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GENERAL CONDITIONS OF PHASE CANCELLATION
IN AN ACOUSTIC FIELD

MICHAL VOGT
Institute of Fundamental Technological Research (Warszawa)

The dependence of the degree of cancellation of an acoustic field, expressed
by the field cancellation factor, on the correlation parameters of the signals:
cancelling and cancelled is derived. Using this dependence, the necessary con-
ditions — in terms of phase and amplitude — for the occurrence of the cancella-
tion phenomtenon at a field point are determined.

The possibility of the cancellation of larger regions of acoustic fields is
investigated using such parameters as spectral characterisfics of various signal
classes and mutual distances of the cancelling and cancelled sources.

A clasgification into natural and forced cancellation is introduced and
the classes of signals which ean be cancelled in a natural way are determined.

The conditions for the occurrence of cancellation throughout all space
are determined.

1. Introduction

For years now the phenomenon of phase cancellation has constituted
a promising chance to workes in the field, to solve the problem of noise control.
The literature concerned with acoustics rather infrequently reveals publica-
tions reporting trials to utilize this phenomenon for reducing noise [1-5].
At present there does not exist any general theory permitting a quantitative
description for all classes of signals, i.e. both deterministic and stochastic.
This may have been caused by too large discrepancy between anticipated
and obtained results which, in turn, in most cases leads to the abandonment of
more thorough investigations. The absence of such a theory for the quan-
titative conception of the phenomenon can surely not contribute to the rea-
lization of positive results ‘as, indeed, it does not favour a proper utilization
of this phenomenon in practice.

An attempt has been made in this paper to define the conditions necessary
for the creation of the phenomenon of phase cancellation at a field point and
to give the dependence between the degree of field cancellation and the cor-
relation parameters of signals. The correlative approach permits to a uniform
analysis of all classes of signals.
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On the basis of dependence derived between the degree of field cancel-
lation and the correlation parameters of the signals, the range of regions in
which the phenomenon of cancellation occurs for various typical classes of
signals has been calculated, and the classes of signals subject to natural can-
cellation defined. The relationship between the mutual spacing of sources,
necessary for the occurrence of cancellation in a given region, and the spectral
nature of the sound emitted by them has also been determined.

Consideration is merely given in the paper to the cancellation in a field,
neglecting the mutual interaction of sources.

2. The field cancellation factor

Let a given source § (Fig. 1) be placed in a propagation medium and emit
a signal #(t). It produces in the medium a field x(r,t). At any point A4 in this
field, with the distance |r,| from the source, the wave »,(t) is only a function
of time. The mean power (P, > of this wave at the point 4 is

g
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Fig. 1. Spacing of sources — cancelled 8, cancelling
8’ — and the point A at which cancellation is re-
J" : quired to take place

where 7' denotes the duration of signal.

Let another source 8, which is placed in this medium at a distance d
from the source S, emit a signal y(#).

It produces at point 4 the wave y,(f') having a mean power

i
1 ’
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where ¢’ denotes the time calculated with regard to the coordinate system
related to the source 8’ and is equal to

t =t4r, (3)
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where 7 is the difference of times at which signals from the sources reach the
point A.

If the medium is linear, then the resulting signal z,(?) at the point 4 is
the total of the component signals from sources S and §':

2a(t) = @4(8) +ya(t). (4)

The mean power of this signal is

T

s 1
Pt = [ A0, (5)

0

Cancellation at the point A occurs when

Pryay <(Ppyy andfor (P <Py, (6)

depending on which field is to be cancelled.

Definition. Phase cancellation is a phenomenon resulting from such
superposition of fields as to bring about a reduction of the signal power mea-
sured at a given point or region, compared to the signal power which would
have been measured at this point or region as a result of the individual action
of each component field.

In order to describe quantitatively the phenomenon of cancellation, we
shall define the field cancellation factor k as the ratio of the cancelled power

{P,,> to the primary wave power {P,,> which existed at a given point A
prior to the superposition of the cancelling field:

o & {Poa? : 7
Pri> X
But
Fo) = Foi)—Puya)y (8)
therefore
{Poya
be=1——"20 9
<PxA> ( )

Since the mean cancelled power (P,> cannot exceed the mean primary
power {(P,», the field cancellation factor must lie between zero and unity:

0<k<1. (10)



112 M. VOGT

3. Dependence of the field cancellation factor on the correlation factor of the signals

_ The correlation functions for both of the signals «(t) and y(t) are caleu-
lated as the limit of the following integral for various values of the variable 7 [6]:

™
R,,(7) = lim —;7 @ (t)y(t+7)dt. (11)

