ARCHIVES OF ACOUSTICS 1, 4, 323-335 (1976)

THE RELATION OF THE SPECIFIC ACOUSTIC IMPEDANCE OF LIQUIDS AND THE SURFACE TENSION

BOGDAN NIEMCZEWSKI

Tele- and Radio Research Institute (Warszawa)

Theorems for the dependence of the specific acoustic impedance (ϱc) of organic liquids on the surface tension (σ) are proposed and substantiated. It was found that for a given liquid the quotient $N = \varrho c/\sigma$ is constant at different temperatures. For liquids with similar chemical structure $N = \varrho c/\delta \approx \text{const.}$

Formulae for the sound propagation velocity and its temperature coefficient which permit the evaluation of the said parameters from the density and surface tension of a liquid are given. An analysis of the accuracy of the values of sound velocities has been made and the temperature coefficients $\Delta c/\Delta t$, calculated for ten liquids, have been compared with the coefficients obtained by experiment. A reversal of the relationship for N permits calculation of the surface tension with an accuracy that is sufficient for practical purposes.

It has long been known that there exists an intimate relationship between the sound velocity in a liquid and the surface tension of this liquid, and attempts have been made to express this relationship in a mathematical form. K. ALTENBURG has calculated the velocity of elastic waves in a liquid to be equal to

$$c = 5.663 \sqrt{\sigma} \sqrt[6]{\frac{6.024 \cdot 10^{23}}{\varrho_l^2 M}} \frac{\varrho_l}{\varrho_l - \varrho_g},$$

where σ denotes the surface tension in dynes/cm, ϱ_l — the liquid density in g/cm³, ϱ_g — the density of gas adjoining the liquid in g/cm³, and M — the molecular weight of the liquid.

Calculations made using this formula are, however, arduous, and the results are not always confirmed by experiment.

On the other hand, there is no information in the literature on attempts to relate the surface tension with the acoustic impedance although the establishment of such a dependence seems obvious. This problem, particularly for organic liquids, has been the subject of the investigations which are reported in the sequel. On the basis of calculations made for over one hundred organic liquids (the initial data and the results for some of these liquids are given in the subsequent tables) we have come to the following conclusions:

1. The quotient of the specifics acoustic impedance (ϱc) and the surface tension (σ) for a given organic liquid have a constant value which is independent of temperature, i.e. $\rho c/\sigma = \text{const.}$

2. The quotient of the specific acoustic impedance and the surface tension for organic liquids of similar chemical structure, which do not contain in their molecules atoms other than C, H, O and N, are approximately constant, i.e. $\rho c/\sigma \approx \text{const.}$

3. The quotient of the specific acoustic impedance and the surface tension for organic liquids, which contain in their molecules, in addition to atoms of C and, eventually, H, O and N, other atoms but of the same element for all of these liquids, are functions of the weight content of this element in the molecule, i.e.

$$\frac{\varrho c}{\sigma} = f\left(\frac{nm}{M}\right),$$

where n denotes the number of atoms of the element other than C, H, O and N in the molecule, m the atomic weight of this element, and M the molecular weight of the liquid.

Denoting by the letter N the value of the expression $\rho c/\sigma$, in which we will substitute values of c in m/s (for the sake of simplicity), ρ in g/cm³ and σ in dynes/cm, we obtain:

 $N \approx 38.5$ for unbranched chain hydrocarbons (Table 1),

 $N \approx 39.6$ for ketones,

 $N \approx 40.0$ for cyclic substances and branched chain hydrocarbons (Tabl 2),

 $N \approx 40.7$ for unbranched alcohols,

tant anothing in inst

 $N \approx 42.7$ for branched alcohols,

 $N \approx 42.9$ for unbranched carboxylic acids,

 $N \approx 43.7$ for esters (Table 3).

The presence of trivalent nitrogen or unsaturated bonds in a chain or ring in a liquid molecule in most cases reduces the numerical value N, while the presence of more than two atoms of oxygen in the molecule increases it.

The value of N for organic liquids, that contain in their molecules atoms of elements other than C, H, O and N, increases exponentially with the weight content of this element in the molecule. This is shown in Tables 4 and 5 and in Fig. 1. The constancy of the numerical value of N with changing temperature has been proved in a sample of twelve organic liquids in Fig. 2. Small and insignificant differences are probably caused by insufficient accuracy of values of parameters taken from the tables.

