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To calculate the transmission coefficient of ultrasonic waves through a multi-layered medium, a new approach
is proposed by expanding it into Debye’s series. Using this formalism, the transmission coefficient can be put in
the form of resonance terms series. From this point of view, the relative amplitude of the transmitted wave can
be considered as an infinite summation of terms taking into account all possible reflections and refractions on
each interface. Our model is then used to investigate interaction between the ultrasonic plane wave and the
N -plane-layer structure.

Obviously, the resulting infinite summation has to be reduced to a finite one, according to some level of
accuracy. The numerical estimation of the transmission coefficient using the exact expression (Eq. (1)) is then
compared to the one of our method in the case of two or three plane-layer structure. The effect of the order
of the finite summation on the calculated value of the transmission coefficient is, as well, studied. Finally, our
proposed method may be used, with the decomposition into Gaussian beams of a pressure field created by
a circular source, to draw a 3D image of the pressure field transmitted through a multilayered structure.
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Nomenclature

ΓN – transmission coefficient of N -layer structure,
dn – thickness of the n-th layer,
kn – propagation wave vector in the n-th layer,
ρn – mass density of the n-th layer,
cn – sound speed in the n-th layer,
αn – absorption coefficient in the n-th layer,
tn−1 – transmission coefficient of the n-th interface,
rn – reflection coefficient of the n-th interface,
ni – summation degree in i-layer structure,
ε – precision needed to define the minimal value of ni,
pn – acoustic pressure in the n-th layer,
Zn – acoustic impedance of the n-th layer.

1. Introduction

The measurement of ultrasound reflection and
transmission coefficients, from and through a layered

structure, is of great interest in many nondestructive
testing and characterization applications. Biological
tissues or rocks are some natural example of the layered
structure. Experimental data with a theoretical model
are exploited to extract acoustical properties as the
attenuation coefficient, density, sound speed and other
mechanical properties. Some of these applications are
reviewed in (Hsu, 2009).

Several techniques can be used to solve the in-
verse problem. The inverse problem solution can be
obtained by minimizing a cost functional formulated
as the least square error between the waveform cal-
culated using an equivalent model, and the measured
waveform obtained from ultrasonic transmission tests
(Messineo et al., 2016). A particle swarm optimiza-
tion (PSO) algorithm based least squares estimation
and using the ultrasonic reflection spectrum has been



72 Archives of Acoustics – Volume 48, Number 1, 2023

used (Yang et al., 2019). Multilayer structures are in-
volved in the design of piezoelectric transducers. Im-
plementing two-layer matching structure improves the
transmission of the acoustic power into the medium
(Bakhtiari-Nejad et al., 2020). In the case of sev-
eral layers, genetic algorithms can help in an optimal
selection of the materials used as adaptation layers
(Gudra, Banasiak, 2020).

Ultrasound propagation through periodic structu-
res is another area of interest of the layered structure.
Indeed, periodic structures with a wavelength scale pe-
riodicity (Potel, Belleval, 1993; Shenand, Cao,
2000; Khaled et al., 2013; Maréchal et al., 2014)
are known to exhibit acoustical band gaps, which is
of great interest for many applications like wave fil-
tering, guiding, focusing waves, silent blocks, and it
can also help improving the efficiency of transducers
(Maréchal et al., 2008).

One way to study these structures is to calculate
the transmission and reflection coefficients of the struc-
ture immersed in a fluid such as air or water. The prob-
lem can be resolved numerically. However, analytic so-
lutions are still a great way to understand the physical
mechanisms involved. Different approaches and tech-
niques like the plane wave method (PWM) (Potel,
Belleval, 1993; Deschamps, Chengwei, 1991) and
the transfer matrix method (TMM) (Solyanik, 1977;
Rokhlin, Wang, 1992;Haskell, 1953; Folds, Log-
gins, 1977; Lowe, 1995) or the global matrix method
(Storheim et al., 2015) are often adopted. The itera-
tive method (Scott, Gordon, 1977) or the equivalent
impedance (Messineo et al., 2013) can also be used.

Debye’s series decomposition method (Maréchal
et al., 2014; Gérard, 2022) allows developing the re-
flection and transmission coefficients into a sum of mul-
tiple reflection terms. Typically, some resonance terms
are ignored. However, expressing the transmission co-
efficient into a sum of these terms is very useful for
resonance analysis.

