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THERMAL EFFECTS IN SOFT TISSUES DEVELOPED UNDER THE ACTION OF ULTRA-
SONIC FIELDS OF LONG DURATION *)

LESZEK FILIPCZYNSKI

The Department of Ultrasounds of the Institute of Fundamental Technological Research
(Warszawa)

The thermal effect arising from the sonification of soft tissues by an
ultragsonic beam, eylindrical in shape, with the assumption of an even distri-
bution of heat sources in the beam, has been considered.

The analysis is baged on the solution of the thermal conductivity equation,
using the Laplace transformation as in the author’s paper [1]. The formulae
obtained permit determination of the rise in and distribution of temperature
inside and outside the ultrasonic beam for sonifieation times longer than 20 s.

The formulae have been applied to estimate the temperature changes
encountered in ultrasonic continuous wave Doppler methods used in medical
diagnosis. For example, with a cylindrical ultrasonic beam of radius 2.2 mm,
frequency 5 MHz, mean spatial intensity of 0.1 W/em? and sonification time
of 100 &, the estimated value of the temperature increase at the centre of the
beam was 1.8 °C.

The values obtained are overestimated sinee they do not consider the
transfer of heat by the circulating blood or the thermal conductivity along
the ultrasonic beam, which is particularly evident for higher frequencies.

1. Introduciion

In the previous work [1] the author considered thermal effects in soft
tissues due to the action of focused ultrasomic fields of short duration (i.e.
from microseconds to seconds). The microsecond duration ultrasonic fields
oceur in impulse ultrasonography used for the visualization of internal organs
of the human body, e.g. in gynaecology and obstetrics.

However, in ultrasonic Doppler methods of blood flow measurements,
considerably longer sonification is used, sometimes lasting up to several minutes.

*) This paper is written within the framework of the problem MR I-24.

5 — Archives of Acoustics 4/77



298 L. FILIPCZYNSKI

In order to estimate the thermal effects which may oceur as a result of such
a long sonification, it was decided to use the results obtained in [1], extending
them to the considerably longer times of sonification.

2. The temperature at the focus of the ultrasonic field

It will be assumed that the focus (of the beam) has the shape of an infinite
cylinder of radius R (cm). It is further assumed that heat sources of strength
Q,, [cal 5 em™*]!) are located within this volume. According to [1], the La-
place transformation for the increment 7, of temperature increase within
the focus can be written in the form

=L T 8§ 8§ 8
T, = s:‘z’;w [1+ E]/E RHY ('rl ]/; R) Iy (e I/E r)], (1)
where s is the complex variable, ¢ — the density of medium [gem~*], ¢, —
the specific heat of the medium [cal g7'°C~'], @ = i/pe,, 4 is the coefficient
of thermal conductivity [cal em='°07'], # =V —1, HY is a Hankel function
of the first order equal to HY) =J,+ i N,, J, — the Bessel function, and
N, — the Neumann function. The subscripts at H, J and N denote the
order of functions.
The inverse transform of expression (1) will be determined by a series
expansion of the Bessel and Hankel functions. From the similarity theorem
[6] between the transformed function f and its transform f,
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it can be seen that large arguments of the transformed funetion f correspond

to small arguments iVs/aw (z = R,r) of the transform f This is of interest
to us due to the longer time of sonification and we shall thus use the series

expansions [3, 5] (valid for all a) o
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!) Since this article is a confinuation of the author’s paper [1] which used the
CGS8-system of units, the same system will also be used here.
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where y = 1.781072 ...1s a constant
Substituting expd.IlSlOllB 3)-(6) into (1), using the formula
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and neglecting small order quantities, we finally obtain
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we calculate the inverse transform of expression (8) and obtain the final tempe-

rature within the focal volume (r < R) as
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From equation (13) we can determine the maximum value T, of the
temperature, which occurs at the centre of the focus (» = 0) to be

Q, [132 ( ia R 1
Ty = -—— 14+n——7k¢)+——|1.

M oe, | da F yR? )+ 3202 t] (14)
At the boundary of the focus (r = R) we have
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Formulae (13)-(15) fail for a — 0 and for ¢ — 0 due to the higher order
terms neglected in expansions (3)-(6) of the Bessel and Hankel functions.

3. The temperature distribution outside the focal region

The temperature outside the focal region will be determined on the basis
of formula (3) of paper [1]. Thus we have.

7, =% EI/ERJI(iI/ER)H?’(@‘]/ir). (16)
8%pc, 2 a a ¢

The inverse transform of this expression will be determined as before
using expansions (3)-(6). Substituting these into expression (16) and neglecting
the higher order terms, we obtain the transform of the temperature outside
the focal region as =

Y Q, [R2r2 R* o yir:  RY(R’ +2r2)l yzr‘].
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Using relations (9)-(12) we can calculate the inverse transform in the
form =
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For a -0, t -0 and r - oo formula (18) fails for the same reason as
before.