T—o0

A

In general, the integration should extend over the whole range of #(f) and
y(t). If the processes #(t) and y(f) are stationary, then their statistical proper-
ties will be the same for various samples of the processes. Thus the correla-
tion functions of various samples will also be the same. It is then possible to
calculate correlation functions of a given process for finite time intervals of
width 71':

Bi (1) = —f y(t+7)dt. (12)
Similarly, autocorrelation funetions of component signals can be defined by

B (7) = f @(i+7) (13)

Ry (7) f y(t)y(t+7)d (14)

For v = 0 the autocorrelation functions represent the mean power of the
signal in the interval T':

T
1
Bp(0) = 5 [ @*(00dt = B, (15)
1 DT
By (0) = 7 [ 920t = <P, (16)

The ratio of the cross-correlation function, determined at a point of the
field, to the square root of the product of values of the auto-correlation funec-
tions for the component signals at zero, is termed the cross-correlation factor b,
for a time difference 7:

il RT:cy(r) ;
VRyu(0)R,, (0)

(17)

The mean power of the total signal at the point 4 over a time T is
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(P f =~—meA( t)dt+ — fyA (t )t 4 — f y(t+7)dt

= Bigg(0) + By (0) + 2By (7) - (18)

Substituting this value into formula (9) and coﬁsidering condition (10),
with @ denoting the ratio of the cancelling signal power to the cancelled signal
power,

Rfi 0
a = Zawl0) ; (19)
RTx:c(O)
we obtain the following condition for cancellation:
) 1.1l+4a
iy S QS S B (20)
2 2 Va

We also obtain the following relationship between the field cancellation
factor k, the cross-correlation factor b, of component signals, and the ratio a
of the powers of these signals:

k= —2bVa—a. (21)

Consider first condition (20). Since a is positive, because it is the ratio
of the powers of signals, both the right- and left-hand sides of inequality (20)
are positive. Thus condition (20) is satisfied only if the correlation factor b,
assumes a negative value, i.e.,

b, < 0. - (22)

This relation is called the phase condition.

Let us now examine for what power ratios a the cancellation is possible
and how strongly the component signals should be correlated with one another
for a given power ratio a.

The right-hand side of inequality (20) represents a concave funetion hav-
ing a minimum equal to 1 for the value ¢ =1 (Fig. 2).

From the Schwartz inequality we get a stronger condition, namely
b < 1. (23)
Combining conditions (20) and (23), we get
PWa<1, (24)
hence the range of permissible powers for cancelling waves becomes

0 < Rpyy(0) < 4 Rppp(0). . (25)
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Thus the phenomenon of cancellation may occur for ratios of the power
of the cancelling signal to the cancelled one within the range

0<a<4, (26)
A
2-
p=1 1+a
L T Va
1
L=%Va
0 1 2 ) 3 @t o
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Fig. 2. A graph of the function P [which represents the right side of inequality (20)] and the

funetion L (which represents the left-hand side of this inequality) versus the power ratio

of the component signals. The shaded region determines the range of the value of the

modulus of the cross-correlation factor |b,| necessary to obtain cancellation at a certain
ratio a

while the required cross-correlation factor of both signals for given power ratio a
should wvary within the limits

jlge ~h.c 1. (27)

This condition is called the amplitude condition.

These relationships are shown in Fig. 2. The region of permissible values
for —b,, determined by condition (27), is shaded in Fig. 2.

Let us now analyze the mutual dependence of the degree of cancellation
of a field and the degree of correlation of its component signals, To this end
we present relation (21) in the form of a family of curves &k = f(a) for different
values of the parameter b, (Fig. 3).

The maximum cancellation occurs for a value of the power ratio given by

a = b, (28)
with the field cancellation factor attaining the value
kmax = bf- (29)

Thus the maxima of the family of curves represented by (21) lie on the
straight line
= @iy dor a <l (30)

kmax
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Fig. 3. Dependence of the fleld cancellation factor k on the power ratio @ of both signals
for various values of the cross-correlation factor b

Cancellation larger than any k; is possible for signals for which the power
ratio a is within the limits

1=V1—k)2<a<(1+V1—k)s, - (31)
while the modulus of the correlation factor is higher than |b,|,.,, where
el = VE;. (32)

The relations (31) and (32) are more apparent in the diagram of the requ-
ired degree of correlation of the signals versus their power ratio at an assumed
field cancellation factor (Fig. 4).