The values of the parameter N at various temperatures for water have also been calculated. The results are shown in Fig. 2. It was found that within a range from 0 to 100° C the value of N for water increases from 18.55 to 25.13.

Liquid gases H_2 , O_2 and N_2 exhibit a similar dependence of N on the temperature. Lack of sufficient data does not permit the investigation of this problem in as many cases as would be needed to draw universal conclusions about the function N = f(t) for inorganic liquids. However, it does not seem that all of them should behave in a similar manner to water and the liquid gases.

N

For example, Table 6 gives the results of a calculation made for mercury. Within the temperature range from 0 to 200°C, the value of N for mercury is perfectly constant (the deviation from the mean does not exceed 0.08%). At temperatures no lower than about 250°C N shows a gradual which rise in the proximity of the boiling point (357°C) reaches about 5%. However, it is not clear if there is a real deviation of the value of N from a constant value or whether the values of sound velocity used for the calculation were already overstated. They were calculated on the basis of the coefficient $\Delta c/\Delta t = 0.464 \text{ m/s} \cdot \text{deg}$, cited after HUBBARD and LOOMIS by SCHAAFFS, and measured in the temperature range from 0 to 70°C. The extrapolation for the value of c above 200°C is thus risky.

The rules presented in this paper provide a simple method to evaluate

any of the parameters involved in the formula $\rho c = N\sigma$ from the other parameters, if they are known for a given temperature. Furthermore, this relation can be useful in investigating the properties of various organic liquids, and also permits a new look at the essence of the acoustic impedance of a liquid.

On the basis of the relations presented we may write, at a temperature t° C, the equality

$$c=\frac{N\sigma}{\varrho},$$

(1)

Fig. 2. N as a function of temperature for 12 organic liquids, mercury and water

where e is the sound velocity for a given organic liquid at a temperature $t^{\circ}C$ in m/s, σ — the surface tension in dynes/cm at temperature $t^{\circ}C$, ϱ — the density of liquid in g/cm³ at a temperature $t^{\circ}C$.

The values of c at 20°C for 70 organic liquids have been calculated according to this formula. The magnitudes of the surface tension and density have been taken from [1, 2, 3] while the values of the parameter N, substituted in the formula, were equal to the figures given above. The results obtained have been compared with sound velocities as stated in a standard reference book [4]. The differences between the calculated and measured values of c as follows:

Difference m/s	0-10	11-20	21-30	31-40	41-50	over 50
Number of liquids	36 _	17	9	5	2	í
%	51.4	24.3	12.9	7.1	2.9	1.4

The mean difference of the calculated and measured sound velocities for seventy organic liquids is 15 m/s and this corresponds to 1-2 % of the mean sound velocity of these liquids.

The formula for the temperature coefficient $\Delta c/\Delta t$ of the sound velocity can be derived by simple transformations of formula (1) for the sound velocity. For temperatures t_1 and t_2 :

$$c_1=rac{N\sigma_1}{arrho_1} \quad ext{ and } \quad c_2=rac{N\sigma_2}{arrho_2}.$$

	` Hydro	ocarbon	1323	c [m/s]	<i>e</i> [g/cm ³]	σ [dynes/cm]	N
C_5H_{12} n-pentane	0.82	108.0.	1343	1030	0.626	16.63	38.77
C ₆ H ₁₄ n-hexane	75.82	198. <u>0</u>	1881	1083	0.659	18.41	38.77
C ₇ H ₁₆ n-heptane	\$0.0¢	063.0	1364	1154	0.684	20.29	38.90
C ₈ H ₁₈ n-octane	9,62 /	838.0		1192	0.702	21.78	38.42
C ₉ H ₂₀ n-nonane	29:10	6.873	2152	1234	0.718	22.96	38.59
C ₁₀ H ₂₂ n-decane	72.12 72.12	0.894 \	1272	1255	0.731	23.89	38.40
C ₁₂ H ₂₆ n-dodecane	88.9E	0.862	1,251	1300	0.750	25.48	38.26
C ₁₄ H ₃₀ n-tetradecar	10	1,206	1673	1331	0.763	26.66	38.09
C ₁₆ H ₃₄ n-hexadecar	0.84 10	1.032	6081	1363	0.776	27.64	38.27

