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THERMAL EFFECTS IN SOFT TISSUES DEVELOPED UNDER THE INFLUENCE OF
FOCUSED ULTRASONIC FIELDS OF SHORT DURATION

LESZEK FILIPCZYNSKI

Institute of Fundamental Technological Research (Warszawa)

Temperature increases in soft tissues developing under the influence of
a concentrated ultrasonic beam, as used in ultrasonography, have been analytically
determined. By solving the heat conductivity equation and subsequent use of
the Laplace transformation, formulae have been obtained (30), (38) which permlt
the caleulation of the approximate value and distribution of the temperature in
the focus of the beam, perpendicular to the direction of propagation, as a func-
tion of time.

In the case of an ultrasonic impulse with a duration of 1 ps, the intensity
of 20 W /em?, in soft tissue with an attenuation of 3 dB/em and simplified shape
of ultrasonic beam (Fig. 2); a maximum temperature inerease equal barely to
3.3-10-%°C has been obtained. The temperature increase calculated for an
ultrasonic impulse of 1 s duration gives a value of the same order as that obtained
by other authors. In the case of an ultrasonic exposure of an intensity of
200 W/em? and a duration of 1s, which corresponds to the threshold from cur-
ves for irreversible changes in the brain published in the literature, a value of
temperature increase in the tissue of 33°C has been obtained.

1. Introduction

In pulse-echo ultrasonography, used for the visualisation of internal organs
of the human body, focused ultrasonic beams are used, the intensity of which,
in the focus, may attain a value of 20 W/em? for the short duration of the
impulse about 1 ps.

In investigations concerning the influence of ultrasounds on biological
structure this value may reach 1000 W/em? [5]. No temperature increases
are observed in tissues ultrasonically irradiated in this manner, because
of the impulse character of radiating fields; the interruption between impulses
is about 1 ms and is thus 1000 times as long as the duration of the pulse.

In such a situation the question arises as to whether, in the course of the
impulse duration, the tissue region confined by the focus is not temporarily
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overheated. This question is important because it is known that even at a tem-
perature of 50°C a permanent damage to the tissues can oceur. For instance,
we can consider the situation that, in the course of the impulse duration, the
temperature has increased by 20°C, but after the longer pause between impulses
it has decreased to the original temperature. The high inertia thermometer
will, however, in this case indicate only a mean temperature increase three
orders of magnitude smaller, and the overheating of the tissues may be not
noticed.

We have, therefore, set ourselves the task of estimating the magnitude
of the temperature effect arising in the soft tissue under the influence of a focu-
sed ultrasonic field of short duration. To simplify the problem we have made
some assumptions which will be dealt with in the sequel.

2. Assumptions

“Two measurements madé of the spatial distribution of the focused ultra-
sonic field used in ultrasonography of the abdominal cavity at a frequency
of 2.5 MHz gave the results shown in Fig. 1. The region of the focus defined
by a 3 dB decrease of acoustic pressure relative to the maximum value can,
with a good approximation, be described by a cylinder 0.25 em in diameter
and 6.2 em in length (Fig. 2). :

We assume that in the focal region thus defined sources of heat are located

with a rate of heat generation per unit volume equal to Q,, cal/s-em? The size
of these sources depends on the intensity of the incident ultrasonic wave as
well as on the absorption properties of the tissue. Another simplifying assum-
ption is that of an even distribution of these sources throughout the whole
focal region. : _

In this situation it is convenient to consider the problem in a cylindrical
coordinate system. By assuming that the focal region under consideration
has a cylindrical shape of infinite lenght the problem is reduced to a two-dimen-
sional one.

In view of the axial symmetry the phenomena considered are solely a fune-
tion of one coordinate, the radius ». Fig. 3 shows the case considered for the
focal region formed in an unlimited biological medium in the shape of an infi-
nite cylinder with the radius R. The temperature of the medium outside the
focus is T,, whereas inside the focus it is 7,. We assume that at the initial
moment ¢ = 0 the temperatures are equal, i.e. T, = T, = 0.

