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This paper presents theory of new shear horizontal (SH) acoustic surface waves that propagate along the
interface of two semi-infinite elastic half-spaces, one of which is a conventional elastic medium and a second
one an elastic metamaterial with a negative and frequency dependent shear elastic compliance.

This new surface waves have only one transverse component of mechanical displacement, which has a maxi-
mum at the interface and decays exponentially with distance from the interface. Similar features are also
shown by the acoustic shear horizontal Maerfeld-Tournois surface waves propagating at the interface of two
semi-infinite elastic media due to the piezoelectric effect that should occur in at least one semi-space.

The proposed new shear horizontal acoustic surface waves exhibit also strong formal similarities with the
electromagnetic surface waves of the surface plasmon polariton (SPP) type, propagating along a metal-dielectric
planar interface. In fact, the new shear horizontal elastic surface waves possess a large number of properties
that are inherent for the SPP electromagnetic surface waves, such as strong subwavelength concentration of the
wave field in the proximity of the guiding interface, low phase and group velocity etc. As a result, the new shear
horizontal acoustic surface waves can find applications in sensors with extremely high sensitivity, employed in
measurements of various physical parameters, such as viscosity of liquids, as well as in biosensors, chemosensors,
or a near field acoustic microscopy (subwavelength imaging) and miniaturized devices of microwave acoustics.
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1. Introduction

Acoustic surface waves typically exist on the free
surface of solid media or at the interface between two
different elastic materials. The mechanical displace-
ment of these surface waves should decrease exponen-
tially as we move away from the surface (interface)
into the bulk of solid materials. Acoustic surface waves
occur in nature, e.g. Rayleigh, Love, Stoneley waves
(Achenbach, 1973; Auld, 1990; Royer, Dieule-
saint, 2000).

Surface waves have found application in many fields
of technology such as: 1) seismology (Rayleigh, Love,
Stoneley, Sezawa waves) and 2) electronics (Rayleigh
waves – filters in cellular telephony, Love waves in sen-
sors of physical quantities, e.g. viscosity of liquids, in
biosensors and chemosensors).

Shear horizontal (SH) acoustic surface waves, with
one transverse component of mechanical vibrations,

form a special class of elastic surface waves due to their
inherent affinities and connections to electromagnetic
surface waves and quantum mechanical systems. For
example, shear horizontal surface waves of the Love
type (Love, 1911), which propagate in layered planar
elastic waveguides, are analogous to transverse mag-
netic (TM) electromagnetic modes in metalized dielec-
tric waveguides of integrated optics and to quantum
particles in a rectangular potential well (Kiełczyński,
2021). This is due to the fact that these three differ-
ent physical phenomena are described by a common
mathematical model, i.e. the direct Sturm-Liouville
problem.

Among the surface waves, a special role is played by
the class of acoustic surface shear horizontal (SH)
waves, such as the Love, Bleustein–Gulyaev and Maer-
feld–Tournois waves (Royer, Dieulesaint, 2000).
Love waves are shear horizontal waves propagating
in layered waveguides composed of surface elastic
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layer deposited on an elastic substrate (Love, 1911).
Bleustein-Gulyaev waves are also shear horizontal sur-
face acoustic waves that propagate on the surface of
piezoelectric half-spaces with appropriate symmetry
(Bleustein, 1968). Another example of shear horizon-
tal waves are Maerfeld–Tournois waves, which prop-
agate along the interface of two elastic half spaces,
at least one of which is a piezoelectric medium with
an appropriately directed symmetry axis (Maerfeld,
Tournois, 1971).

It can be proved that shear horizontal surface acous-
tic wave cannot exist on the surface of a purely elastic
half-space (Achenbach, 1973). Similarly, it can also
be shown that shear horizontal surface wave cannot
propagate at the interface of two elastic half-spaces,
regardless of their symmetry and/or orientation.

