
Archives of Acoustics Vol. 48, No. 1, pp. 39–48 (2023), doi: 10.24425/aoa.2023.144264

Research Paper

Acoustic Identification of Dolphin Whistle Types in Deep Waters
of Arabian Sea Using Wavelet Threshold Denoising Approach

Madan M. MAHANTY∗, Sanjana M. CHEENANKANDY, Ganesan LATHA,
Govindan RAGURAMAN, Ramasamy VENKATESAN

National Institute of Ocean Technology, Ministry of Earth Sciences
Chennai, India

∗Corresponding Author e-mail: mmmahanty@gmail.com

(received February 15, 2022; accepted October 7, 2022)

In situ time series measurements of ocean ambient noise, have been made in deep waters of the Arabian Sea,
using an autonomous passive acoustic monitoring system deployed as part of the Ocean Moored buoy network
in the Northern Indian Ocean (OMNI) buoy mooring operated by the National Institute of Ocean Technology
(NIOT), in Chennai during November 2018 to November 2019. The analysis of ambient noise records during the
spring (April–June) showed the presence of dolphin whistles but contaminated by unwanted impulsive shackle
noise. The frequency contours of the dolphin whistles occur in narrow band in the range 4–16 kHz. However,
the unwanted impulsive shackle noise occurs in broad band with the noise level higher by ∼20 dB over the
dolphin signals, and it reduces the quality of dolphin whistles. A wavelet based threshold denoising technique
followed by a subtraction method is implemented. Reduction of unwanted shackle noise is effectively done and
different dolphin whistle types are identified. This wavelet denoising approach is demonstrated for extraction
of dolphin whistles in the presence of challenging impulsive shackle noise. Furthermore, this study should be
useful for identifying other cetacean species when the signal of interest is interrupted by unwanted mechanical
noise.
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1. Introduction

Sounds produced by marine species are often iden-
tified using time-frequency representations for extrac-
tion of salient and distinguishing features of their vo-
calization. The problem of extracting the sound from
the spectrogram can be compounded by low signal to
noise ratio and the obstruction of acoustic files with
non-stationary anthropogenic sound sources. Wavelet
transforms are preferred over a conventional method
using the fast Fourier transform (FFT) in identifying
a predominant biological noise source using the multi-
resolution denoising algorithm (Powell et al., 1995;
Learned, Willsky, 1995). The wavelet transform is
used by Huynh et al. (1998) in classifying whale and
porpoise sounds. A wavelet based threshold denoising

technique followed by a subtraction method is imple-
mented here that can be used for marine species iden-
tification. The algorithm is demonstrated for identifi-
cation of dolphin whistles from noise data corrupted
with mechanical noise.

Dolphins are mainly vocal mammalian family, and
the vocal communication plays an important role in
mediating social interactions (Slater, 1983). They are
inhabited in all over the world’s oceans and mostly dis-
tributed in warm equatorial to subpolar regions, and
in coastal as well as offshore waters (Corkeron, Van
Parijs, 2001). Dolphins produce mainly two primary
types of sounds associated with specific behavioral con-
texts: non-pulse tonal frequency modulated whistles
and rapid repetition of burst-pulsed click sounds (Au,
1993; Jones et al., 2020). Whistles are non-pulse char-
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acteristics, longer duration with a narrow frequency
band (Boisseau, 2005;Akiyama, Ohta, 2007). These
whistle sounds play a crucial role in maintaining con-
tact between dispersed individuals (Caldwell et al.,
1990; Janik, Slater, 1998; Sayigh et al., 1999; Janik
et al., 2006; 2013; Rachinas-Lopes et al., 2017),
group cohesion with male-male alliances, vocal commu-
nication between mother and calf pairs, and also pro-
mote as a greeting signal when the groups joining each
other (Smolker et al., 1993; Janik, 2009; Quick,
Janik, 2012; King et al., 2019). The amplitude and
duration of the whistles may vary, however the stereo-
typed frequency contour over time of the whistle seems
to comprise the information for recognition (Janik
et al., 2006). The discrete parameters to classify whis-
tles include: start frequency, end frequency, minimum
frequency, maximum frequency, bandwidth, duration,
and number of inflection points (Janik et al., 1994;
Esch et al., 2009). However, in some instances the
whistle signals are often contaminated by the mechan-
ical noises particular to the rubbing and mooring com-
ponents such as shackles and cables. It is hard to dis-
tinguish the frequency contour of the whistles once the
signal of interest is corrupted with unwanted sounds.
Therefore, it is important to implement the denoising
method which improves the quality of signal.