Fiorito and Überall (1979) showed that the
acoustic transmission and the reflection coefficient of
a fluid layer embedded in another fluid can be written
in the form of a sum of resonance terms. The resonan-
ce theory of a fluid layer has been extended to include
viscous effects (Fiorito et al., 1981). Three layered
elastic medium have been investigated (Ainslie, 1995)
using ray path analyses. The solution of the reflec-
tion/refraction of a plane wave at a single solid layer
has been expanded into Debye’s series (Deschamps,
Chengwei, 1991). Using a matrix notation and a ge-
neralized Debye theory, Gérard et al. (1979; 1980;
1982; 1987) derived an exact solution in an elastic
multilayered sphere. The case of submerged cylinders
(Derem, 1982) and plates (Conoir, 1991; Derible,
Tinel, 2011) were studied too. Earlier we exploited
this resonance formalism to study the interaction of
a bounded ultrasonic beam with an immersed plate

(Soucrati et al., 2018). A global transfer matrix
has been constructed to study the interaction of har-
monic elastic waves with n-layered anisotropic medium
(Nayfeh, 1991).

In the present work, firstly, we determined the
transmission coefficient (ΓN ) through N -layered struc-
ture using the plane wave theory. The details of the
calculus are given in Appendix A, the solution named
an exact solution is then given in Eq. (1). This exact
solution is broken down into series translating the in-
dividual contribution of each resonance. A novel way
is applied to write this solution as a product of the De-
bye series. Then a new resonance model for the trans-
mission (ΓN ) was developed. The model provides ana-
lytical expressions for the characteristics of each res-
onance. This facilitates the resonance decomposition
of the transmitted wave and help understanding reso-
nance phenomena. Further, the model provides a useful
tool to solve the inverse problem. In the same manner,
our model can be applied to the calculation of the re-
flection coefficient.

In this paper, we describe firstly the problem of the
propagation of ultrasonic waves in multilayered media
as well as the theoretical formalism that governs this
propagation. Applying the pressure continuity and the
particle velocity continuity at the two interfaces of each
layer we derived the exact formulation of the trans-
mission coefficient named ΓN . Details are given in Ap-
pendix A. The result is given in Eq. (1). Then ΓN is
expanded into a sum of resonance terms like Debye’s
series. Details about the method used to expand the
transmission coefficient into Debye’s series are given
in Appendix B. The expanded expressions are given in
the Eqs. (10), (15), (18), and (22), respectively, for one,
two, three, and N -layers. Finally, numerical evaluation
of the transmission coefficient ΓN given by the exact
solution (Eq. (1)) and the expanded formulation are
compared. The comparison shows good agreement sub-
ject to choosing the right number of resonance terms.

2. Theoretical formalism

2.1. Studied configuration

We consider a layered structure hit by an ultrasonic
plane wave in normal incidence (Fig. 1). The struc-
ture to be analyzed is composed of N -layers indexed
from 1 to N . Each layer is of the thickness dn. Note

tN

Plan 
wave

Water Layer 1 Layer 2 
n = 0 n = 1 n = 2

Water
n = N + 1

t0
r0 rN

Z = Z0 Z = Z1 Z = Z2 ... Z = ZN – 1 Z = ZNZ = 0

p0 p1 p2

Layer N 
n = N 
pN pN+1

Fig. 1. Geometrical arrangement.
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that the propagating vector is kn, the mass density
is ρn, the layer’s sound celerity is cn, the acoustic im-
pedance Zn, and the attenuation coefficient αn.

The structure is immersed in water characterized
by its density ρ0, velocity c0, acoustic impedance Z0,
and wave number k0. The surrounding medium is taken
to be nonabsorbent, so α0 = 0. The second half medium
surrounding the layers is also water and corresponds to
the slice indexed N + 1. Then ZN+1 = Z0.

The N -layered structure is hit, in a normal inci-
dence, by a plane harmonic wave. So, only a longitudi-
nal wave is to be considered. The transverse waves are
not considered.

Plexiglas is used as a layer with ρ = 1200 kg/m3, c =
2650 m/s, and α = 1.13 dB/[MHz ⋅ cm]. For aluminum
ρ = 2800 kg/m3, c = 6380 m/s.

2.2. Transmission coefficient

We demonstrate (Appendix A) that the transmis-
sion coefficient ΓN of N -layered structure can be ex-
pressed as:

ΓN = TN
ϕN
DN

(1)

with:

TN =
N

∏
n=0

tn; tn =
2Zn+1

Zn +Zn+1
, (2)

ϕN =
N

∏
n=1

Xn; Xn = e
−iγndn ; γn = kn − iαn, (3)

where TN is the transmission coefficient through the
N -layer structure, while ϕN is the accumulation of
the phase induced by the propagation into the different
N -layers.

