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THE EQUATION OF ACOUSTIC RAYS IN AN INHOMOGENEOUS MOVING MEDIUM

RUFIN MAKAREWICZ

Chair of Acoustics, A. Mickiewicz University (Poznai)

This paper is devoted to the derivation of the differential equations for
rays in an inhomogeneous medium which moves with a velocity W(2). The
velocity of sound propagation in this medium is assumed to be a funetion of
one variable a(2).

The discussion is based on the Snell’s generalized law which has been
derived by a new method.

1. Introduction

Let us assume that in a moving and inhomogeneous medium, an arbitrare
wave surface is given by the equation ¢ (7, t) = 0. This surface moves and changy
its form. Then, for the time instants t,, t,, ¢, ... we can write' the respectve
equations

PPy 1) =0, @7, 1) =0, @(F,8) =0, ...

Then we have the relation of the form ¢ = y(7). If the sound velocity
at a point determined by the vector 7 is a(7) and the medium moves with a
velocity W (7), then y(F) satisfies the so-called generalized eikonal equation [3]
which ecan be written in the form

d
H(m,q ,z’;p’@’gg)
x’ 0y 0z

Solution of this equation takes the form of a set of partial differential equa-
tions describing a family of curves which are orthogonal to the surface ¢ = y(7)
[14]. These curves represent rays. The same set of equations is obtainable either
by starting from the fundamental equations of hydrodynamies [12, 13] or by
constructing the Hamilton equations [5, 7], as is the case in opties.

The simple way for deriving the equations of rays is based on the genera-
lized Snell’s law. This paper presents a new method for deriving this law in
the case of a layered medium.

The differential equations thus obtained can be integrated if the functions
a(z) and W,(z), W,(2), W.(2) are given. Such an integration has been accom-
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plished for the case of medium at rest W(z) = 0, with the sound velocity being
linearly dependent on the coordinate a(z) = ay(1 — fz). X

2. The Snellius generalized equation

Wilibrord SNELL (SNELLIUS, 1591-1626) established experimentally -the
direction of the way in which propagated wave varies with a discrete change
in sound velocity.

The generalized SNELL’S law determines how the direction of propagation
changes in a moving medium with the sound velocity being varied continuously.

There are several ways of deriving the generalized SNELL’s law [1, 2,
4,6, 8 9, 10]. The method presented in this paper seems to be simpler than
the others.

WARREN [15] presents a number of works in which the SNELL'S law was
derived wrongly.

In an immobile medium, the form of the wave surface is a funection of the
propagation velocity @ = ma(7) (# — unit vector perpendicular to the wave
surface) and initial conditions. If we assume that the medinm moves with
veloeity W (7), then the resultant propagation velocity of disturbance is

U = ma(F)+ W (7). (1)

The form of the wave surface depends only on the velocity component
U perpendicular to this surface

The component U | parallel to the wave surface causes an arbitrary acoustic
particle to move over this surface and contributes nothing to the physical pat-
tern of the phenomenon (Fig. 1).

Let us assume that the medium is layered, that is, each of its parameters
and thus the propagation velocity a(z) and the velocity of the medium W (z) are

Fig. 1. Components U, and U, efvelocity
U=na+W
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functions of only one variable. In order to derive the generalized SNELL’S
law let us assume additionally that this medium is formed of layers 4z thick,
within which the velocity of the moving medium, the velocity of sound and
the unit vector % are constant, but differ (Fig. 2) from layer to layer.

The ray corresponding to the wave propagating in such a medium is a
_ broken line and the phase in the k-th layer is

—f,-}—( nr )
tisk at+Wnl,’

where (Fig. 2) %, — unit vector perpendicular to the wave surface, a, — sound
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Fig. 2. Model of a medium consisting of layers

velocity, W, — velocity of the moving medium in the k-th layer, and 7, —
vector of the form

Frp = (@—@p_1) 0+ (¥ — Yg1) +“_(Z_2"k—1)k-

The phases in the plane of contact of two layers at a point 7 = @i +yj + Aak
must be equal to each other at an arbitrary time instant i

n n
e gl ¥ T—"t —_— 7 2
+(a+Wn)k+IT +(a+Wﬁ)kr. ' i ‘ o

This expression can be written in the following form

().~ el [, - (el b

n n,
+[( z__) _(———:_)]Az ~0.
a+Wan/,. ., a+Wn |,

Assuming 4z—0, we obtain

A N, )_0 d( n, 2
dz \atWn| ' de\a+Wn]
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The expressions

¥ :
= =0
a(2) + W (2)n, + W, (2)n, + W, (2)n, - i
ny
— 02

a(z) +Wz(z)nm+Wv(z)fny + W, (2)n,

describe the generalized SweLL’s law for a layered medium.