3. Initial equations

The absorption of ultrasonic waves will release heat in the focus, thus
causing a rise of temperature followed by a flow of heat from the focus into the
surrounding biological medium by thermal conduction.
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Fig. 1. Measured and calculated distributions of the focused ultrasonic field produced in
water by the ultrasonograph UG-4 used for diagnostic examination of the abdominal ca-
: vity [2]
a — measured isoecho curves, b — computed (7) and measured (E) intensity distribution along the z-axis of
ultrasonic beam
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Fig. 2. Approximated shape of the focus region of ultrasonic beam in water deseribed by
the 3 dB curve relative to the maximum pressure
 — direction of ultrasonic wave propagation, P — transducer radiating the ultrasonic wave
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Fig. 3. Dotted focal region with temperature T'; in which heat sources with thermal effect (:).,
are evenly distributed, and the surrounding region of the medium, » > R, with temperature T
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Thus the problem will involve solving (with given initial and boundary
conditions) the differential equation of thermal conductivity [8],

-Qg = al2T + —Q"—, (1)
at : 0Cyw
where, generally, T = T'(r, y, ®,t) denotes the temperature a = 1/pc,, i —
coefficient of thermal conduetivity [cal-em™-s7'-°C™'], o — density, ¢, —
specific heat [cal-g~'-°C~'], @, [cal-s~'-em™*];r, y, # — coordinates of the
cylindrical system, and ¢ — time.
The equation, with the assumed rotational symmetry of the problem,
takes the following form in a ecylindrical coordinate system:

or(r,t) _ [9T0,) 10T Q,
B ore r or 00w

Applying to equation (2) the Laplace transformation described by the
formula

(2)

(r, t)] X

LIf(] = [ fyeat, (3)
0 .
we obtain
L dzT "y 1 dT "y .ﬂ
eT(r, 8)—T(r, i = 0) :a[%ﬂ i ;: 8)]+8§c ; (4)

where T is the transform T'(r, 8) = L[T(r,t)].
Let us assume that the initial temperature is equal to zero. Then the other

component of the left-hand side of equation (4) disappears.
Equation (4) is reduced by the substitution of 2 = ir¥s/a in the equation
aT 1 E T — Q.

Eik = : 5
dz2 Z ae - 8% pe,, (%)

The solution of this equation will comprise the general homogeneous:
solution in the form ;

——+T =0 6
dz‘-’+zdz+ 2 (6)

which is a Bessel equation whose solution [6] is

4 s s
T, = AJ, (@ 'l/— r) +A'N, (i ]/— 1‘); (7)
a a

and also a particular solution of the heterogeneous equation whose solution
is the expression
T(Ti t =0) Qu

Ty, = &
k s s2pc,,

(8)
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where J, and N, are, respectively, Bessel and Neuman functions of zero order,

A and A" — constants, and Q,,,/ch is an assumed magnitude.

For r tending to zero (in the middle of the focus) the temperature has
to assume limited values. However, since the function N, tends to infinity
for r—0, the constant 4" = 0. : -

A general form for the solution of equation (4), taking into consideration
the zero initial condition, is the following:

Ti=AJo(@'l/~§-f)+ et ()
a $2p0,,

Beyond the focal region, i.e. for r > R, there are no sources of heat, so

that @, = 0 and equation (4) becomes homogeneous. A general solution of the
homogeneous equation (4) will take the form

T, — BH (z' ]/fi r) + B HP (i ]/i r), (10)
a a
v (i]/f- r)—Je(i]/i r)+iN.,(i]/i 1'), (11)
a a a
HY —J, ('z ]/i r)—z’No (,, ]/i r). (12)
a a
The functions H{" and H{» are Hankel’s functions of the first and second

kind, respectively. The subscript 0 denotes the zero order of the function.
Asymptotic expressions for Hankel functions have [6] the form

where

RS 4011 (40°—12)(40®—32)
HY(2) ~ ]/ — gMe-nli—wnit) | - ‘ T 13
v (@ =) — 11805 21(820) e A
SE 4o —1  (40*—12)(40% —32)
H® (2 _W_]/ 2 gite—mi—vm) | | | 14
S o ) [ YT R ) e A

LY
for |z| > 1, [2| > |v]® as well as —1ix < phase z < ix.
, Phasg 3

If we substitute 2 = i¥Vs/ar in (13) and (14), it can be seen that H{"—0
for r—oo, whereas H{)—>co. Since at distances very remote from the focus
the temperature 7T should tend to zero, it is necessary to assume that B = 0.