Moreover, tn correspond to:
– t0: transmission from water of the first half me-

dium surrounding the structure, to the first layer
(layer 1),

– tN : transmission from the last layer (layerN) to the
water of the second half medium surrounding
the structure.

The transmission coefficient ΓN consists of a frac-
tion of two terms, namely the numerator (TNϕN) that
takes into account transmission attenuation and the
denominator (DN ) that takes into account multiple re-
flections at each interface. This latter can be expressed
as DN = 1 + ΦN , where ΦN is responsible for reflec-
tions/refractions at all the interfaces.

A similar formula has been already given in (Sto-
vas, Arnsten, 2006). Indeed, starting from Eq. (40)
in Appendix B, we can deduce:

DN =D1 +
N−1

∑
m=0

rN−m xN−mD′
N−m. (4)

So, one can see that DN can be written in the form of:

DN = 1 +ΦN (5)

with:

ΦN = r0 r1 x1 +
N−1

∑
m=0

rN−m xN−mD′
N−m. (6)

For N > 1, DN is developed in a new manner to al-
low decomposition into series terms. Details are given
in Appendix B. So DN can be expressed in a simple
way as:

DN =DN−1 + rNxN D̃N−1xn =X
2
n,

rn =
Zn+1 −Zn
Zn +Zn+1

,
(7)

where

D̃N = rNDN−1 + xN D̃N−1, D̃1 = r1 + r0x1, (8)

where rN is the reflection coefficient at the last inter-
face from water to the layer N . It is expressed as:

rN =
ZN+1 −ZN
ZN +ZN+1

=
Z0 −ZN
ZN +Z0

. (9)

Now, the idea is to expand ΓN into a sum of resonance
terms as Debye’s series.

For one layer (N = 1), we have:

Γ1 = T1X1

∞
∑
n1=0

(−r0 r1 x1)
n1 . (10)

For more than one layer (N > 1), we derive an expres-
sion of DN (Appendix B) that allows expanding ΓN
into Debye’s series.

Let us start with two layers N = 2:

1

D2
=

1

C1

∞
∑
n2=0

(−β1 r2 x2)
n2 . (11)

We express β1 as:

β1 =
1

r1
(1 −

t1t
′
1

C1
), (12)

thus:

1

D2
=

1

C1

∞
∑
n2=0

(−
r2

r1
x2)

n2 n2

∑
m=0

n2!

m! (n2 −m)!
(−
t′1t

′
1

C1
)

m

.

(13)

The term (1/C1)
m can be expanded in series as:

1

Cm1
=

∞
∑
n1=0

(−r0 r1 x1)
n1 (m + n1)!

m!n1!
. (14)

Replacing Eq. (10) in (9), we get the final form of the
transmission coefficient through two layers:

Γ2 = T2ϕ2

∞
∑
n2=0

(−r2 x2)
n2

∞
∑
n1=0

Wn2n1 (−r
′
0 x

′
1)
n1 (15)
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with:

Wn2n1 = r
n1−n2

1

n2!

n1!

n2

∑
m=0

(m + n1)!

m!m! (n2 −m)!
(−t′1 t

′
1)
m
. (16)

Let us rewrite the two first terms of Γ2 with respect
to n2, in order to give a physical interpretation of each
of them:

Γ2 = T2ϕ2 {
∞
∑
n1=0

(−r0 r1 x1)
n1

+
∞
∑
n1=0

[1−(n1+1)(−r2 x2)
t1t

′
1

r1
](−r0 r1 x1)

n1+ ...}. (17)

The first summation in Eq. (13) counts for the reso-
nance into the first layer and transmitted through the
second (Fig. 2a). The second summation term is ob-
tained for n2 = 1 and composed of two components:
the first sum is the same as for n2 = 0, the second
sum counts for the reflection from the interface be-
tween layer 2 and the ambient medium followed by
resonances into layer 1 (Fig. 2b). The coefficient (n1+1)
in the second sum is due to the Fabry-Pérot like effect,
which means that the response is composed of many
echoes that arrive at the same time as shown in Fig. 2.

a) b)
n2 = 0

1

r1r0

(r1r0)2

(r1r0)3

(r1r0)4

(r1r0)2
r2t'1r0t1

r2t'1r0t1 (r1r0)

r1r0r2t'1r0t1 (r1r0)

r1r0r2t'1r0t1

r2t'1r0t1 (r1r0)2
(r1r0)3

(r1r0)4

r1r0

n2 = 1

1

2

Fig. 2. Schematic of (a) the first layer resonance and trans-
mission (n2 = 0) and (b) the multiple reflections from the

second layer and ambient medium interface (n2 = 1).

