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There is solved a coastal problem of the acoustic wave radiation at Fraunhofer zone
for a planar annular plate vibrating harmonically. It is assumed that a plate is clamped
with both its banks, inner and outer, into a planar rigid baffle. There is an analysis of
axially-symmetric free vibrations. There are directional-frequency characteristics for both
kinds of sources — annular plate and annular membrane.

1. Introduction

Many of substantial factors should be taken into consideration during theoretical
analysis of complex surface vibrating systems generation and propagation phenomena.
These factors are acoustic influences of source surface particular elements, individual
sources of a system and of vibration form upon vibrating system radiation resultant field.
There are many scientific works considering these problems. E.g. works of Levin and
Leppington [6] in case of axially-symmetric sources. In works [9, 10] authors considered
analytic active and reactive radiation power of a planar annular membrane for axially-
symmetric vibrations forms. In work [8] there are presented directional characteristics
of vibrating annular plate. Natural frequencies of transversely vibrating plates analysis
is contained in work [11]. Energetic radiation aspect of an annular plate is transformed
to integral form with Hankel transform in work [1]. Authors analyzed in detail non-
dimensionalized added virtual mass incremental (NAVMI) factors. A considerable part of
works contain problems of radiation conditions optimization of vibrating systems (comp.
Engel [3], Fuller [4], Nelson and Deffayet [2]).
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More complex, in respect of analytic research, is acoustic wave radiation of vibrating
annular plate. There is a theoretical analysis of linear and sinusoidal in time phenom-
ena. As a result acoustic pressure at Fraunhofer zone formula of elementary form of is
produced. The source of pressure is a planar annular plate clamped with both its banks
into a planar rigid baffle. Frequency-directional characteristics of annular plate radiation
are presented in respect of source sizes. These characteristics are also compared with
corresponding characteristics of annular membrane.

2. Free vibrations of an annular plate

In the plane z = 0, which is perfectly rigid, there is a planar thin annular plate. It
is clamped with its banks, i.e. for r = r1 and r = r2, and s = r2/r1 > 0. There are
considered axially-symmetric free vibrations, sinusoidal in time. Transverse deflection of
plate surface points η(r, t) = η(r) exp(iωt) with boundary conditions

η(r2, t) = η(r1, t) = 0,
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There are here functions of null order: J0 — Bessel, N0 — Neumann, I0 – modified Bessel
and K0 — McDonald. A value xn = knr1 (k4

n = ω2
n%h/B) is n–th root of frequency

equation

[sN(sxn)−N(xn)][sT (sxn)− T (xn)] = [sS(sxn)− S(xn)][sR(sxn)−R(xn)], (2.3)

where

S(x) = J1(x)I0(x) + J0(x)I1(x),

T (x) = N1(x)I0(x) + N0(x)I1(x),
(2.4)

N(x) = J1(x)K0(x)− J0(x)K1(x),

R(x) = N1(x)K0(x)−N0(x)K1(x).

There are constants in the vibration equation (2.2)

Bn = sxn
R(sxn)N(xn)−R(xn)N(sxn)

sR(sxn)−R(xn)
, Cn =

λS(sxn)− S(xn)
sT (sxn)− T (xn)

,

(2.5)
Dn = sxn

T (sxn)S(xn)− T (xn)S(sxn)
sT (sxn)− T (xn)

.

The constant An is calculated from normalization condition (comp. [9])
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There is obtained

A2
n =

1
2
(s2 − 1)

{
s2[J0(sxn)− CnN0(sxn)]2 − [J0(xn)− CnN0(xn)]2

}−1
. (2.7)

In Table 1 there are given values of frequency equation several roots (2.3).

Table 1. Roots xn of the frequency equation (2.3).

s

n 1.1 1.2 1.5 2 3 5

1 47.299 23.648 9.4554 4.7236 2.3579 1.1766

2 78.531 39.264 15.703 7.8477 3.9200 1.9569

3 109.96 54.976 21.988 10.991 5.4923 2.7433

4 141.37 70.685 28.272 14.134 7.0640 3.5295

5 172.79 86.393 34.555 17.276 8.6354 4.3154

6 204.20 102.10 40.839 20.418 10.207 5.1013

3. Acoustic pressure at the Fraunhofer zone

An annular plate, which transverse vibration distribution is calculated from the for-
mula (2.2), radiates a wave of acoustic pressure into a half space z ≥ 0 which is filled
with a perfect gas medium of rest density %0 and wave propagation velocity c0.

Acoustic pressure distribution of vibrating source clamped into a planar rigid baffle
at the Fraunhofer zone is [7]:

p(R,ϑ, ϕ) =
i%0ω

2π

exp(−ik0R)
R

∫

σ0

v(r0, ϕ0) exp[ik0r0 sin ϑ cos(ϕ− ϕ0)] dσ0 (3.1)

and
1
2
k0r0{r0/R} ¿ 1, R, ϑ, ϕ are spherical coordinates of field point and r0, ϕ0 are

polar coordinates of source point, k0 = 2π/λ, λ is radiated wavelength, v(r0, ϕ0) is a
normal component of surface source vibration velocity.