In this paper we will challenge this assertion, show-
ing that the SH elastic surface waves can propagate
along at the interface between two elastic-half-spaces,
providing that one of them is an elastic metamaterial
with special properties, i.e. with a negative shear elas-
tic compliance s(1)44 (see Eq. (1)). Moreover, in contrary
to shear horizontal acoustic interfacial waves of the
Maerfeld–Tournois type, the proposed new shear hori-
zontal acoustic surface waves can exist in waveguides
that are entirely devoid of the piezoelectric effect. The
mechanical displacement of this new wave diminishes
exponentially as it moves away from the interface sur-
face. Hence, this new acoustic wave is an evanescent
type wave in the direction perpendicular to the inter-
face.

Acoustic waves in metamaterials were the subject
of the several works (Deng et al., 2014; Ambati et al.,
2007; Kadic et al., 2013; Zaccherini et at., 2020; Yu
et al., 2020). However, these papers concerned other
types of waves, i.e. Rayleigh waves on the solid-vacuum
interface (Deng et al., 2014), Scholte waves on the
solid-liquid interface (Deng et al., 2014), bulk waves
(Ambati et al., 2007; Kadic et al., 2013; Zaccherini
et at., 2020), but not shear acoustic surface waves,
which are considered in this paper.

In this paper, the author presents a mathematical
model describing the properties of a new SH acoustic
surface wave. The dispersion equation of this new elas-
tic surface wave, the mechanical displacement u3 dis-
tributions and the dispersion curves of this new wave
were determined. The fundamental properties of the
proposed surface wave are presented. Possible prac-
tical applications of this new surface wave are also
given.

It is worth noting that this new acoustic sur-
face wave is a direct analog of SPP electromagnetic
wave propagating along the metal-dielectric interface
(Zhang et al., 2012; Maier, 2007). The equivalent of
the transverse mechanical displacement u3 in the new
proposed acoustic surface wave is the TM field H3 of
the surface electromagnetic wave of the SPP type.

The new acoustic surface waves inherit a large num-
ber properties of the electromagnetic surface waves
of the SPP type. Among others, new acoustic sur-
face waves are characterized by a strong subwavelength
concentration of the wave field in the proximity of the
interface.

The dispersion curves of the new wave are also pre-
sented, i.e. graphs of the dependence of the circular fre-
quency ω on the propagation constant K of the wave,
as well as plots of the mechanical displacement distri-
bution u3 of the wave as a function of the distance
from the interface (x2 = 0) along the x2 axis.

The analytical expression for the group velocity of
the wave has been developed. This expression allows
us to plot the relation of the group velocity versus
frequency. It is worth noting that the group velocity
as well as the phase velocity tend to zero when the
wave frequency f approaches the surface resonant fre-
quency fsp.

A similar tendency is also observed for the to-
tal power transmitted by the surface wave. The total
power transferred by the surface wave also converges
to zero when the wave frequency f → fsp.

Due to a high concentration of the energy near the
guiding interface x2 = 0, the new SH acoustic (ultra-
sonic) surface waves can be used in extremely high sen-
sitivity physical sensors, in biosensors and chemosen-
sors. Similarly, due to the high level of the subwave-
length confinement, the new SH acoustic surface waves
can be used in a subwavelength near field acoustic mi-
croscopy as well as in miniaturized micro and nano-
scale modern acoustic devices.

2. Mathematical model of the wave.
The direct Sturm-Liouville problem

The propagation of the acoustic (ultrasonic) sur-
face waves along the planar interface between two elas-
tic semi-spaces, given their material parameters, can
be formulated in terms of the direct Sturm–Liouville
problem (Kiełczyński et al., 2015; Kiełczyński,
2018). A solution to this direct Sturm–Liouville prob-
lem is in a form of discrete eigenvalue-eigenvector pairs
(K,u3(x2)). An eigenvalue K is the wave number
(i.e. it determines the phase velocity vp = ω/K) of the
surface wave and the corresponding eigenvector u3(x2)
is a function describing distribution of the mechanical
displacement u3 of the elastic surface wave as a func-
tion of the distance from the guiding interface (x2 = 0).