In the same manner we derive the expression for
three adjacent layers:

Γ3 = T3ϕ3

∞
∑
n2=0

(−x2)
n2

∞
∑
n1=0

Wn2n1 (−r
′
0x

′
1)
n1

⋅
∞
∑
n3=0

Wn2n3 (−r
′
3x

′
3)
n3, (18)

where

Wn2n3 = r
n3−n2

2

n2!

n3!

n2

∑
m=0

(m+n3)!

m!m! (n2−m)!
(−t′2t

′
2)
m
. (19)

In the case of four layers, we have:

Γ4 = T4ϕ4

∞
∑
n2=0

(−x2)
n2

∞
∑
n1=0

Wn2n1 (−r
′
0x

′
1)
n1

⋅
∞
∑
n3=0

Wn2n3 (−x
′
3)
n3

∞
∑
n4=0

Wn3n4 (−r4x
′
4)
n4 (20)

with:

Wn3n4 = r
n4−n3

3

n3!

n4!

n3

∑
m=0

(m + n4)!

m!m! (n3 −m)!
(−t′3t

′
3)
m
. (21)

In the general case of N -layers with N > 3:

ΓN = TNϕN
∞
∑
n2=0

(−x2)
n2

∞
∑
n1=0

Wn2n1 (−r
′
0x

′
1)
n1

⋅
N−1

∏
j=3

⎡
⎢
⎢
⎢
⎢
⎣

∞
∑
nj=0

Wnj−1nj (−x
′
j)
nj

⎤
⎥
⎥
⎥
⎥
⎦

⋅
∞
∑
nN=0

WnN−1nN (−rNx
′
N)

nN , (22)

where

Wnjnj+1 = r
nj+1−nj
j

nj !

nj+1!

nj

∑
m=0

(m + nj+1)!

m!m! (nj −m)!
(−t′jt

′
j)
m
.

(23)

ΓN can be interpreted as a sum of waves of the ampli-
tude Wij reflected at each interface.

We derived here a more generalized formula than
those based on the amplitude of echoes derived in the
reflection mode (Chern, Nielsen, 1989) and through
the transmission mode (Chern, Nielsen, 1990).

3. Simulation results

In this section, we show the validity of the pro-
posed model by simulating the transmission coefficient
of different configurations of multilayered structures.
The cases of one, two, and three layers are studied for
different numbers of resonances.

The exact expression of the transmission coefficient
ΓN through an N -layer structure is given by Eq. (1).
The series expansion of the resonance term is given by
Eqs. (10), (17), and (18), respectively for 1, 2, or 3
layers. In all these expressions we have infinite sums
which are truncated during the simulation. The simu-
lation results are then compared to the calculations
of ΓN using Eq. (1) to determine firstly the degree of
truncation and secondly to validate our model.

3.1. One-layer case

Figure 3 gives the transmission coefficient versus
frequency, for one layer made of 4 mm of plexiglass.
The exact solution (red curve) is compared to our
model (blue curve). The results in Fig. 3a are given
for n1 = 1 which means that the series in Eq. (10) is
truncated to the first term. However in Fig. 3b the se-
ries is truncated to the 5 first terms. So the maximum
number of resonance taken into account should be de-
termined according to the acoustical parameters of the
layer. The same results for aluminum plate are given
in Fig. 4.
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Fig. 3. ∣Γ1∣, versus frequency, for 4 mm plexiglas plate:
exact solution (red), our model for n1 = 1 (blue in a),

and n1 = 5 (blue in b).
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Fig. 4. ∣Γ1∣, versus frequency, for 4 mm aluminum
plate: exact solution (red), our model for n1 = 5 (blue),

and n1 = 10 (green).

As expected, Fig. 3 and Fig. 4 show the well-known
resonance frequency due to different modes of propa-
gation in the layer.

Discrepancies are noticed, especially for the min-
ima and maxima of the curves, if the number of res-
onances taken into account is insufficient (blue curve
Figs. 3a and 4). To match the exact solution one need
to define a precision ε. Then the minimal value of ni
(i = 1,2, ...,N) should be determined according to this
accuracy ε.

