = 0), and each point is vibrating with the same amplitude A (r) =
const. It is obvious that the last condition cannot be satisfied because of the
necessity of mounting the membrane by its edges.

3. The active mass of the membrane

It is assumed that the active mass m, of the membrane is that mass which,
when vibrating with a velocity amplitude equal to the maximum velocity
amplitude of the membrane v,,, has a kinetic energy equal to the total kinetic
energy of the membrane.

Similarly as in the case of the equivalent area, this definition differs from
the definition stated in the monograph of ZvyszZKOWSKI [4] in that it does not
give the centre of the membrane the value v,, because in the general case the
maximum velocity amplitude can be recorded at any point.

If the instantaneous value of the velocity of vibration of the element
48 is

= ‘D(?", (P)et'{mt+'1’(‘r,w)},

then the time average of the kinetic energy is equal fo

1
OE, = IQ(Tr @)o8v3(r, @),

where o(r, @) is the surface density of the membrane.
Summing over the whole surface 8, we obtain the total kinetic energy

of the membrane:
1
f J r, @)os.

Using equation (3) we subsequently obtain

4f f gcos;a ’)‘?’) i (18)
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Let us assume that the velocity amplitude v(ry, ¢,) at the point (ry, )
is the maximum. According to the definition of the active mass m,, for the
mean kinetic energy we have

i
B, = v m,v*(7g, @) . (16)

From equations (15) and (16) we get

2 R(p) 2

e(r, p)vi(ry ) T

m, = | dg rdr. (17)
‘ . cosa(r, @)vi(r,, ®o)

In this expression o(7, ¢) denotes the surface density of the membrane
'which, in general, may change from point to point; R(¢) is the function describ-
ing the shape of the border of the membrane (Fig.2), while »(r,,¢,) and
v(r, ¢) denote the maximum velocity amplitude and the velocity amplitude
of the membrane vibrations, measured in the proximity of any point (r, ¢).
The methods of measuring these quantities and the displacement amplitude will
_ be presented in a subsequent paper.

For the particular case of axial symmetry and a homogeneous membrane
(Fig. 6) we have from equation (17),

R

Bl

N == 2,-:gf Ao B rdr. (18)
J cosa(r)vi(ry)

If the angle of inclination of the tangent to the surface of the membrane
a(r) is not too great (i.e. membrane is almost flat), then using the series expan-
sion

1 z it
s cosa(r) e W B
the right-hand side of equation (18) can be expanded as a series

R

2

N 21rgf 5 ) Td'rJrTrgf a2 (r)
g9 ) .

It can be seen that in this case it is not necessary to know the geometry
of the membrane (the function f(r)) in order to define the active mass m,,
since the succeeding terms of the series are very small in comparison with
the first.

Similarly as in the case of the equivalent area, we can see from the fore-
going equations that the active mass m, can be equal to the mass of the mem-
brane only when the whole surface of the membrane is vibrating with the same
amplitude (v(r, ) = const). Such a case is excluded because of the necessity
of mounting the membrane by its border.

v*(r)

- rdr-- ...

v2(ry)
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4. The equivalent area in a diffuse field

Formula (11), defining the equivalent area of a membrane in a plane
wave field, is based on the assumption that the wave falls at an angle § (Fig. 4)
which is smaller than the boundary angle §,(Fig. 5). This formula is in agre-
ement with the definition of the equivalent area §,. In this section a formula
describing the active surface of a membrane in a diffuse field will be derived.
It differs somewhat from the definition of §, accepted above as regards both
its form and its generality (compared with the formula (11)), and is therefore
derived separately.

From the assumed diffusivity of the field, i.e. the probabﬂlty that a plane
wave is incident on any element of the membrane 68 in a direction determined
by the angles (y, é) (Fig. 4), remaining at the same time within the solid angle

df2 = sin odddy,
is equal to
afo sinddddy

d d) = e . 19
p(y, 9) o o (19)

In this case 2x is the value of the solid angle which fills the half-space
Z > P

It can be assumed that the equivalent area of the membrane S, within
the field of the plane wave whose direction of propagation is determined by
the angles (y, ) is a random variable of these two quantities. This means that
the mean value S, (the expected value) at any moment is equal to

S—ffdpy, 7y 0).

Substituting for 8, and dp from formulae (11) and (19), and subsequently
integrating with respect to y and 4 so as to cover the whole of the solid angle 2,
we obtain

i R(®)

1 A (r, )
N LAY 2V Hr, g)rdr (20)
7 cosa(ry, ¢o) : % - A,(Tﬁ, Pq) ! ;
where
/2 4,4
H(r, ) =f sindds f cos{i‘;f sind cos (¢ — ) + ﬂ’;’_‘*’l cosé—i—ﬂ(r,(p)} 3.
0 0

# . (21)

In assuming the limits of integration for (0, to =/2), and for y(0 to 2x),
we introduce some error since waves from all possible directions can reach
only the elements 68 located on the top of the membrane. For any other
location there exist values of the angles y and ¢ for which the corresponding
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plane waves do not reach the element 8. For example, points in the «geomet-
rical shade» (Fig, 5) have waves corresponding to values of the angle ¢ greater
than 4,.