Lastly, in the region outside the focus we shall try to solve the homogeneous

equation (4) in the form :
= BTN
Ty = BH},”(z ]/— 'r). (15)
a
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The constants A4 and B which occurin equations (9) and (15) are deter-
mined from two boundary conditions which should be satisfied on the boundary
surface that divides the considered tissue into the focal region and the outer
region.

—
The first condition of the continuity of the heat flux ¢,

"; = — gradT, (16)
takes the form
"y al

et { i
ir r or-¢.— kL (17)

Substituting in (17) the expressions for 7'; from (9) and 7T, from (15) we

obtain
O -l/iR
- B8 : (z a
F- F ol
a

In this relation Bessel and Hankel functions of the first order occur as
a result of the differentiation of the funections of zero order.

The other condition is the equality of temperatures on each side of the
“boundary surface, thus

(18)

T.=7, forr=0R. (19)

Inserting into (19) expressions (9) and (15), we obtain

YT /T

From relations (18) and (20) we determine the constant A, namely

sl H{(iVs|aR) iah
806y Jy(iVs[a R)H{(iVs[aR) —J(iVs]a R)H (iVs/aR)

Now we can finally calculate the transform of the required temperature
T; of the focus from relations (9) and (21) and obtain

e e
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4. The temperature in the focal region of the ultrasonic field

The inverse transform of expression (22) can be determined by virtue
of the theorem of the homology between the transformed function and its
transform [8]:

;i
nfan = 7(5) (23)

From the foregoing it can be concluded that high values of the argument
iVsJaR will correspond to small values of at|R®. Small values of at/R* are the
subject of our interest since the heat conductivity of soft tissues is insignificant.
Furthermore, we are interested in ultrasonic impulse of short duration.

Therefore, when evaluating the inverse transform, we expand expression
(22) into a series by taking advantage of the asymptotic expressions (13) and
(14) for Hankel functions of large arguments, and the following expressions [8]
for Bessel functions:

ez 12 12.32 12.32.52
i g g l - e
N ( e T2 T BIE ) (24)
7. (i2) 4¢” Il 1:3 1-3-5 Jo: AR5 -
Z) = — s e lap=—"00 13
1) = =1~ T18s ~ 2182 ~ ~ 31(82)* 5)

Substituting (13), (14), (24) and (25)7 into (22) we obtain

7 & {l_exp[—u/;%ue—m‘/_?[“ 1 (1 3)+

r Voa \8E ' 3E

+1(9+3_15+](26)
sja \ 1282 = 64RF  128R?] 7 }

Having taken advantage of the relations (see [8])

L—l[ﬂ____. Isfam]] o fintterfo i (27)
8% 2@
! fexpl— l{ﬂa L5 it 8tV atint3erfe = . (28)
l/ 3 oat
32 TS
% i
[-V3]
exp| -1/ — = »
T a
L h = | = 1682 int*erfc ——, (29)
s 2Vat



316 L. FILIPCZYNSKI

where
e o]
erfca =1 —erfa = —i— f e du (29a)
Va o
as well as
00
interfca = f erfeudu, (29b)

we can calculate the inverse transformation of expression (26). As result we
obtain an expression for the temperature T; at focal region (r < £B):

0t { l/ [ (B—7) (B—7) (1 3)
I = 1—— 1}/ — |4 int?erfe + Vat int3erfe + =]+
0Cy 2V at 2Vat R

oo B0 818y,
! (atlnt erfe o e -+ o 35 + ...1. (30)

This formula is not valid for very small values of r, since in this case the
expansion (24) is not valid.