Table 1. N for unbranched paraffin hydrocarbons (at 20°C)

Mean N: $38.50 \pm 0.4 \ (0.4 \approx 1.0\%)$

Subtracting both sides of these formulae we obtain

 $c_1 - c_2 = N\left(\frac{\sigma_1}{\varrho_1} - \frac{\sigma_2}{\varrho_2}\right).$

Substance	c [m/s]	<i>Q</i> [g/cm ³]	σ [dynes/cm]	N
Closely himse of 1 to (1) for reach	2	3	4	5
C ₆ H ₁₀ . cyclohexane	1305	0.811	26.55	39.9
C ₆ H ₁₂ cyclohexane	1277	0.779	24.95	39.9
C ₆ H ₆	1324	0.879	28.87	40.3
C7H8 toluene	1328	0.867	28.53	40.4
C ₈ H ₁₀ m-xylene	1343	0.864	28.9	40.1
C ₈ H ₁₀ p-xylene	1334	0.861	28.37	40.5
C ₈ H ₁₀ o-xylene	1364	0.880	30.03	40.0
C ₈ H ₁₀ ethylobenzene	1338	0.868	29.2	39.8
C ₉ H ₁₂ proplylobenzene	1342	0.878	29.10	40.5
C ₉ H ₁₂ 1,2,3-trimethylobenzene	1372	0.894	31.27	39.2
C ₁₀ H ₁₄ butylobenzene	1351	0.862	29.38	39.6
C ₆ H ₅ NO ₂ nitrobenzene	1475	1.206	43.9	40.5
C ₆ H ₇ N aniline	1659	1.022	42.9	39.5
C7H9N m-toluidine	1594	0.989	38.3	41.2
C ₇ H ₉ N — 2-toluidine	1618	0.999	40.8	39.6

Table 2. N of branched hydrocarbons and cyclic substances (at 20°C)

SPECIFIC ACOUSTIC IMPEDANCE OF LIQUIDS

Table 2, ctd.

1	2	3	4	5
C7H9N methylaniline	1586	0.984	39.6	39.4
C7H7NO2 o-nitrotoluene	1473	1.163	41.67~	41.1
C ₈ H ₁₁ N dimethylaniline	1509	0.956	36.6	39.4
C ₅ H ₁₁ N piperidine	1400	0.860	30.64	39.3
C ₉ H ₇ N chinoline	1600	1.098	45	39.0
C ₆ H ₁₅ N triethylamine	1143	0.730	20.9	39.9
C ₁₀ H ₁₈ trans-decaline	1403	0.873	29.89	41.0
C ₁₀ H ₁₈ cis-decaline	1451	0.895	32.18	40.3
C ₁₀ H ₁₂ tetraline	1484	0.969	36.2	39.7
C7H ₁₆ 2,2,3-trimethylbutane	1101.5	0.6901	18.86	40.3
C ₇ H ₁₆ 3-methylhexane	1135.5	0.687	19.56	39.9
C ₇ H ₁₆ 2-methylhexane	1120	0.6789	19.21	39.6
C7H ₁₆ 2,4-dimethylpentane	1083.5	0.6745	18.12	40.3
C7H ₁₆ 2,3-dimethylpentane	1148.5	0.6942	19.82	40.2
C ₇ H ₁₆ 3-ethylpentane	1169.5	0.6982	20.46	39.9

329

Ester	c [m/s]	e [g/cm ³]	σ [dynes/cm]	N
C ₃ H ₆ O ₂ ethyl formate	1160	0.917	23.84	44.6
C ₃ H ₆ O ₂ methyl acetate	1182	0.934	24.49	45.1
C ₄ H ₈ O ₂ - propyl formate	1192	0.906	24.5	44.1
C ₄ H ₈ O ₂ ethyl acetate	1177	0.9005	23.9	44.3
C ₅ H ₁₀ O ₂ propyl acetate	1198	0.887	24.3	43.7
C ₅ H ₁₀ O ₂ ethyl propionate	1183	0.890	24.27	43.4
C ₆ H ₁₂ O ₂ Sthyl butyrate	1197	0.879	24.58	42.8
C ₈ H ₈ O ₂ methyl benzoate	1472	1.088	37.6	42.6
C ₉ H ₁₀ O ₂ ethyl benzoate	1463	1.047	35.5	43.1