4. Spatial conditions for the existence of phase cancellation for monochromatic (sinusoidal)
signals

Let the source § (Fig. 1) emit the wave
@(t) = Xsinw,t, (33)
and the source 8’ the wave
y(t) = Ysin(wl+@). (34)

Let the difference of the distances from both sources to the reception
point A be
AT =", (35)
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Fig. 4. Dependence of the required correlation factor by on the power ratio @ of both signals
for an assumed field cancellation factor k

where ¢ is the velocity of sound.
The autocorrelation functions of signals for = = 0 are:
2 X2 Y2
RTm(O) = _?ZH! ‘RTﬂ'ﬂ(O) 7 '_2_‘ . (36)
The cross-correlation function for o, # e, is equal to zero only if 7T is
sufficiently long,
RTa:y(":) =0, (37)
s0 that stable cancellation cannot occur at the point A.

On the other hand, if frequencies of both signals are identical, i.e. o,
= (g =F 6!), then

XN,

Ry (7) = cos (ot +¢), (38)

o

and substituting (36) and (37) in equation (27) and considering (35) we obtain
a condition for the range of the differences of distances covered by the wave
and thus determine the range of the area of cancellation:

(2 —}—1)(“.9 1arccoqu 8
> T T ~a ¥la

Ar= 2fn—|—1)¢+larccosl 4 39
= R e L 2 X2 (39)
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From equation (21) the value of the field cancellation factor in this region is
Y2

o (40)

k=2 Ycos[(Z PO LA
=2 n At+——m —
X achithraca
where ¢ — denotes the phase shift of both waves at the source, 1 — wave-
length, » — natural number.
Maximum values of cancellation are obtained at points for which

A

Mo, s [(2n g (e 3] (41)

2 .7

is satisfied.
The maximum value is

3 ¥

k =2— —|—].
as = 27 ( X) | (42)

This value can be obtained for two ratios of signal amplitudes, namely
Y g
0 =14+V1—tpy. - (43)

The dependence between these amplitude ratios is the following:

X ¥
(?f),(f)z  Fmax- s

Thus ecancellation occurs for the amplitude ratios of signals in the inter-
val 0 < Y /X < 2, while the maximum possible value of cancellation k., =1
is obtained for Y /X = 1.

If in equation (41) it is assumed that the phase shift of signals at the
source is equal to zero, then maximum cancellation will oceur at such points
in space that the difference of distances from the sources is exactly an odd
multiple of half wavelengths. In the proximity of these points there will also
be cancellation, which will decrease with the cosine of the ratio Ar/}Ai; sym-
metrically for distance differences Ar smaller and higher than Ar,.

The limiting values of the difference Ar, at which the cancellation finis-
hes is determined by

dr, = Aroj:%a.rc cos%-%. (45)

Hence, it can be concluded that the cancellation region extends for a phase

difference Ay between the signals given by

L. X
Ay =2 §——. 46
P arccosz X (46)

3 — Archives of Acoustics 2/76
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The relationships described in equations (42) and (46) are shown in Fig. 5,
and that of equation (40) in Fig. 6. From these figures it can be seen that the
question as to whether the ratio ¥ /X is larger or smaller than unity is not
trivial. In both cases, the same values of k,,, can be obtained, but for ¥/X < 1

i
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the range of phase difference Ay, at which the cancellation oeccurs, and hence
the range of cancellation, is larger than in the case Y /X > 1. Another con-
sequence of equation (45) is that the range of the cancellation region is propor-
tional to the wavelength, and thus higher for lower frequencies.
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5. Phase cancellation of periodic signals

Let the sources § and 8 (Fig. 1) emit suitable periodic signals of the forms

(1) = Zanin(nwt), (47)
y(t) = Y Y,sin(not+g,). (48)

We shall limit ourselves to signals of the same fundamental and harmonic
frequencies, since in the case of different frequencies the cross-correlation
factor is equal to zero and it is mot possible to achieve stable cancellation.

The correlation functions of singals (47) and (48) for a point whose dis-
tances from the sources differ by Adr = ¢r are

Bra(0) = D) 5% Ran(0) = D52, (49)
s
Ry (¥) o= Z—’;icos(nwr—}-%). : (50)

n

A general analysis for any values of Y, and X, is too complicated and
we will consider the simple case X, = Y.
Substitution of functions (49) and (50) in equation (27) gives

1)) X< Y Xieos[(2m+1)In+nor+g,]< ) X3, (51)
n n n

where m = 0,1, ...
The right-hand side of (51) determines complete cancellation. It occurs if

(2m+1)n+nor+g¢, = 0, (52)

i.e. if the phases ¢, are such that, for all =,
T

is satisfied, where T denotes the period of the periodic signal. Let us assume
that both sources emit the same signals, i.e. ¢, = 0 for all n.