2.1. Geometry and material parameters
of the waveguide

The waveguide supporting new SH acoustic (ultra-
sonic) surface waves consists of two semi-infinite elastic
half-spaces, one of which is a conventional elastic ma-
terial (x2 ≥ 0) and the second an elastic metamaterial
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(x2 < 0) with a negative elastic compliance s(1)44 (ω) < 0
that is a function of angular frequency ω. By contrast,
the densities (ρ1, ρ2) > 0 in both half-spaces and the
elastic compliance s(2)44 > 0 are positive and frequency
independent (Fig. 1).

s(2) > 044 ρ2 > 0

s(1) < 044 ρ1 > 0

Fig. 1. Cross-section of the proposed surface wave waveg-
uide supporting new acoustic surface waves, propagating in
the direction x1, with the mechanical displacement u3(x2)
polarized along the x3 axis and decaying exponentially in
the transverse direction x2. Conventional elastic half-space
(x2 ≥ 0) and metamaterial elastic half-space (x2 < 0) are

rigidly bonded at the interface x2 = 0.

The proposed new shear acoustic surface wave has
only one transverse component of the mechanical dis-
placement u3 that is polarized along the axis x3 and
parallel to the guiding interface (x2 = 0). Since polar-
ization of the new wave is perpendicular to the direc-
tion of propagation x1 (Fig. 1), the new shear horizon-
tal elastic surface wave is of the transverse type.

2.1.1. Elastic parameters of the lower metamaterial
semi-space

The key assumption made in this paper is about the
elastic compliance s(1)44 (ω) in the metamaterial half-
space (x2 < 0). Namely, it is assumed throughout this
paper that s

(1)
44 (ω) in the metamaterial half-space

(x2 < 0), as a function of angular frequency ω, is given
by the following formula (Wu et al., 2011):

s
(1)
44 (ω) = s0 ⋅ (1 −

ω2
p

ω2
), (1)

where s0 is the elastic shear compliance of the homoge-
neous background material, ωp is an angular frequency
of local mechanical resonances of the microresonators
embedded into the bulk of the homogeneous material
of the lower half-space.

It has to be noted that the elastic compliance
s
(1)
44 (ω) of the metamaterial half-space (x2 < 0) is de-
scribed by formally the same formula as the dielec-
tric function ε(ω) in Drude’s model of metals (Born,
Wolf, 1980).

In the case of elastic metamaterials, the elastic
compliance s44 corresponds to the dielectric constant ε
for dielectric and metallic materials. Similarly, the den-
sity ρ of elastic metamaterials corresponds to the mag-
netic permeability µ of dielectric and metallic materi-
als, respectively.

For ω < ωp, the elastic compliance s(1)44 of the lower
half-space takes negative values s(1)44 < 0. It is worth
noticing that the elastic compliance of the upper half-
space is always real and positive s(2)44 > 0. In the waveg-
uide structures of this type, a SH surface acoustic wave
can occur, provided that the constituent compliances
satisfy the conditions given in Eq. (18).

In this study, the local bulk oscillators frequency
fp = ωp/2π was assumed to be fp = 1 MHz. Con-
sequently, the surface resonant frequency fsp in this
metamaterial half-space equals

fsp =
fp

√

(1 + s
(2)
44 /s0)

= 143.569 kHz.

2.2. Governing differential equations

The mechanical displacement u3 of an acoustic sur-
face wave must satisfy in both (upper and lower) half-
spaces, the equations of motion resulting from New-
ton’s laws of dynamics.

2.2.1. Lower metamaterial elastic half-space (x2 < 0)

The mechanical displacement u(1)3 of the surface
wave in the lower metamaterial elastic half space sat-
isfies the following equation of motion:

1

v21

∂2u
(1)
3

∂t2
=
∂2u

(1)
3

∂x21
+
∂2u

(1)
3

∂x22
, (2)

where v1 = (1/(s
(1)
44 ρ1))

1/2
is the bulk shear wave ve-

locity in the lossless metamaterial medium, s(1)44 is its
elastic compliance, and ρ1 is the density.