The minimal value of n1 is determined according
to the expected accuracy using this expression:

∣r0 r1∣
n1 < 10−ε then n1 ≥

−ε

log ∣r0 r1∣
. (24)

If we take ε = 3 for example, one should take the sum-
mation of the 20 terms for aluminum and only 4 terms
for plexiglas.

3.2. Two layers

We studied a structure made of two layers alumi-
num/polyethylene (Al/PE) immersed in water. Each
layer has 4 mm thickness. Transmission coefficient vari-
ation according to the frequency is presented in Fig. 5
for the Al/PE structure. This structure has been stud-
ied theoretically and experimentally using the reflec-
tion response (Lenoir, Maréchal, 2009).
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Fig. 5. Variation of ∣Γ2∣ versus frequency: exact solution
(red), our model with n2 = 3 (blue), n1 = 5 in (a), and

n1 = 11 in (b).

The minimal value of n1 is determined using Eq. (24).
Taking ε=10−2 we deduce n1=11. For n2 we should use
according to Eq. (7):

∣β1 r2∣
n2 < 10−ε then n2 ≥

−ε

log ∣r2 β1∣
. (25)

If we take ε = 2 it gives n1 = 11 and n2 = 5. Using
these minimal values, the approximated solution fits
well with the exact one as it is seen in Fig. 5b.
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3.3. Three layers

Let us now study the structure made of two plexi-
glas plates of 5 mm separated by 1 mm of water (Fig. 6).
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Fig. 6. ∣Γ3∣ versus frequency for plexiglas/water/plexiglas of
5/1/5 mm structure: exact solution (red), our model (blue

n1 = n2 = n3 = 1 and green n1 = n2 = n3 = 5).

We can notice from simulation results, that our
model based on Debye’s series gives very good results
for the calculation of the ultrasound transmission co-
efficient in a multilayered structure. Especially if the
number of resonance terms used in calculation is well
chosen.

4. Conclusion

In this work, we present a new analytical method
for calculating the acoustic frequency response of a mul-
tilayered structure. The transmission coefficient calcu-
lated using this new method is put into a sum of reso-
nance terms. This way, we can consider the relative am-
plitude of each wave as a summation of several terms
taking into account all possible reflections/refractions.

The expanded solution is in good agreement with
the exact solution, subject to take a suitable number of
resonances. We have also proposed a method helping
defining this resonances’ number. Our method gives
a more generalized formula than other methods based
on reflection or transmission modes. Our work can also
help extracting geometrical and acoustical parameters
of each layer. The considered layers can be either liquid
or solid, since the incidence is normal to avoid the shear
waves that are not taken into account by the formula.

Instead of a plane wave, our model can be asso-
ciated with superposition of a bounded beam to find
the 3D diffracted field by a multilayered structure.
In the same manner we derived an analytical expression
of a 3D ultrasonic field transmitted through a single
plane layer (Soucrati et al., 2018).

Appendix A

For, n = 1 to N , we express the ultrasonic pressure
pn inside each layer as (z0 < z < zN ):

pn = Une
−iγn(z−zn−1) + Vneiγn(z−zn−1). (26)

The pressure wave in the first half of embedded me-
dium (water n = 0) is then (0 < z < z0):

p0 = U0e
−iγ0z + V0e

iγ0z. (27)

The transmitted wave in water after the layered struc-
ture (z > zN ) is written as:

pNt = Ute
−iγ0(z−zN ). (28)

We put ηn as the ration of the impedance of the slice
before to that of the next slice:

Xn = e
−iγndn , ηn =

Zn
Zn+1

. (29)

So from the water to the first layer we have:

X0 = e
−iγ0d0 , η0 =

Z0

Z1
, (30)

and from the last layer to the water we write:

XN = e−iγNdN , ηN =
ZN
ZN+1

=
ZN
Z0

. (31)

The origin of the propagation axis is placed at the in-
terface between layers n and n − 1. By applying the
pressure continuity (Ingard, Morse, 1968) and par-
ticle velocity continuity equations at each interface and
solving them, we get the ratio of the sound pressure
level of the transmitted wave (Ut) to the incident
wave (U0). This corresponds to the transmission coef-
ficient (ΓN ). In the same way we can deduce the reflec-
tion coefficient.