To bring about a complete cancellation, all the cosines must be equal
to unity, thus we obtain the condition

(2m+1)=w Ar

R S (54)
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and hence
2 A 2m—+1

Ar ;
2 n

(55)

where A is the wavelenght of the periodic signal, n — the n-th component,
m — the m-th multiple of the half wavelength.
Equation (55) must be satisfied for all components, i.e.

Ar, = Ar, (56)
where k, I denote any two components of the periodic signal. Substituting
in (55), we have

2my,+1 2my+1

& o, 1 ’ (57)

gso that
R Ve 8 (58)

In order to satisfy this equality, m, should be integral for all m,. This is
the case if, assuming % > I,
e (59)
sl integer.
H
In this case the ratio %/l is also an integer, and equation (58) will be valid
when this is an odd number.
From this discussion it can be concluded that complete cancellation of
periodic signals is possible only for signals with only odd harmonies.
Periodic signals with only odd harmonics possess half-wave symmetry, i.e.

y(0+m) = —y(0). (60)

This means that the part of the wave in the interval (w, 2w), after being
rotated about the 6 axis and shifted by =, coincides exactly with that part
of the wave in the interval (0, =) (Fig. 7). Thus at points which the waves from

yn

Fig. 7. Asignal y (0) exhibiting half-wave symmetry

the sources reach with a time difference » = 7'/2, the element of the medinm
is acted upon by equal and opposite forces which are completely balanced.
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6. Phase cancellation for other classes of signals

Other signals do not all exhibit a natural half-wave symmetry, and for
this reason it is not possible to achieve complete cancellation with them.

However, any signal (e.g. noise) may be taken, reversed artificially, and
superimposed on the original signal. If the primary signal is #(t), then the
reversed and delayed signal is y(t+7) = —w(f), and the cross-correlation
function of these signals will be

b i

Ry, (7) = f Yy(t+7)d

=?f‘”"’ [~ ()]t = — Rpge(0) = — B, (0).  (61)

When substituting from equation (61) into equation (27), one can see
that the condition for the complete cancellation is satisfied. Thus, a signal
having no symmetry whatsoever can be completely cancelled by the use of
its artificial reverse with respect to phase. This operation gives any signal
half-wave symmetry with regard to the primary signal, since the relation bet-
ween the secondary and primary signals is the following:

Y@+7) = —y(#) (62)

(ef. equation (60)).

It would appear advisable to classify cancellation into natural and forced,
especially in view of the fact that the phenomenon of natural cancellation is
observed without performing any operations on the signal. The possibility of
this phenomenon occurring results from the characteristics of the signal it-
self, namely its half-wave symmetry. Such cancellation can therefore occur
only for classes of signals which have a natural halfwave symmetry. They include
monochromatic and periodic signals with only odd harmonies. All other sig-
nals can, however, be cancelled by performing on them a phase reversal ope-
ration, but because of this operation, cancellation obtained in this way will
be defined as forced camcellation.

7. Dependence of the range of the cancellation region on the signal
power density spectrum

In section 4 it has been shown that the range of the cancellation region
for monochromatic signals is inversely proportional to their frequency.

Let us now consider how the range of the cancellation region depends
on the power density spectrum of any signal. In the case of the superposition
of two identical signals only reversed in phase and shifted by 7, the cross-
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correlation function of both signals will be a mirror reflection of the autocor-
relation function a, of primary signal shifted by r 4 relative to the = axis. Since —
as a result of the uncertainty relation [7] — the width of the auntocorrelation
gunction is inversely proportional to the upper frequency limit of the signal,

e
A
7
ar
- i v G T B
Fig. 8. a, — autocorrelation function of the primary
br signal, b, — cross-correlation of the primary signal
with the primary signal inversed in phase and
=] % shifted by 74

the width of the correlation function will also be inversely proportional to
this frequency in agreement with the formula

¢

2 63
3 (63)

T

90— Td

where € is a constant.

Since the width of the interval r,— 74, in which the cross-correlation func-
tion assumes negative values, is decisive for the range of the cancellation
region, signals whose power density spectra are shifted in the direction of low
frequencies will produce larger cancellation regions.

8. Dependence of the range of the cancellation region on the source
spacing
The time delay 7, of the signals reaching point A depends on the dis-
tance d between the sources and on the position of point A relative to both
sources (Fig. 9). i

A

Fig. 9. The mutual spacing of the sources and of the
receiving point 4 in a polar system
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The smaller the distance d, the smaller the time delay v, will be and
the eross-correlation curve in Fig. 8 will be shifted towards zero. If the distance d
is reduced so that, for given signal, r; becomes negative (passes through point
T = 0), the cancellation region will start from the sources themselves.