2.2.2. Upper isotropic elastic half-space (x2 > 0)

The mechanical displacement u(2)3 of the surface
wave in the elastic upper half-space satisfies the fol-
lowing partial differential equation:

1

v22

∂2u
(2)
3

∂t2
=
∂2u

(2)
3

∂x21
+
∂2u

(2)
3

∂x22
, (3)

where v2 = (1/(s
(2)
44 ρ2))

1/2
is the velocity of the bulk

shear wave in the elastic upper half-space, s(2)44 is its
elastic compliance, and ρ2 is the density. Since s(2)44

and ρ2 are real, the phase velocity v2 is a real quantity
as well.
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2.3. Mechanical displacement and shear stresses
of the surface wave

It is assumed that the new SH acoustic surface
waves, propagating in waveguides depicted in Fig. 1,
are time-harmonic (exp(−jωt)), propagate in the di-
rection of axis x1 (exp(jKx1)), and are uniform along
the transverse axis x3.

The mechanical field of the acoustic surface wave
should be concentrated in the vicinity of the interface
between the two media (x2 = 0). Therefore, the me-
chanical displacement and shear stresses of the acoustic
wave should decrease exponentially as it moves away
from the interface, namely:

1) in the lower metamaterial elastic half-space (x2 < 0):

u
(1)
3 (x1, x2, t) = A ⋅ exp (q1x2) ⋅ exp [j(Kx1 − ωt)], (4)

τ
(1)
13 =

1

s
(1)
44

∂u
(1)
3

∂x1

=
1

s
(1)
44

A ⋅ jK ⋅ exp (q1x2) ⋅ exp [j(Kx1 − ωt)] , (5)

τ
(1)
23 =

1

s
(1)
44

∂u
(1)
3

∂x2

=
1

s
(1)
44

A ⋅ q1 ⋅ exp(q1x2) ⋅ exp [j(Kx1 − ωt)] ; (6)

2) in the upper isotropic elastic half-space (x2 > 0):

u
(2)
3 (x1, x2) = B ⋅ exp (−q2x2) ⋅ exp [j(Kx1 − ωt)], (7)

τ
(2)
13 =

1

s
(2)
44

∂u
(2)
3

∂x1
=

1

s
(2)
44

B ⋅ jK ⋅ exp [j(Kx1 − ωt)], (8)

τ
(2)
23 =

1

s
(2)
44

∂u
(2)
3

∂x2
=

1

s
(2)
44

B ⋅ (−q2)

⋅ exp (−q2x2) ⋅ exp [j(Kx1 − ωt)], (9)

where q1 and q2 are the transverse wavenumbers of the
elastic surface wave, K is the wave number of a new
mechanical surface wave which determines the phase
velocity vp = ω/K, the angular frequency is denoted
by ω, A, and B are constants.

Formulas for shear stresses will be used in the
boundary conditions and the component of the Poynt-
ing vector P1 (Eqs (21) and (22)).

Introducing Eq. (4) into Eq. (2) and Eq. (7) into
Eq. (3), we get:

q21 = K2
− k21, (10)

q22 = K2
− k22, (11)

where k21 = ω
2ρ1s

(1)
44 and k22 = ω

2ρ2s
(2)
44 .

In order to provide an exponential decay of the am-
plitude of the new shear horizontal elastic surface wave,
the transverse wavenumbers q1, q2 have to be real and
positive.

2.4. Boundary conditions

On the interface (x2 = 0) of two half-spaces, the
continuity of the mechanical displacement u3 and shear
stress τ23, should be provided, namely:

u
(1)
3 ∣

x2=0
= u

(2)
3 ∣

x2=0
, (12)

τ
(1)
23 ∣

x2=0
= τ

(2)
23 ∣

x2=0
. (13)

2.5. Dispersion equation of the surface wave

The boundary conditions imply that the compo-
nents of the mechanical displacement u3 and shear
stress τ23 at the interface (x2 = 0) should be contin-
uous.