It can easily be seen that on the boundary of the focal region (r = R)
we obtain from formula (18), as expected, the expression already given by
formula (15).

The temperature distributions, calculated from formulae (13) and (18)
inside and outside the focal region, are shown in Fig. 1. Fig. 2 shows the tem-
perature at the centre of the focus (r = 0) as a function of the time of sonifi-
cation, caleculated on the basis of formula (14) for times ¢ > 20 s and ¢ < 10 s.
The latter were taken from [1]. These latter distributions were calculated
for the conditions encountered in pulse-echo ultrasonic obstetric and gynaeco-
logical diagnostic investigations [2]. The focus of the ultrasonic beam was
in this case approximated by a cylinder of diameter of 0.125 em and length
6.2 em.
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Fig. 1. The distribution of the temperature inside (r < 1.25 mm) and outside (r > 1.25 mm)
the focal region at different times of sonification ¢ as a function of r, caleculated from formulae
(13) and (1R) (curve A), and taken from [1] (eurve B)
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Fig. 2. The temperature at the centre of the focus of the ultrasonic beam, for sonification
txmes t > 20s, caleulated on the basis of formula (14) (curve 4) and taken from [1] for
sonification times ¢ < 108 (curve B)
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4, The estimation of the temperature distribution in ultrasonic Doppler applifications

From the above formulae we can estimate the temperatures encountered
in continuous wave ultrasonic Doppler applications. The calculation will be
an estimate because of the simplifications introduced concerning the geo-
metry of the ultrasonic beam and the distribution of heat sources within the
beam.

For the sake of simplification let us assume that the ultrasonic beam
of uniform intensity 0.1 W/em? is shaped as a cylinder of radins 2.2 mm in

which there are evenly distributed heat sonrces of a strength Q,,. The strength
of the heat sources will be determined [1] from the formula

Q, = 2kal, (19)

where I denotes the intensity of the propagating wave, a is the pressure ab-
sorption coefficient, and k = 0.24 cal /Ws. Assuming a value for the coefficient a
of muscle tISS‘IJG at a frequency of 3 MHz to be a = (6 dB/em) x(8.67 dB)™!

= (.69 em™!, we obtain the values Q,, [k = 0.14 W/ecm?® and Q,, [ac,, = 0.033 °C/s.

In view of the fact that water constitutes 75°/, of the content of the cells
of soft tissues, we assume that the thermal conductivity is the same as that
for water. Thus 4 = 0.00038 cal/em's°C at a temperature of 30°C [4] and
a = 0.00038 cm?/s. Substituting these values into formula (14), with a beam
radius of B = 0.22 em and sonification times of 100 and 300 s, we obtain
temperature rises 7', at the centre of the beam equal to 1.8 °C and 2.8 °C,
respectively.

5. Conclusions

The formulae given in this paper permit an estimation of the temperature
increases caused by cylindrical ultrasonic fields. In practice, this may be a
focused ultrasonic beam with a focus in the form of an elongated cylinder
or a cylindrical ultragsonic beam. The formulae are derived for long sonification
times compared to those for the formulae in [1]. Figure 2 shows a comparison
of these with the calculated temperature increases 7',, on the focal axis (obtained
for the conditions encountered in ultrasonic gynaecological and obstetric diag-
nostic investigations) for sonification times shorter than 10 s and longer than
20 8. The extrapolations of these curves tend to coincidence. However, the
comparatively narrow time range 10 8 < t < 20 s i8 not covered by the calcu-
lations, which yield different values due to the different approximations used
for the Hankel and Bessel functions in the case of short and long sonification
times.

The character of the temperature distribution inside and outside the focal
region (Fig. 1) for long times of sonification (curves A) corresponds to the
character of the curves caleunlated for short times of sonification (curves B).
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The above formulae permitted estimation of the temperature rises T,
in the case of continuous wave Doppler applications for sonification times
equal to 100 and 300 s as 1.8 and 2.8 °C, respectively.

These values should be regarded only as estimates due to the number of
simplifying assumption introduced: the idealization of the geometry of the
ultrasonic beam and the assumption of an even distribution of the heat sources
within the whole area of the beam volume. In addition, the transfer of heat
by circulating bleod has not been considered. The same applies to the flow
of heat along the axis of the ultrasonic beam which increases with increasing
absorption of the ultrasonic wave in the examined ftissues. This is especially
evident at higher frequencies, when the thermal effects occur at the surface
of the ultrasonic transducer, decreasing very rapidly with the depth of pene-
tration of the ultrasonic wave into the tissues.

For the foregoing reasons the values of the temperature increases obtained
are overestimated. Even if we assume them to be actual, the values of a few

degrees may occur only at the surface of the skin and constituté no danger
to the patient.
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