In case of axially-symmetric vibrations v(r0) = iωη(r0) the formula (3.1) is of form

p(R,ϑ) = −%0ω
2 exp(−ik0R)

R

r2∫

r1

η(r0)J0(k0r0 sinϑ)r0 dr0 . (3.2)

As a result of calculation of this integral, with specified vibration distribution (2.2),
there is

pn(R, ϑ) = −%0ω
2
nAn

exp(−ik0R)
R

2(r1xn)2

x4
n − u4

×{xn[sC ′1(sxn)J0(su)− C ′1(xn)J0(u)]− u[sC ′0(sxn)J1(su)− C ′0(xn)J1(u)]} , (3.3)

where u = k0r1 sin ϑ, C ′0(x) = J0(x)− CnN0(x) and C ′1(x) = J1(x)− CnN1(x).
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Result (3.3) presents an elementary form of an acoustic pressure expression at the
Fraunhofer zone of an annular plate, which is activated to axially-symmetric form of
vibrations (0, n).

At the main direction there is

pn(R, 0) = −2%0r
2
1An

ω2
n

xn
[sC ′1(sxn)− C ′1(xn)]

exp(−ik0R)
R

, (3.4)

where An is the normalization constant defined by formula (2.7).
Directional characteristic of an annular clamped plate is in the form

Kn(ϑ) =
∣∣∣∣
pn(R,ϑ)
pn(R, 0)

∣∣∣∣

=
sC ′1(sxn)J0(su)− C ′1(xn)J0(u)− (u/xn)[sC ′0(sxn)J1(u)− C ′0(xn)J1(u)]

[1− (u/xn)4][sC ′1(sxn)− C ′1(xn)]
, (3.5)

where u = β sinϑ .
If an annular membrane is stimulated to axially-symmetric form of vibrations (0, n)

then pressure at the Fraunhofer zone is (comp. [9])

pn(R, ϑ) = −i%0 ωnWn(ϑ)
exp(−ik0R)

R
, (3.6)

where
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where αn = J0(xn)
/
J0(sxn), xn is a root of characteristic equation (comp. [5] and [9, 10])

J0(xn)
J0(sxn)

=
N0(xn)
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. (3.8)

Annular membrane directional characteristic for mode (0, n) is in the form

Kn(ϑ) =
[
1− (β/xn sin ϑ)2

]−1 αnJ0(sβ sin ϑ)− J0(β sin ϑ)
αn − 1

. (3.9)

4. Numerical analysis and concluding remarks

Diagrams of annular plate radiation direction indicator of axially-symmetric vibration
forms are presented in Figs. 1–4. In case of odd vibrations forms (n = 1, 3, 5, ...) the
direction indicator is calculated from the formula [7]

Kn(ϑ) =
∣∣∣∣

pn(R,ϑ)
pn(R, ϑ0)

∣∣∣∣ where ϑ0 =





0 for n = 1, 3, 5, . . . ,

max
pn(R,ϑ)

ϑ for n = 2, 4, 6, . . . . (4.1)
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Fig. 1. Directional characteristics of annular source radiation for β/x1 = 0.5, s = 5, 3, 2 and 1.5.

Attention for Figs. 1–4, 7: Curves in figures are: solid — vibrating plate is a source, dashed — vibrating
membrane is a source.
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Fig. 2. Directional characteristics of annular source radiation for β/x2 = 0.5, s = 5 and 2.

If an annular plate is stimulated to one of the even forms of vibrations (n = 2, 4, 6, ...),
then pressure pn(R,ϑ) is related to pressure pn(R, ϑ0). Angle ϑ0 determines the direction
of the maximal radiation.

Directional characteristics are also presented graphically in case of vibrating annular
membrane. It allows comparing directional characteristics of two different annular sources
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Fig. 3. Directional characteristics of annular source for s = 5, β/xn = 0.5, n = 1 and 3.
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Fig. 4. Directional characteristics of annular source for s = 5, β/xn = 0.5, n = 2 and 4.

— the plate and the membrane. There are diagrams of Kn(u) versus variable u = β sin ϑ

in Figs. 5, 6 and versus variable u = β/xn sin ϑ in Fig. 7.
In boundary case, when r1 → 0 and r2 = a, there are formulas describing a circular

source (membrane or plate) instead of formulas describing an annular source (membrane
or plate). Instead of characteristic equation (2.3) there is characteristic equation for a
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Fig. 5. Diagrams of Kn(u) function versus variable u = β sin ϑ for annular plate. It is assumed that

s = 1.5, n = 1 and 3.
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Fig. 6. Diagrams of Kn(u) function versus variable u = β sin ϑ for annular plate. It is assumed that

s = 3, n = 1 and 3.

circular plate of radius r = a, i.e. when r1 → 0, Cn → 0,

S(sxn) = S(kna) = J1(kna) I0(kna)− J0(kna) I1(kna) = 0, (4.2)

where k2
n = ωn

√
%h/β. There is also that lim

r1→0
An(r1) = 2−1/2J−1

0 (kna).
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Fig. 7. Diagrams of K2(u) function versus variable u = β/x2 sin ϑ for annular source. It is assumed

that s = 3.

From the formula (3.5) there is

lim
r1→0

Kn(r1, ϑ) =
J0(k0a sin ϑ)− k0

kn

J0(kna)
J1(kna)

sin ϑJ1(k0a sin ϑ)

1− (k0/kn)4 sin4 ϑ
. (4.3)

Instead of characteristic equation (3.8) there is a characteristic equation for a circular
membrane of radius r = a, i.e.

J0(kna) = 0, (4.4)

where kn = ωn

√
σ/T , σ is the membrane surface density, T is the stretching force. From

the formula (3.9) there is

lim
r1→0

Kn(r1, ϑ) =
J0(k0a sin ϑ)

1− (k0/kn)2 sin2 ϑ
. (4.5)
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