Denoising is the process of extracting an original
signal from the noise (Bey, 2006). In general, the sig-
nal is corrupted by noise during its transmission, ac-
quisition, reception, and processing (Isabona, Azi,
2012). Many researchers studied different denoising
techniques, such as median filtering, mean filtering,
the Fourier transform, and Wiener filtering which
are a linear approach and suitable for stationary sig-
nals (Chen et al., 2006; Lukac et al., 2007; Zhang,
Xiong, 2009). However, the ambient noise in the
ocean is non-stationary because of the combination
of many oceanic sources including unwanted impul-
sive mechanical mooring noises which are difficult to
extract using a linear approach. Therefore, it is sig-
nificant to implement the non-linear wavelet threshold
denoising approach (Khan et al., 2015). Various non-
stationary signal extraction methods have emerged in
recent years, and the algorithms are wavelet decom-
position, empirical mode decomposition, the Hilbert-
Huang transform, and variational mode decomposi-
tion (Dragomiretskiy, Zosso, 2013; Ukte et al.,
2014; Xiang, Wang, 2015). However, to work these
approaches, certain conditions must be met such as
decomposition levels, modal number, and termination
thresholds. Among these, the wavelet decomposition
method is designed for non-stationary signals, which
combines both the time and frequency domain. Mal-
lat (1989) describes the theoretical and mathematical
approach for understanding wavelet decomposition on
signal denoising. The key advantage of wavelet denois-
ing is to split the data into different frequency compo-

nents and study the noise spikes in each frequency com-
ponent at different resolution (Chang et al., 2000).
The wavelet denoising is an emerging advance tech-
nique in signal processing that used in a various appli-
cations particularly image processing, data compres-
sion, impulsive events characterization, pattern recog-
nition signal extraction and denoising (Yu et al., 2007;
Li, Zhou, 2008). This type of technique will be useful
for removing impact noise produced in the mooring,
when acoustic recorders are incorporated in multisuite
ocean moorings. Also data acquisition during rough
seas creates more platform noise which is unavoidable.
Metal chains and shackles in mooring cause clonking
noise in the same frequency range 100 Hz to a few kHz
(Marley et al., 2017). So the algorithm described in
this paper should be useful for the above mentioned
types of noise.

In this paper, the study area is located in the South
of Lakshadweep Islands with the close proximity to the
Maldives which presents itself a highly varying bathy-
metric and oceanographic environments so, the area
affords a wide variety of cetaceans (Prakash et al.,
2015). It shows as different habitat types particularly
the coral reefs, seagrass beds, rocky and sandy shores,
deep water canyons and trenches that offer a vast ma-
rine biodiversity for cetaceans (Pillai, Jasmine, 1989;
Mallik, 2017). To identify the cetacean species, vi-
sual observation was the commonly used method in
which observers can identify the species in a limited
sighting conditions (weather, seastate, and daylight).
Basing on the visual surveys along with anecdotal ev-
idence, 14 species of cetaceans have been documented
in this area (Panicker et al., 2020). Among them, the
most commonly sited species are dolphins and studies
on acoustic identification is very scarce.

The signal denoising methods would be adequate
to eliminate the noise if the unwanted noise levels are
lower as compared to the source signals. However, noise
removal will be a challenge when the unwanted noise le-
vel is higher than the source signals. In this study,
the unwanted impulsive shackle noise is higher as com-
pared to that of dolphin whistle signals, and both are
non-stationary with transient and vary quickly. How-
ever, the frequency contours of the dolphin whistle
signals are different from that of unwanted impulsive
shackle noise which enables the wavelet denoising tech-
nique effective for implementation.