After substituting Eqs (4) and (7) to the boundary
conditions Eqs (12) and (13), we obtain a system of two
linear and homogeneous equations for the coefficients
A and B:

A −B = 0, (14)

q1

s
(1)
44

A +
q2

s
(2)
44

B = 0. (15)

For a nontrivial solution, the determinant of this
set of linear algebraic equations for A and B must
equal zero (necessary condition). Consequently, from
Eqs (14) and (15), we get the following dispersion equa-
tion for the new elastic surface wave propagating along
the interface (x2 = 0):

q2

s
(2)
44

= −
q1

s
(1)
44

. (16)

Since the transverse wavenumbers q1, q2, and s
(2)
44

are real and positive, therefore, to satisfy Eq. (16), the
coefficient of elastic compliance s(1)44 must be negative,
i.e. s(1)44 < 0. Combining Eq. (16) and Eqs (10) and (11),
we arrive at the following dispersion equation for the
new elastic surface wave propagating along the inter-
face between two semi-infinite half-spaces:

K(ω) = ω ⋅

¿
Á
Á
ÁÀ

s
(2)
44 ⋅ s

(1)
44 (ω)

(s
(2)
44 + s

(1)
44 (ω))

⋅

¿
Á
Á
ÁÀ

s
(2)
44 ⋅ ρ1 − s

(1)
44 (ω) ⋅ ρ2

(s
(2)
44 − s

(1)
44 (ω))

, (17)

where the elastic compliance s(1)44 (ω) in the metama-
terial half-space is a function of angular frequency ω
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and is given by s(1)44 (ωt) = s0 ⋅(1 − ω2
p/ω

2) (see Eq. (1)).
By contrast, the material constants s(2)44 , ρ1, and ρ2 are
frequency independent.

Dispersion Eq. (17) is an eigenvalue equation relat-
ing the wave number K with the angular frequency
ω of the elastic surface wave. Equation (17) shows
that for the wave propagation constant K to be posi-
tive, the elastic compliances of both half-spaces must
meet the following condition:

(s
(1)
44 < 0)⋀ (s

(1)
44 + s

(2)
44 ) < 0. (18)

2.6. Phase velocity vp(ω)

The analytical formula for the phase velocity vp(ω)
of the new shear horizontal acoustic surface waves re-
sults immediately from Eq. (17), since K = ω/vp, i.e.:

vp(ω) =

¿
Á
Á
ÁÀ

(s
(2)
44 + s

(1)
44 (ω))

s
(2)
44 ⋅ s

(1)
44 (ω)

⋅

¿
Á
Á
Á
ÁÀ

(s
(2)
44 − s

(1)
44 (ω))

(s
(2)
44 ⋅ ρ1 − s

(1)
44 (ω) ⋅ ρ2)

. (19)

2.7. Group velocity vgr(ω)

The group velocity is defined as vg(ω) = dω/dK.
Therefore, differentiating Eq. (17) with respect to ω,
gives rise to the following analytical expression for the
group velocity vg(ω) of the new shear horizontal elastic
surface wave:

vgr(ω) =
1

vp(ω)

⋅

2 ⋅ ((s
(2)
44 )

2
− (s

(1)
44 (ω))

2
)

2s
(2)
44 s

(1)
44 (ω)(s

(2)
44 ⋅ ρ1−s

(1)
44 (ω) ⋅ ρ2) + a∗

, (20)

where

a∗ = ωs
(2)
44

ds(1)44 (ω)

dω

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(s
(2)
44 ⋅ ρ1 − 2s

(1)
44 (ω) ⋅ ρ2)

+ 2 (s
(1)
44 (ω))

2 (s
(2)
44 ⋅ ρ1 − s

(1)
44 (ω) ⋅ ρ2)

(s
(2)
44 )

2
− (s

(1)
44 (ω))

2

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

,

vp(ω) is the phase velocity given by Eq. (19), and

ds(1)44 (ω)

dω
= +2s0

ω2
p

ω3
.