3. The differential equations of rays

An arbitrary point of the wave front traces in space a curve called the
ray. According to (1) the components of the velocity vector at this point are
v, =an,+W,, U,=an,+W,, U,=an,+W, (4)

where Ngy My, N, are the directional cosines of the tangent to the ray in a im-
mobile medium.

From Fig. 3 it follows that

1 T S Uk
n, = cosl, m, =cosftand, n, = Py Veos?# — cos?0 .

Fig. 3. Determination of vector m by means
~ of angles 6, @

By substituting the directional cosines expressed in such a way into (4)
and taking into account that

_dx dy a2
o R P e T B G L

we obtain the differential equations of the ray

dx [a(z)cos 0 +W _(2)]cos ¥
dz a(2) Veos®® — cos? 0+ W,(2)cos &’

dy  [a(z)cosOtand +W,(z)]cosd
dz  a(z)Veos9—cos?0-+-W,(2)cosd
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To perform the integration effectively, it is necessary to know the relations
0 = 6(z) and 9 = #(z) in which #, ¥ are not involved because the medium is
layered along the direction of axis z. From (3), we get

tgd = C,/C,

A= (W, 0, +W,0,)] + W, V1 —(W,C,+W,Cs)P— (a® —W3)(C? + C2)
[1—(W,C,+W,0,) P +Wi(Ci+ )

cosf =C

Instead of C,, it is convenient to assume & = &, as a constant and to
denote C = C,
acos*d,[1— (“(W +W tand,)]

80 = + W, tand)]
O e a0, - LW W D, - AR |

W, cos 8, Veos™d, [1 —C(W,+ W, tand,) ' —(a® —W2)

+0C _
cos? 9, [1—C(W, +W, tand,)]2 + W22

By inserting (6) into (5), we obtain

d d
— =fifale 0,0, == =fi002), We(e), 0, ). ()

These equations are integrable. The constants € and &, depend on the direction
of the ray 6, #, in the neighbourhood of the source (Fig. 3).
If the source is located at the point (x,, ¥, 2,), then we obtain € from
(3) as a function of the angles 6, and #, and quantities a, W taken for z = 2,
cosf,cos i,
cos g [a(z,) + W, (2o) cos 0,14+ W, (2,) cos O,sindy -+ W ,(2,) I/é;)_séﬁu fco—sza :

(8)

O:

4., The explicit form of the equations of rays

Integration of (7) with given functions W(z), a(z) and under the assump-
tions that the coordinates of the source are xy, ¥,, 2, provides the following
equations for the rays:

@ = o+ f fila(z), Wi(2), a(zo), Wi(zo), Do, 0o} dz,
(9)
Y=Y+ ffa{a y Wil2), a(20), Wilza), B, 0o} .

Example. Formulae (9) are usually so complex that the integration can
be accomplished only in a numerical way. In some cases, it is possible to
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perform this integration directly and to obtain the equatlonb of rays of the
form o = Fy(2); 4 = Fy(2).

If we assume, for instance, that the medium is at rest, that is W(z) = 0
and the sound velocity is a function of the form a(z) = a,(1 — fz), then from
(6) we have

cos = Cay(1 — fpz),

and the set of equation (7) simplifies to the form

dg: i Cay(1 —fz)cosd,
2 Yeosrd,—Cal(—pe)’ v
dy Cay(1 —p2)sind, )

dz Veos2 9, —CPa (1 — fz)?
From (8), we obtain
.| cosb,
ay (1 —p2,)

and after integration of (7) we can write

008 By (1 — o) [ )it A T T
= SR 34 B P 2 e Rl et s A8 e 2
x = ®y+ 0.7 [l/ cos?d, — cos 'l// cos?d, (1 fz)? (1—p2)?*],
sind, (1 — fz,) e il SHEF YT MARETE S
Y=Y+ ———E:)STBB— [1/008219‘0 — 0320, — l/cos%?n - V(_l_'—ﬁzt)ﬁ (1 —ﬁz)z].

It can be shown that the set of equations (9') describes a cirele that lies
in a plane perpendicular to the plane (z,y) and passes through the point
(@oy Yoy 20) [11].

5. Conclusions

The typical layered medium is the atmosphere. It can be assumed that
the velocity of motion of this medium (W (z) — velocity of the wind) and the
sound velocity a(z) are functions of the altitude.

Under such assumptions, the formulae (9) are equations of acoustic rays
in the atmosphere when the wind blows, while (9') is the set of he same equa-
tions when the atmosphere is at rest.

Equations (9) ean be utilized to investigate e.g. the phenomenon of re-
fraction under a variety of atmospheric conditions or to the determine the
location of sonic booms on the ground.
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