When the heat conductivity of a biological medium tends to zero (a—0),
and the boundary surface (r + R) is neglected, square bracket of expression (29)
disappears, since then we have erfecoo = 0 whence likewise

int"erfcoo = 0. (31)

A similar result is obtained from expression (30) at a finite value of heat
conductivity (a # 0), when the time tends to zero. In this case the tempera.ture

of the medium is ’
* ‘
T;= L (& =0) (32)
0Cy,
and
dTi Q'v
anal CY 0,¢=0).
7 o (a #0, ) (33)

When we substitute the magnitude of Q,, from (37) into (33), we get the
expression quoted by FRrEY [4].

On the boundary surface of the focus (r = R) we obtain from formula
(30) a value of temperature equal to

ol e
T =5 -z V2] (34

In view of the fact that water accounts for 759 of soft tissue content,
we may approximate by assuming such parameters for soft tissue as are encoun-
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tered in water. Thus, we have at a temperature of 30°C the value of the heat
conductivity factor equal to A2 = 0.00038 cal/em.s °C [7]. In this case the
value of the coefficient a is

A

0Cy

6= = 0.00038 cm?[s. (35)

Fig. 4 shows the temperature distribution in the region of the focus, as
evaluated from formula (30), as a funetion of radius r(r < R = 1.25 mm)
for various durations of the impulse ¢ and also with the assumption of @ zero
value of the coefficient a, using expression (32).

To determine the value of the temperature T, in the case of impulse ultra-
sonography considered by us, we calculate the rate of heat generation per unit
volume Q, in the foeal region. Let us consider an infinitesimal focal region in
the form of a cylinder of length Az (Fig. 5). The intensity of a plane ultrasonic
wave I, [W/em?] propagating along the z-axis decreases exponentially accor-
ding to the relation

Iz+d:c a5 Ime_zudx! : : (36)

where a denotes the pressure coefficient of the attenuation of ultrasound.

The quantity @, is defined as the ratio of the amount of heat released per
unit time to the volume of the region A4 Ax

2 Ea:_Ez+A$ Ix_Ix+Az ;
]

Qﬂzk =k

At A Az Az 40

where A denotes the cross-section of the focus, E, — the energy of the pro-
gressive wave, and k = 0.24 cal /W,. :
Substituting (36) into (37) we finally obtain

= (1 =ty 6—21:4::)

Qo= kel 7 = 2kal, for Aw—0. (38)
@

From this it can be seen that the thermal effect of the heat source is de-
pendent on I,. We will thus consider the end of the focal region closest to the
transducer shown in Fig. 2, where the value of the intensity of ultrasound
is assumed to be equal to 20 W/em?2. Assuming an attenuation coefficient in
soft tissues of 3 dB/cm, we have a = (3 dB/crﬁ)(S.ﬁ’Z dB)~! = 0.34 em™". Hence
we obtain the maximum value é,, = 14k W/em? and also Q,,/gcw =
= 3.3°C/s.

For ultrasonic impulses of duration 1 ps we obtain, from formula (32),
a maximum temperature increase in the focus barely equal to T; = 3.3-107° °C.
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Fig. 4. The temperature distribution in the focal region r < 1.25 mm and beyond the focus

r > 1.26 mm computed from formulae (30) and (41) as a function of the radius r at various

durations ¢ of ultrasonic irradiation for ¢ = 0.00038 ¢m?2/s (continuous curve) and for ¢ = 0
(broken curves)
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Fig. 5. The intensity of the wave passing through an element the focal region, with length
Az and cross-sectional area A



THERMAL EFFECTS IN SOFT TISSUES 319

5. The temperature beyond the region of the ultrasonic focus
V4

This temperature is determined on the basis of formula (15) by evaluating
the constant B from expressions (18) and (30). Then we have

e e T e R

The inverse transform of this expression is determined in a similar manner
as before by using series expansions (13), (14), (24), (25) of Bessel and Hankel
functions and relations (27)-(29). Then we have

S R et

9 3 15)

1
- — En 7 4
e (128r2 T ShR  198R: ]’ )
a

whence we obtain the final temperature beyond the region of the focus (r > R)
equal to

gL SR 1788 o
1 —— |/ —|}4 int2erf — + —}Vatint}erfec ——
0 chz 2 1ntelc2_ ¢'+R)I/am erczatf
9 6 15
— — — — | — itterf f i
- +(w TR R2)8 s s “—21/— ] e

It can be easily seen that on the boundary surface of the focal region (r = R)
we obtain from formula (41), as expected, the same value as expressed already
by formula (34).