Formula (20) allows for the plotting of the group
velocity vgr (ω) of the wave as a function of the circular
frequency ω.

2.8. Power flow in the waveguide structure

The time averaged power density flux vector is rep-
resented by the complex acoustic Poynting vector P
which has two components:

P1(x2) = −
1

2
Re [τ13(−jωu3)

∗
]

along the direction of propagation x1, and

P2 = −
1

2
Re [τ23(−jωu3)

∗
]

along the direction perpendicular to the interface (along
the axis x2) (Auld, 1990).

Employing Eqs (4), (5), (7), and (8) we get at the
following formulas for the cycle-averaged components
of the Poynting vector P1 in the upper and lower half-
spaces:

P lower
1 (x2) =

1

2
A2 1

s
(1)
44 (ω)

K(ω) ⋅ ω ⋅ exp (2q1x2), (21)

P upper
1 (x2) =

1

2
B2 1

s
(2)
44

K(ω) ⋅ ω ⋅ exp (−2q2x2). (22)

From boundary condition (Eq. (12)), we can write A=B.
Analyzing formulas (21) and (22) we can notice

that the power flow in the upper half-space P upper
1 is

positive, while the power flow in the lower half-space
P lower
1 is negative, thus vectors P upper

1 and P lower
1 are

antiparallel. Moreover, Poynting vectors P upper
1 and

−P lower
1 attain maximum at the interface (x2 = 0)

and diminish monotonically to zero with increasing dis-
tance from the interface.

The total power P total
1 carried by the surface wave

in the propagation direction x1 per unit width x3 is
obtained by integrating the power P1(x2) in the upper
and lower half-spaces along the coordinate x2 perpen-
dicular to the interface surface (x2 = 0), namely:

P total
1 (ω) =

0

∫
−∞

P lower
1 (x2)dx2 +

+∞

∫
0

P upper
1 (x2)dx2

=
1

4
A2K(ω) ⋅ ω ⋅

⎛

⎝

1

s
(1)
44 (ω)

1

q1
+

1

s
(2)
44

1

q2

⎞

⎠
. (23)

Since s
(1)
44 (ω) and s

(2)
44 are of the opposite sign,

therefore the overall power flow P total
1 (ω) may, for

a certain angular frequency ω, be cancelled out.

3. Results

3.1. Dispersion curve of the surface wave

The properties of the new acoustic elastic sur-
face wave were analyzed on an exemplary waveguide
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structure consisting of the metamaterial lower half-
space (x2 ≤ 0) based on ST-Quartz with embedded
local micro-resonators with a selected resonant fre-
quency fp = 1 MHz, and conventional PMMA elastic
upper half-space (x2 ≥ 0). The material parameters
of these two elastic semi-spaces are given in Table 1
(Kiełczyński, 2015). In our analysis, losses in the con-
stituent half-spaces are neglected.

Table 1. Material parameters of two half-spaces of the
waveguide: s0 = s

(1)
44 (ω →∞), see Eq. (1), phase velocity

v0 =
√
1/(s0ρ1).

Material Density
[kg/m3]

Elastic
compliance
[×10−11 Pa−1]

Bulk shear
wave velocity

[m/s]
ST-Quartz ρ1 = 2650 s0 = 1.474 v0 = 5060

PMMA ρ2 = 1180 s
(2)
44 = 70.03 v2 = 1100

Using formula (17), the dispersion curve for the
acoustic surface wave has been evaluated and plotted
in Fig. 2. Here, the surface resonant frequency fsp is
equal to fsp = 143.569 kHz.
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Fig. 2. Dispersion curve ω−K of new acoustic surface waves.