This study is mainly on identification of whistle sig-
nals produced by dolphins from the passive acoustic
measurements by implementing the wavelet threshold
denoising technique along with the subtraction method
to remove the unwanted impulsive shackle noise of the
mooring system. This study addresses how to tackle
the contaminated acoustic data due to impulsive me-
chanical noise and identify species in a marine based
biological ecosystem which would provide the baseline
information regarding cetaceans.
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2. Materials and methods

2.1. Acoustic measurements

The deep ocean ambient noise measurement system
combined with the Ocean Moored buoy network for the
Northern Indian Ocean (OMNI) buoy was deployed at
the south of Lakshadweep (AD9) in the South East-
ern Arabian Sea at the ocean depth of ∼2100 m dur-
ing November 2018 to October 2019 (Fig. 1). The sys-
tem firmly holds a glass sphere along with hydrophone
(bandwidth 10 Hz to 100 kHz), data acquisition sys-
tem, and power pack. The noise data were acquired
at a sampling rate of 32 kHz for a duration of 12 min
for every half an hour. The hydrophone-sensed acous-
tic pressure fluctuation caused by different sources of
noise, which translates into electrical signals and con-
verts to units of micropascal [µPa] by applying the
receiving sensitivity (−165 dB re 1 V/µPa) of the hy-
drophone.

Fig. 1. Deployment location of OMNI buoy in the Arabian
Sea (AD9) is indicated in blue filled dot.

The oscillogram, spectrograms, and Welch’s aver-
aged power spectral density (dB re 1 µPa2/Hz) were
analyzed using MATLAB (MATLAB R2021a). Multi-
ple spectra were obtained by segmenting the data into
smaller portions using a Hamming window and 2048
point FFT with 50% overlap. The resulting spectra
were then averaged to obtain the final spectrum. The
frequency resolution of each power spectrum is 15.6 Hz,
which is determined by the sampling frequency and the
number of points in the FFTs in each power spectrum.

2.2. Wavelet threshold denoising

The wavelet threshold denoising technique contains
three steps: signal decomposition, thresholding, and
signal reconstruction (Donoho, Johnstone, 1994).
In this method, the signal is decomposed into approx-
imation and detail coefficients at each level. The ap-
proximations are high-scale and low frequency com-
ponents, and the details are low-scale and high fre-

quency components of the signal (Tikkanen, 1999).
The threshold value is very important parameter in the
wavelet threshold denoising technique. There are four
threshold selection methods particularly the univer-
sal threshold, rigorous Stein’s Unbiased Risk Estimate
(SURE), heuristic SURE, and minimax (Donoho,
Johnstone, 1994). In this study, the rigorous SURE
threshold estimation is adopted. The threshold (T ) is
defined by:

T =
√

2 loge (N log2 (N)), (1)

where N is the number of samples in the input sig-
nal. Once the value of threshold is estimated using this
method, a hard or soft thresholding function is needed
to filter the wavelet coefficients which contain un-
wanted noise (Donoho, Johnstone, 1995). For the
hard threshold, the absolute values of wavelet coeffi-
cients below the threshold level are set to zero, and
the values above the threshold are kept unchanged.
In soft threshold, the wavelet coefficients whose values
are lower than the zero threshold, and the coefficients
above the threshold level are also modified (Donoho,
Johnstone, 1995). In this study, the soft threshold
method is considered because the wavelet coefficients
become more stable and smoothening as compared to
the hard threshold. Finally, the in situ signal is de-
noised and reconstructed using modified level coeffi-
cients.

In this study, the in situ time series data of ambient
noise is the combination of unwanted impulsive shackle
noise along with dolphins whistle signals. The noise
level of the impulsive shackle dominates the whistles
of dolphin which is difficult to identify from frequency
contours. Therefore, the wavelet threshold denoising
technique is implemented using the MATLAB function
wden:

signaldenoised = wden (input data, rigrsure, s,

mln, level, wname), (2)

where signaldenoised is the denoised signal, input data
is the original in situ data, rigrsure specifies the adap-
tive threshold selection using the principle of SURE.
The term s denotes soft thresholding, mln indicates
multi-threshold re-scaling at level coefficients, the
level determines the decomposition of the signal us-
ing the syntax level = wmaxlev (N, wname), where
N is the number of samples in the input signal. The
wname is a wavelet family and the function wden
performs wavelet denoise of the input signal. In this
study, we chose the wavelet function Daubechies [db5]
(Daubechies, 1992; Rowe, Abbott, 1995), and es-
timated the decomposition level at 20 using the above
syntax.