Table 3. N of esters (at 20°C)

Table 4. N of organic liquids containing bromine in the molecule (m = 79.9) at 20°C

Substance	% by weight of bromine in the molecule	c [m/s]	<i>e</i> [g/cm ³]	σ [dynes/cm]	N
CHBr ₃	1131.5		-		e By
bromoform	94.8	931	2.890	31.68	84.9
C ₂ H ₂ Br ₄ 1,1,2,2-tetrabromethane	92.5	1041	2.967	49.6	62.3
C ₂ H ₄ Br ₂ ethylene bromide	85.1	1009	2.178	38.37	57.3
C ₂ H ₅ Br ethyl bromide	73.3	900	1.461	24.15	54.4
C ₄ H ₉ Br n-butyl bromide	58.3	1019	1.274	26.33	49.3
C ₆ H ₅ Br bromobenzene	50.9	1170	1.495	36.5	47.9
C ₈ H ₁₇ Br n-octyl bromide	41.4	1182	1.166	28.89	47.7
C ₁₀ H ₇ Br bromonaphthalene	38.6	1372	1.487	44.64	45.7

Substance	% by weight of chlorine in the molecule	c [m/s]	2 [g/cm ³]	σ [dynes/cm]	N
CCl ₄ carbon tetrachloride	92.2	938	1.594	35.68	58.2
CHCl ₃ chloroform	89.1	1001	1.487	27.1	54.9
$C_2 H Cl_5$ pentachloroethane	87.6	1113	1.672	34.6	53.8
C_2Cl_4 tetrachloroethylene	85.5	1063*)	1.618*)	32.32	53.2
$C_2H_2Cl_4$ tetrachloroethane	84.5	1170	, 1.595	35.2	53.0
CH ₂ Cl ₂ methylene chloride	83.5	1093	1.318	27.1	53.1
C2HCl3 trichloroethylene	- 81.0	1055*)	1.464*)	29.5	52.4
C ₂ H ₃ Cl ₃ 1,1,1-trichloroethane	79.7	992*)	1.333*)	25.56	51.7
C ₂ H ₄ Cl ₂ 1,2-dichloroethane	71.5	1216	1.252	32.23	47.2
C ₃ H ₆ Cl ₂ 1,2-dichloropropane	62.8	1162	1.155	28.65	46.8
G ₃ H ₇ Cl 1-chloropropane	45.1	1091	0.890	22.0	44.1
C ₄ H ₉ Cl chlorobutane	38.3	1140	0.885	· 23.66	42.6
C ₆ H ₅ Cl chlorobenzene	31.5	1289	1.104	33.2	42.9

Table 5. N of organic liquids containing chlorine in the molecule (m = 35.4) at 20°C

*) according to measurements made by the author

331

°C	c [m/s]	2 [g/cm ³]	σ [dynes/cm]	N
0	1460.2	13.5955	479.5	41.40
10	1455.6	13.5708	477	41.41
20	1451.0	13.5462	475	41.38
25	1448.7	13.5340	473.5	41.41
30	1446.4	13.5212	472.5	41.39
40	1441.7	13.4967	470	41.40
50	1437.1	13.4729	467.5	41.42
100	1413.9	13.3522	456	41.40
150	1390.7	13.232	444	41.44
200	1367.5	13.1148	433	41.42
250	1344.3	12.994	416	41.99
300	1321.1	12.8806	400	42.54
350	1297.9	12.757	381	43.46

Table 6. N as function of temperature for mercury

If both sides of this equation are divided by $\Delta t = t_2 - t_1$, we obtain a formula from which $\Delta c/\Delta t$ can be evaluated without any information about the o und velocity of a given liquid:

$$\frac{\Delta c}{\Delta t} = \frac{N}{t_2 - t_1} \left(\frac{\sigma_1}{\varrho_1} - \frac{\sigma_2}{\varrho_2} \right). \tag{2}$$