We shall now investigate the condition which the distance d between
sources should satisfy to obtain cancellation throughout the whole region.

The condition for cancellation throughout the whole region is that the
cress-correlation factor should be negative at every point of the region.

Such a condition is satisfied if

Ar =ry—1; = er < e, (64)
for all r, and r,, where
: =2
T = fr“+—4.—wdsin6, (65)
a2
£y = ?2+T +rdsin 6. (66)

Substituting (65) and (66) in to (64) we obtain the following condition

for the distance d:
4r* —
d<er ]/--_-—-m—-i'-—- =B 67
SV wisin®— i

If the cancellation is to extend to infinity, the condition

d<limB = —- 68
it sin 6 i
must also be satisfied.
If condition (68) is met, the cancellation region will extend to infinity
but only within an angle + 6. To obtain cancellation throughout the whole

region, condition (68) is further limited to
d < cr,. (69)
Considering (63) and assuming 7; = 0 (the condition of cancellation from
the sources themselves) we finally obtain
ol =
oo j'lg L
Thus, the higher the upper frequency limit of a signal, the closer the sour-
ces must be placed to obtain cancellation throughout the whole region.

For white noise f,—oo while d—0, thus the primary and secondary sources
should be placed at the same point.

(70)
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9. Conclusions

The investigations carried out lead to the following conclusions:

1. To obtain field cancellation at a point, a suitable value of the coef-
ficient @, the ratio of the cancelling signal power to the cancelled one, is neces-
sary, as it is also for such a correlation of the signals that phase condition (22)
(a negative cross-correlation factor for the signals) as well as amplitude condition
(27) (that the modulus of the cross-correlation factor should be higher than
half square root of the ratio of the cancelling signal power to the cancelled
signal power) should be met. :

2. Complete cancellation occurs only if signals are entirely correlated,
directed in opposition (correlation factor equal to —1), and have equal powers.
This means that they are the same signals but reversed in phase.

3. The maximum feasible field cancellation factor is equal to the square
of the modulus of the cross-correlation factor of the ecomponent signals. It is
obtained at a precisely defined ratio of the powers of these signals which is
also equal to the square of the modulus of cross-correlation factor. This implies
that the maximum degree of field cancellation is obtained when the power
of the cancelling signal is smaller than or equal to the power of the cancelled
signal.

4. The maximum range of changes of the ratio a of the cancelling signal
power to the cancelled signal power, at which cancellation can be obtained,
is 0 < @ < 4. As the power ratio tends to the limit values, the degree of can-
cellation decreases. If the degree of cancellation is to be higher than a given
value k;, then the range of required power ratio of the signals is diminished to

(1—V1k,)? <a < (1+V1—k).

5. The value of modulus of the cross-correlation factor necessary to obtain
the required degree of field cancellation depends on the ratio of powers of
the component signals. It is least for the condition a = k;, i.e. when the power
of the cancelling signal is smaller than or equal to the power of the cancelled
signal. , /

6. The range of the cancellation regions in the case of monochromatiec
signals is inversely proportional to their frequency, while in the case of com-
posite signals it is inversely proportional to their upper frequency limit.

7. To obtain complete cancellation in a certain region, the cancelled and
cancelling waves should propagate along parallel tracks. This ensures the
conservation of constant phase and amplitude ratios within this region
thronghout the whole process of cancellation. This condition determines
the location of source of the cancelling signal relative to the cancelled one
and relative to the region in which the primary signal is to be cancelled.
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8. It appears constructive to distinguish between natural and forced can-
cellation. Natural cancellation occurs because of the superpositions of various
phases of the same signal. It is possible only for signals having half-wave sym-
metry, i.e. for monochromatic and periodic signals of only odd harmonic com-
ponents. Forced cancellation can involve all classes of signals. For this purpose
it is necessary to use a special device for the phase inversion and time delay
of a given signal.

9. An interesting class of signals classified under natural cancellation are
monochromatic signals. The cancellation regions of these signals are concentrated
around points whose distances from the sources differ by an odd number of half
wavelengths. At these points the degree of cancellation assumes a maximum
value and it gradually decreases when moving away from them. Cancellation
is possible for ratios of the signal amplitudes within the limits 0 < ¥ /X < 2,
the closer this ratio is to unity, the closer to unity the field cancellation factor
becomes.

The same degree of cancellation can be obtained for two ratios of the
signal amplitudes Y/X — one smaller and one larger than unity. However,
this ratio has some effect on the range of the cancellation region. If ¥ /X < 1,
the range of the differences of the component signal phases at which the can-
cellation occurs is higher, and this results in a larger value of the range of the
cancellation region.
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