After implementing the wavelet threshold denois-
ing technique, the unwanted impulsive shackle noise
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exists and suppresses the resulted wanted signal be-
cause the value of noise is higher as compared to the
signal. Hence a subtraction method is implemented fol-
lowed by the wavelet threshold denoising technique.
A flowchart on the threshold denoising algorithm de-
scribed in this work is shown in Fig. 2.

Input original signal

Wavelet denoising technique

Wavelet decomposition

Rigorous threshold estimation

Soft thresholding

Signal reconstruction

Substraction method

Fig. 2. Block diagram of wavelet based threshold denoising
algorithm.

In this method, a residual signal is estimated by
subtracting the denoised signal from the original in situ
data (Math Works, n.d). The unwanted impulsive
shackle noise is isolated by subtracting the residual
signal from the denoised signal, and the wanted signal
(dolphin whistle signals) is obtained by subtracting the
unwanted impulsive shackle noise from the original in
situ data.

3. Results

In situ time series measurements of deep water
ambient noise in the spring period were considered
for analysis, i.e., April–June, 2019. The in situ time
series data have been recorded as audio files during
the measurement, and analyzed using time-frequency
spectrogram. During the study period, 12 data sets
of recorded audio files resembled dolphin whistles,
which are mostly contaminated by unwanted impul-
sive shackle noise. Among these, Fig. 3a represents the
oscillogram of an in situ data recorded on 31/05/2019
at 11:58 hr. The spectrogram in Fig. 3b shows the mix-
ing of unwanted background noise, impulsive shackle
noise as well as the dolphin whistle sounds. The sounds
produced by impulsive shackle noise in the frequency
range of 0–16 kHz contaminates the dolphin whistle
signals.
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Fig. 3. a) Oscillogram; b) spectrogram of the original sig-
nal; c) spectrogram of the original signal using butterworth
high pass filter up to 3 kHz. The vertical striplines in spec-

trogram are shown as impulsive shackle noise.

A butterworth high pass filter with 3 kHz cut-off
is employed to the in situ data in order to suppress
the unwanted low frequency background noise which is
falling below the dolphin whistles (Fig. 3c). The spec-
trograms in Fig. 4 show the whistles of dolphin which
are subsequently extracted from the original spectro-
gram of Fig. 3c. The results shown here are from in
situ data recorded on 31/05/2019 at 11:58 hr with du-
ration of 12 minutes. The whistles produced by dol-
phins are narrow band with the spectral peak in the
frequency range of 4–16 kHz (Fig. 4). However, it is
difficult to identify the frequency contour of different
whistle types because the signals are indistinguishable
due to the impact of impulsive shackle noise. It is ana-
lysed that the averaged noise level is about ∼82 dB due
to impulsive shackle noise whereas it is about ∼62 dB
produced by dolphins whistle signal (Fig. 4a). When
compared the noise levels of impulsive shackle noise to
that of the dolphin signal, it is observed that the un-
wanted impulsive shackle noise is higher by ∼20 dB as
compared to that of dolphin signals. It means that the
noise level of dolphins whistle signals are significantly
lower and buried under the impulsive shackle noise,
which is difficult to retrieve.

Therefore, to retrieve the dolphin whistle signals,
the wavelet threshold denoising approach has been im-
plemented along with the commonly used subtraction
method. The oscillogram and spectrogram of the pro-
posed wavelet denoising approach is shown in Figs. 5a
and 5b.