It is a common practice to quote the sound velocity in a given liquid at a certain temperature (most tables state values at 20°C). Thus only the coefficient $\Delta c/\Delta t$ is unknown, and different sources state different values. Substituting the value of $N = c_1 \rho_1/\sigma_1$ into formula (2), we get

$$\frac{\Delta c}{\Delta t} = \frac{c_1}{t_2 - t_1} \left(1 - \frac{\varrho_1 \sigma_2}{\varrho_2 \sigma_1} \right). \tag{3}$$

Calculations have been made using formulae (2) and (3) for 10 typical organic liquids. The results of these calculations, and also the measured values of $\Delta c/\Delta t$ compiled-by SCHAAFFS are given in Table 7.

On the basis of the analysis of the data contained in Table 7 and other data, not cited in this paper, it can be concluded that using the quoted formulae it is possible to calculate, with good accuracy, the temperature coefficient of sound velocity in organic liquids, provided that:

- the numerical values from which the coefficient $\Delta c/\Delta t$ is evaluated must be extremely accurate (the accuracy of the surface tension in particular should be at least 0.01 dynes/cm),

- the temperature range Δt is as wide as possible.

Table 7. Com	parison of calcu	ated and measure	d values of	$\Delta c / \Delta t$ for	10 organic liquids
--------------	------------------	------------------	-------------	---------------------------	--------------------

Liquid		Data used	$\Delta e / \Delta t$ [m/s·deg]	$\Delta c / \Delta t$ [m/s·deg]			
Tudma	t[°C]	$\varrho [{ m g/cm^3}]$	σ [dynes/cm]	c [m/s]	calculated ¹⁾	measured	
1	2	3	4	5	6	7	
Hexane C ₆ H ₁₄	20 60	$0.6594 \\ 0.6221$	18.41 14.33	1083 —	4.74 4.72	4.4_{10}^{50}	
Heptane C ₇ H ₁₆	20 90	$0.68276 \\ 0.6236$	$\begin{array}{r} 20.29 \\ -13.64 \end{array}$	1154	$\begin{array}{r} 4.33\\ 4.29\end{array}$	$\begin{array}{r} 4.0_0^{90} \\ 4.14_0^{50} \end{array}$	
$Octane C_8H_{18}$	$\begin{array}{c} 20\\ 120 \end{array}$	$0.7022 \\ 0.6168$	$\begin{array}{c} 21.78\\ 12.64\end{array}$	1192	4.04	$3.95_{20}^{100} \\ 4.22_0^{50}$	
$\begin{array}{c} \operatorname{Benzene} \\ \operatorname{C_6H_6} \end{array}$	20 80	0.8790 0.8145	28.87 21.24	1324	$\begin{array}{c} 4.55\\ 4.51\end{array}$	$\begin{array}{r} 4.48^{80}_{10} \\ 4.60^{70}_{10} \\ 4.78^{50}_{10} \end{array}$	
Toluene C ₆ H ₅ CH ₃	20	0.8669	28.53	1328	4.24	$\begin{array}{r} 4.30_0^{50} \\ 4.30_{10} \end{array}$	
o-xylene $C_6H_4(CH_3)_2$	20 100	$0.8801 \\ 0.8029$	30.03 21.27	1364	3.81 3.81	3.80_{20}^{100}	
Methanol CH ₃ OC	20 50	$0.7915 \\ 0.7650$	22.55 20.0	1123	3.08 3.18	$\begin{array}{r} 3.23\substack{60\\20}\\3.25\substack{50\\0}\\3.26\substack{50\\0}\\3.3\substack{10\\10}\end{array}$	
$\substack{\text{Ethanol}\\ \text{C}_2\text{H}_5\text{OH}}$	20 50	$0.7894 \\ 0.76315$	22.55 - 19.9	1159	3.37 3.38	$\begin{array}{r} 3.15_{20}^{70} \\ 3.16_{20}^{70} \\ 3.4_{10}^{30} \\ 3.50_0^{50} \end{array}$	
Methyl acetate CH ₃ COO.CH ₃	20 30	$0.9338 \\ 0.92065$	24.49 23.14	1182	4.92 4.77	$\begin{array}{r} 4.6^{30}_{10} \\ 4.73^{50}_{10} \end{array}$	
Ethyl acetate CH ₃ COO.C ₂ H ₅	20 50	$0.9005 \\ 0.8635$	23.9 20.2	1177	$\begin{array}{r} 4.65 \\ 4.58 \end{array}$	$\begin{array}{r} 4.5^{30}_{10} \\ 4.88^{50}_{10} \end{array}$	

¹) the upper value has been calculated from formula (3), the lower value - from formula (2).