In order to have a convenient form of the formula determining the mean
value of the active surface §,, we assume the integration limits of equation (21).
It is, however, to note that this formula is valid only if the membrane is not
too convex, ie. if 6, > x/2 (Fig. 5).

It we subsequently assume that the membrane has the axial symmetry
and that its border is a cirele of radius R lying in the plane (r, ¢) (Fig. 6), we may
expect that in a diffuse field the phase of vibration 6 of all points of the mem-
brane will be equal (assuming, as in section 2, that 6 = 0).

The integration relative to y will be carried out using the identity coga =
o %(eia+e~ia):

ar T
o eet l b . r
f EXPIZHT 8iné eos(y——(p)ldy = 2 f exp{:};zT cos;;}dy.
0 0
According to WHITTAKER [2]
> T
Jer*ray = ndy(e),

0
where J,(z) is a zero-order Bessel function. Using these equalities we obtain

2n

f cos{c—uZ 8ind cos (¢ —y) 4 @f(r) cosa} = 2w cos [f-f(—r) cossséilJlJ {ﬂ gind;.
y ¢ ¢ P | ¢ f

Thus, the function H in (21) (with 6 — 0 and the axial symmetry assumed
for the membrane) has the form

/2
iy = 21'cf sind cos{

0

@/ (r) cosdl Jo (iji siné) dd.
¢ J ¢

Substituting cosd = », we obtain

Hir) = i21r f cOos { wfc(r) m} Jy (%r_ l/i———a;;)dm

0

Using integral tra.nsfofmation tables [1] we finally obtain

sinl(—U ]/r2+fi‘“(7)}
H(r) = 2n mc ety
2 g e
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Substituting this function into equation (20) we obtain an expression for
the mean value of the equivalent area of an axially symmetrical membrane
in a diffuse field:

r sin {ﬂ Vo f2(r)
- A (r) e

i 472 f
° = cosalre) ) A, (o)

e (22)
?l/’”z+f2(3’)

The notation in this formula is the same as in formula (12), which describ-
es the equivalent area of an axially symmetrical membrane induced to vibrate
by a plane wave.

As has already been stated, formula (22) is valid only if the membrane
is not too convex, i.e. if f(r) = 0 (4, — =/2). Thus in the conclusion we shall
refer only to the formulae derived in sections 2 and 3.

5. Conclusions

The method proposed in this paper for the determination of active para-
meters, together with the procedure of measuring the vibrations of a membrane
in a plane wave field, give a precise determination (according to the definition)
of the equivalent area and the active mass of mierophone membranes. Using
the method of trial and error we can, for instance, construct membranes of
various shapes. By measuring their active parameters we can also find mem-
branes which possess such values of the parameters as are required by the
designer. An asset of the method of describing the equivalent area (section 2)
and the active mass (section 3), as proposed in this paper, is that it is based
consistently on the equivalence of work and energy for the real membrane
and the equivalent piston. It results from the relations obtained that the active
parameters depend on the shape of the membrane and the quantities describ-
ing the acoustic field. Some of the previous formulae describing the equivalent
area and the active mass do not consider the real shape of the membrane (for
instance, by assuming that the equivalent area is equal to the projection of
the surface). These formulae also do not contain quantilics describing the
acoustic field (e.g. the wavelength and the angle of incidence), which are taken
into consideration in the method described in this paper.

In many papers devoted to the problem of equivalent diagrams, attempts
have been made to introduce into the definitions of the active parameters
the velocity and displacement amplitudes which are the solutions of the correspon-
dingly formulated boundary problems. This trend in the investigations consti-
tutes the next step, after the method of trail and error (to which we have already
referred), on the way to the optimal design of microphone membranes. The
results of these investigations would be analytical relations between the active
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{

parameters and the quantities describing the material properties of the mem-
brane, the manner of mounting, ete. Due to the complexity of the problem,
the determination of the distribution of the velocity and displacement ampli-
tudes of a real microphone membrane, excited by an acoustic wave, is possible
only with substantial simplification, thus considerably reducing the validity
of the results. In this situation there is only one approach to finding the rela-
tions between the active parameters and the quantities describing the material
properties of the membrane, the manner of mounting, etc.: by experimental
investigations. These relations can be found with the aid of the method of trial
and error provided that the algorithm defining the active parameters is based
consistently on their energetic definition. This condition is satisfied by the
method proposed in this paper.

The authors of this paper are very thankful to Dr. E. HoJaN, Mr. M. N1g-
WIAROWICZ (M. Se. Eng.) and Mr. J. FLORKOWSKI (M. Se.) for discussion and
helpful remarks.
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