The denoised version of the spectrogram (Fig. 5b)
shows the dominance of impulsive shackle noise, since
the noise levels of impulsive shackle are higher than the
noise level of dolphin whistle signals. The residual sig-
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Fig. 4. Spectrograms of dolphin whistle signals (a–p) along with unwanted impulsive shackle noise which are extracted
from Fig. 3c. The time axis represents Time in minutes from the start of the recording till the 12th minute reading from

top panel.
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Fig. 5. a) Oscillogram and b) spectrogram of denoised sig-
nal; c) oscillogram and d) spectrogram of residual signal.

nal is obtained by taking the difference between the ori-
ginal signal and the denoised signal (Figs. 5c and 5d).
In residual output, it contains the combination of
whistle signals along with white Gaussian noise other
than the impulsive shackle noise. However, denoised
signal contains higher values of impulsive shackle noise
and lower values of the whistle signals. Hence, only
shackle noise can be estimated by subtracting the
residual signal from the denoised signal, which is shown
in Fig. 6. Finally, the wanted signal of dolphin whis-
tles can be extracted by subtracting only shackle noise
from the original signal (Fig. 7).
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Fig. 6. a) Oscillogram and b) spectrogram of shackle noise.
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Table 1. Acoustic parameters of the dolphin whistle types in deep water of Arabian Sea from in situ data recorded on
31/05/2019 at 11:58 hr. These metrics are calculated from time-frequency spectrograms of a single data considering 2048

FFT points.

Whistle types Start frequency
[kHz]

End frequency
[kHz]

Maximum frequency
[kHz]

Minimum frequency
[kHz]

Duration
[s]

Concave 15.90 15.25 15.90 8.21 0.6
Convex 8.25 14.25 14.62 8.25 0.6
Upsweep 4.98 15.39 15.39 4.93 0.6

Downsweep 15.60 8.92 15.60 8.92 0.4
Sine 15.25 4.15 15.25 4.15 0.9

Multi-looped 15.85 11.35 15.85 6.25 1.08

a) b) c) d) e)

Time [min]
5.417 

Time [min] Time [min] Time [min]
0.180 5.396 5.424 6.050 6.060 6.340 6.350 6.562 6.572

16

12

8

4

0Fr
eq
ue
nc
y 

 [k
H
z]

16

12

8

4

0

16

12

8

4

0

16

12

8

4

0

16

12

8

4

0

90

60

30

0
0.170

Time [min]
f) g) h) i) j) k) l)

Time [min] Time [min] Time [min] Time [min] Time [min] Time [min] Time [min]
7.252 7.258 7.468 7.474 7.578 7.584 7.590 7.599 8.316 8.327 9.092 9.103 9.477 9.486

90

60

30

0

16

12

8

4

0

16

12

8

4

0

16

12

8

4

0

16

12

8

4

0

16

12

8

4

0

16

12

8

4

0

16

12

8

4

0Fr
eq
ue
nc
y 

 [k
H
z]

m) n) o) p)

9.574
Time [min] Time [min]

11.5139.565 9.583 10.379 10.385 11.284 11.294 11.504 11.522

90

60

30

0

16

12

8

4

0

16

12

8

4

0

16

12

8

4

0

16

12

8

4

0Fr
eq
ue
nc
y  
[k
H
z]

Time [min]Time [min]

Fig. 8. Spectrograms of dolphin whistle signals (a–p) which are extracted from the Fig. 7b.

The segmented spectrograms of Fig. 8 are extrac-
ted from the Fig. 7b, which illustrates the removal of
impulsive shackle noise and significant improvement
of dolphin whistle signals. It is easy to detect the
frequency contour and whistle types after the imple-
mentation of wavelet threshold denoising technique
followed by the subtraction method. The frequency of
dolphin whistles are ranged from ∼4 to ∼16 kHz with
the duration ranges from ∼0.4 to ∼1.08 s. Based on the
frequency contours, whistles are classified as different
types such as concave, convex, upsweep, downsweep,
sine, and multi-looped. Table 1 gives a detailed de-
scription of acoustic parameters for each of the dolphin
whistle types. Majority of the whistle types are con-
cave (Figs. 8a, 8c, 8k, and 8l) and convex (Figs. 8e, 8i,
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and 8o) followed by upsweep (Figs. 8d and 8j), down-
sweep (Figs. 8f and 8h), multi-looped (Figs. 8g and 8p),
and sine (Fig. 8m).