For one layer, we have:

[
1 1

1 −1
](

U0

V0

) =
1

η0
[
η0 η0

1 −1
](

U1

V1

), (32)

1

X1
[
x1 1

x1 −1
](

U1

V1

) = U1t (
1

η1

). (33)

Solving this system, we get the expression of Γ1 as:

Γ1 =
U1t

U0
=

t0 t1X1

1 + r0 r1 x1
. (34)

For a structure of two layers N = 2, we have to add
this equations system for n = 1:

1

Xn
[
xn 1

xn −1
](

Un

Vn
) =

1

ηn
[
ηn ηn

1 −1
](

Un+1

Vn+1

), (35)

1

XN
[
xN 1

xN −1
](

UN

VN
) = UNt (

1
ηN

). (36)

Solving this system, we get Γ2:

Γ2 =
U2t

U0
=

t0 t1 t2X1X2

1 + r0 r1 x1 + r1 r2 x2 + r0 r2 x1 x2
. (37)
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For N layers, we can get the expression of the coeffi-
cient of transmission using the same technique:

ΓN =
UNt
U0

=
TNϕN
DN

,

TN = t0t1 ... tN , ϕN =X0X1 ... XN .

(38)

We notice that DN is expressed as a sum of combina-
tion of all the possible product of xn.

For 3 layers for example, we have x1, x2, x3, x1x2,
x1x3, x2x3, and x1x2x3. So D3 is expressed as:

D3 = 1 + c1x1 + c2x2 + c3x3 + c12x1x2 + c13x1x3

+ c23x2x3 + c123x1x2x3, (39)

where the coefficients ci are defined as the product
of the reflection coefficient rn at all the interfaces in
which the considered layers are not adjacent.

If we take only one layer from N , we have cn =

rn−1rn. So, for example c1 = r0r1.
If we take m layers from N , we have N !(N−m)!

m!
pos-

sibilities and we should consider the reflection coeffi-
cients at the interfaces where the layers considered are
not adjacent.

If we consider two layers from three we have three
possibilities x1x2, x1x3, and x2x3 (see Fig. 7).

Fig. 7. Theoretical scene we consider three different layers.

For layer 1/layer 2 case, we have c12 = r0r2. There
are only two free interfaces. For layer 2/layer 3 case,
we have c23 = r1r3. There are, again, only two free
interfaces. However, for the layer 1/layer 3 case, we
got c13 = r0r1r2r3. There are four free interfaces.

The expression of every DN can be deduced using
this technique.

Appendix B

We are interested to determine the transmission co-
efficient ΓN of the layered structure. The idea is to ex-
press the denominator DN as a sum of DN−n where n
goes from 1 to N . We noticed that DN can be put into
the form:

DN =DN−1 + rNxN D̃N−1, (40)

where D̃N−1 can be written as:

D̃N−1 = rN−1DN−2+xN−1D̃N−2, D̃1 = r1+r0x1, (41)

which yields:

DN =DN−1 + rNrN−1xN(DN−2 + xN−1D
′
N−2), (42)

we put:

Cn = 1 + rnrn−1xn,

C1 =D1 = 1 + r1r0x1En = rn−1 + rnxn.
(43)

For two layers:

D2 =D1 + r2x2D̃1 = C1(1 + β1r2x2) = C1C21 (44)

with:

C21 = 1 + β1r2x2, β1 =
D̃1

C1
=

1

r1
(1 −

t1t
′
1

C1
). (45)

For three layers we arrange D3 in the form:

D3 = D2 + r3x3D̃2

= D1 + r2x2D̃1 + r3x3 (r2D1 + x2D̃1)

= C1C3 + x2D̃1E3 = C1C3C31, (46)

where

C23 = 1 + β1β3x2, β3 =
E3

C3
=

1

r2
(1 −

t2t
′
2

C3
). (47)

For four layers:

D4 = D3 + r4x4D̃3

= C4 (D2 + β4x3D̃2)

= C1C4 (C34 + β1x2 (r2 + β4x3)), (48)

D4 = C1C4C24C341 (49)

with:
⎧⎪⎪
⎨
⎪⎪⎩

C34 = 1 + β4r2x3,

C24 = 1 + β1β34x2,

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

β4 =
E4

C4
=

1

r3
(1 −

t3t
′
3

C4
),

β34 =
r2 + β4x3

C34
.

(50)

Generalizing for N layers DN is put in the form:

DN≥4 = CNC1

N−1

∏
m=2

CmN , (51)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cn = 1 + rn−1rnxn,

C1 = 1 + r0r1x1,

C2N = 1 + β1β3Nx2,

CmN = 1 + βm+1Nrm−1xm,

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

βn =
En
Cn

=
1

rn−1
(1 −

tn−1t
′
n−1

Cn
),

βmN =
rm−1 + βm+1Nxm

CmN
.

(52)
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