Liquid	$\frac{\Delta c}{\Delta t} [m/s \cdot deg]$ used for calcu- lations	t [°C]	σ measured [dynes/cm]	σ calculated [dynes/cm]
1	2	3	4	5
Hexane C ₆ H ₁₄	4.450	60	14.33	14.55
Heptane C ₇ H ₁₆	4.1450	90	13.64	13.86
Octane C ₈ H ₁₈	3.95^{100}_{20}	120	12.64	12.79
Benzene C ₆ H ₆	4.60 ⁷⁰ ₁₀	80	21.24	21.17
$\hline \hline \\ \textbf{Toluene} \\ \textbf{C_6H_5} \cdot \textbf{CH}_3 \\ \hline \end{array}$	4.3000	40	26.13	26.10
$\overline{\mathbf{c_6}}$ Xylene $\mathbf{C_6}\mathbf{H_4} \cdot (\mathbf{C}\mathbf{H_3})_2$	3.8020	100	21.27	21.29
Methanol CH ₃ OH	3.25_0^{50}	50	20.0	19.90
Ethanol C ₂ H ₅ OH	3.50 ⁵⁰ ₁₀	50	19.9	19.82
Methyl acetate CH ₃ COO·CH ₃	4.73 ⁵⁰	30	23.14	23.18
Ethyl acetate $CH_3COO \cdot C_2H_5$	4.88 ⁵⁰ ₁₀	50	20.2	20.07
Carbon tetrachloride CCl ₄	3.3000	100	16.48	16.60
Chlorobenzene C ₆ H ₅ Cl	3.7000	50	29.6	29.38
Dichloropropane C ₃ H ₆ Cl ₂	3.8000	60	23.8	23.80
Trichloroethylene C_2HCl_3	3.5^{30}_{20}	60	24.4	24.36
$\begin{array}{c} \hline \\ Tetrachloroethylene \\ C_2 Cl_4 \end{array}$	3.3 ³⁰ / ₁₅	60	26.9	26.99

 Table 8. Comparison of calculated and measured values of surface tension at various temperatures for fifteen organic liquids

Note. In the two last items $\Delta c/\Delta t$ according to the author's measurements

Attention should be drawn to the rather frequently occurring discrepancies in the numerical data for the surface tension from different sources. It would appear that formulae presented here can be used for the verification of these data. Furthermore, it is possible to calculate the surface tension of organic liquids for cases where the value of σ for a given temperature is unknown. For this purpose suitable transformations of formulae (1) and (3) are used:

$$\sigma = \frac{\varrho c}{N}, \tag{4}$$

$$\sigma_2 = \frac{\sigma_1 \varrho_2}{\varrho_1} \left(1 - \frac{\Delta c}{\Delta t} \frac{t_2 - t_1}{c_1} \right). \tag{5}$$

The values obtained with the aid of these formulae do not in most cases differ by more than 0.3 dynes/cm from measured values of the surface tension. For practical purposes this accuracy is quite satisfactory. In Table 8 the results of calculations according to formula (5) are compared with values of the surface tension obtained by the direct measurement.

References

[1] J. A. TREGHIER, I. F. PIMIENOV, J. A. GOLFAND, Handbook on physico-chemical properties of aliphatic chlorine bonds C_1 - C_5 [in Russian], Khimiia, Leningrad 1973.

[2] Physico-chemical handbook [in Polish], WNT, Warszawa 1974.

[3] Chemist's handbook [in Russian], vol. I and II, Goschimizdat, Leningrad-Moscow 1962 and 1963.

[4] W. SCHAAFFS, Atomic and molecular physics, Volume 5: Molecular Acoustics, Landolt-Bornstein new series. Group II. Springer Verlag, Berlin-Heidelberg-New York 1967.

Received 4th February 1976