Fig. 4 also shows the temperature distribution calculated beyond the focal
region (r > R = 1.25 mm) as a function of the radius r for various durations ¢
of the ultrasonie impulse.

6. Conclusions

In the range of impulse ultrasonography, in which the impulse duration
is about 1 ps, the temperature increase of the medium during the pulse duration
is of the order of 107°°C. For an intensity I = 20 W/em? the temperature cal-
culated by us was barely 3.3-107%°C. This increase is entirely negligible.

§ — Archives of Acoustics 4/76
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At the intensities assumed and times of ultrasonic radiation equal to 1 s the
temperature increases can attain a value of 3.3°C, thus at the times of this order
they may cause irreversible changes in the tissues irradiated by the ultrasound.

The temperature increase in the middle of the focus does not depend on
the thermal conduetivity for short duration of ultrasonication (in our case for
t < 5 s, Fig. 4a). The thermal conduectivity then influences only the temperature
distribution in the proximity of the focal boundary.

The temperature distribution in the focus shown in Fig. 4is an approxi-
mated distribution by virtue of the assumed stability of the intensity of ultra-
sound in the focus for 0 <r < R. In reality, because of decreasing intensity
in the focus along the coordinate r, the temperature will decrease for conside-
rably smaller values of » and this decrease will occur more evenly. The distri-
bution can also be modified by heat flow along the x-axis of the focus and this
has not been considered in this paper.

In the case of tissues well supplied with blood one should consider the
additional factor of heat transfer by the blood causing a temperature decrease
of the tissues. This problem was also not considered in this paper.

A number of simplifications assumed in the paper, chiefly in the range
of the field distribution, is not of any great importance in view of the purpose
of the paper, namely the evaluation of the thermal effect encountered in tis-
sues.

The estimates obtained are approximately in agreement with the experi-
mental results obtained in the tissues of mammalian museles by FruyY [3],
where, with the aid of thermocouple probes, a temperature increase of 2.9°C
has been measured at an intensity of 64 W/em? for 1 s _

It is also of interest to compare the results obtained with the threshold
curves for ultrasonic doses causing irreversible structural changes in mammalian
brain [1]. From the curves presented in the cited paper, there is, at a frequency
of 3 MHz, a threshold value at an intensity of 200 W/em? with ultrasonie
impulses of duration 1 s. On the basis of formulae (32) and (38) we would then
obtain a temperature increase in the focus of 33°C, a temperature that would
doubtless cause damage to the tissues.

References

[1] F. Duxn, J. E. Loexgs, F. J. FrY, Frequency dependence of threshold ulirasonie
dosages for irreversible structural changes in mammalian brain, JASA, 58, 2, 512-514 (1975).

[2] L. FiLipczyXskr, G. Lypacewicz, J. SALKOWSKI, Intensity determination of focused
ultrasonic beams by means of electrodynamic and capacitance methods, Proe. Vibration Problems,
15, 4, 297-3056 (1974).

[3] W. J. Fry, R. B. FrY, Temperature changes produced in tissue dwmg ultmsomc
radiation, JASA, 25, 6-11 (1953).

[4] W. J. FrY, R. B. FrY, Determination of absolute sound levels and acoustic absorptmn
coefficients by thermocouple probes. Theory, JASA, 26, 3, 294-310 (1954).



THERMAL EFFECTS IN SOFT TISSUES 321

[6] R. C. HiLL, G. P. Josur, 8. H. REVELL, A search for chromosome damage followin,
exposure of Chinese hamster cells to high intensity pulsed wltrasound, British Journ. of Radiology,
45, 333 (1972).

[6] N. W. McLACHLAN, Bessel funclions for engineers [in Polish], PWN, Warszawa
64.

[7] Physico-chemical handbook [in Polish], WNT, Warszawa 1974.
[8] H. Taurz, Warmeleitung wnd Temperalurausgleich, Akademie-Verlag, Berlin 1971.
|

Received on 28th November 1975