4. Discussion

In this study, it is observed that the in situ time
series data of acoustic noise have been contaminated
by unwanted impulsive shackle noise, which conceals
the dolphin whistle signals. The results show that the
unwanted impulsive shackle noise is non-stationary,
with the noise levels higher by ∼20 dB as compared
to that of dolphin whistle signals. The wavelet thresh-
old denoising approach followed by the subtraction
method is implemented successfully, and the impul-
sive shackle noise is removed which are overlapped on
dolphin whistle contours. The study suggests that the
optimum conditions of denoising are mainly considered
by Daubechies [db5] along with 20 multilevel wavelet
decomposition and the rigrsure soft threshold method.
The satisfactory results of wavelet denoising for dol-
phin whistle types are obtained and shown in the spec-
trogram of Fig. 8.

Seramani et al. (2006) implemented the wavelet
denoising along with the independent component ana-
lysis to separate dolphin whistles in the underwa-
ter noise environment. Lopez-Otero et al. (2018)
used the discrete wavelet transform to model dolphin
whistle contours for species classification. An earlier
study has also demonstrated the extraction of time-
frequency dolphin contours based on the automated
denoising method (Mallawaarachchi et al., 2008).
However, there is no research paper on the wavelet de-
noising of dolphin whistle contours in the presence of
impulsive shackle noise. In the present study, the use
of the wavelet denoising threshold approach to identify
the dolphin whistle signal has proved to be fruitful to
remove impulsive shackle noise present in the in situ
time series recording. This is because the impulsive
shackle noise has the different temporal and frequency
structure as compared to that of dolphin whistle con-
tours.

Many previous studies on dolphin whistle types
have been reported worldwide (Janik, Slater, 1998;
Wang et al., 1995; Acevedo-Gutiérrez, Stienes-
sen, 2004; Azevedo et al., 2007; Kriesell et al.,
2004;Heiler et al., 2016). Some researchers have stud-
ied the acoustic detection along with visual observa-
tion of cetacean species in the offshore waters of the
Maldives and Sri Lanka (Clark et al., 2012; de Vos
et al., 2012). However, no detailed identification of dol-
phin whistle types have been studied in shallow and
deep waters of the Arabian Sea. The recent study has
described the acoustic identification of dolphin whis-
tle types in deep water of Lakshadweep in the Arabian
Sea, and analyzed their acoustic parameters which con-
firms the six major whistle types in the frequency range

approximately from ∼4 to ∼16 kHz with the whistle du-
ration ranges from ∼0.4 to ∼1.08 s (Fig. 8, Table 1).

As from the recent study, it has been revealed
that the wavelet threshold denoising approach has
been taken under consideration for removing the non-
stationary impulsive shackle noise, and effectively iden-
tify the dolphin whistle contours. The ability to de-
tect and characterize the different whistle contours
that provides significant information on dolphin com-
munication and behavioral signals. This method of
a wavelet threshold denoising approach identifies the
dolphin whistle sounds, and could be used for future
studies on other cetacean whistle signals which would
be effected by anthropogenic as well as unwanted me-
chanical noise sources.

5. Conclusion

This study details a technique primarily based on
the wavelet threshold approach followed by subtraction
for denoising the dolphin whistle contours. The time
series recordings of noise data are made in deep wa-
ters, where the dolphin whistle signals are contami-
nated by impulsive shackle noise. The results show that
the optimal conditions for denoising are mainly based
on Daubechies [db5] along with 20 multilevel wavelet
decomposition and the rigrsure soft threshold method.
Finally, the contaminated impulsive shackle noise is re-
moved from the dolphin signals by using a wavelet ap-
proach. Based on the frequency contours, whistle types
are identified as concave, convex, upsweep, downsweep,
sine, and multi-looped. Hence, it is proven that, this
method is found suitable to extract other species vo-
calization particularly the non-impulsive signals from
passive acoustic recordings.
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