The dispersion curve (ω −K) of the new SH elastic
surface wave (Fig. 2), is in fact very similar to that
encountered in SPP electromagnetic modes, propagat-
ing in metal-dielectric waveguides. The surface reso-
nant frequency fsp of the new elastic surface waves
is approached asymptotically when the wavenumber
K → ∞. In this paper, the term “surface resonant
frequency” corresponds to the term “surface plasma fre-
quency”, known in the theory of electromagnetic sur-
face waves of the SPP type.

3.2. Phase velocity vp(ω) of the surface wave

Phase velocity vp(ω) of the acoustic surface wave
was evaluated using formula (19). Plot of the phase
velocity vp as a function of frequency f is given in
Fig. 3.
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Fig. 3. Phase velocity vp of the new surface wave versus
frequency f . Note that, vp(ω→0)→v2 and vp(ω→ωsp)→0.

3.3. Group velocity vgr(ω) of the surface wave

The group velocity vgr(ω) of the wave can be in-
terpreted as the slope of the dispersion curve shown in
Fig. 2.

Figure 4 shows dependency of the group velocity
vgr of the elastic surface wave as a function of fre-
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Fig. 4. Group velocity vgr of the surface wave versus fre-
quency f . Note that, vgr(ω→0)→v2 and vgr(ω→ωsp)→0,

similarly as phase velocity vp(ω).
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quency. The group velocity vgr was evaluated accord-
ing to the formula (20).

3.4. Mechanical displacement distribution

Employing the dispersion Eq. (17) and formulas
(4, 7, 10, 11), the profile of the mechanical displace-
ment u3(x2) of the acoustic surface wave as a function
of the distance ∣x2∣ from the interface is presented in
Fig. 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

–10
–9
–8
–7
–6
–5
–4
–3
–2
–1

0
1
2
3
4
5
6
7
8
9

10

x 2
  [c

m
] 

Elastic half-space

Metamaterial
elastic half-space

u3

Fig. 5. Plot of the normalized mechanical displacement
u3(x2) versus the distance away from the interface (x2 = 0)
along the vertical axis x2. Wave frequency f = 20 kHz, and

f/fsp = 0.14.

As can be seen in Fig. 5, the acoustic field u3 of the
surface wave in the direction perpendicular to the in-
terface (x2 = 0) is an evanescent field and decays mono-
tonically to zero with ∣x2∣→∞. However, it is immedia-
tely apparent that the rate of the decay is considerable
asymmetrical on both sides of the guiding surface. In
fact, the mechanical displacement u(1)3 (x2) in the elas-
tic metamaterial x2 < 0 approaches very quickly zero in
contrast to the conventional elastic half-space x2 ≥ 0.

3.5. Power flow in the waveguide structure

The total power P total
1 carried by the surface wave

in the propagation direction x1 per unit width x3 was
plotted in Fig. 6 using formula (23). As can be seen in
Fig. 6, the total power of the surface wave P total

1 tends
to zero, when the wave frequency approaches the sur-
face resonant frequency fsp. This is a characteristic
feature of this new acoustic surface wave. It should be
noted that a similar property is also exhibited by elec-
tromagnetic surface waves of the SPP type (Nkoma
et al., 1974; Rosenblatt et al., 2010).

Since the new surface acoustic wave is an evanes-
cent wave in the direction perpendicular to the inter-
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Fig. 6. Normalized total power P total
1 carried by the sur-

face wave in the direction of propagation x1, as a func-
tion of wave frequency f . Surface resonant frequency fsp =

143.569 kHz.

face (x2 = 0) along the x2 axis, it can be proved that
the total power of the surface wave P total

2 propagating
in the direction of the x2 axis is equal to zero.

4. Discussion

In this paper we analyze for the first time the prop-
erties of new SH acoustic surface waves that propagate
at the interface between two elastic half-spaces, one of
which is an elastic metamaterial with a very special
elastic compliance s(1)44 (ω), namely that is negative for
0 ≤ ω < ωp (Eq. (1)) in a perfect analogy to the dielec-
tric function ε(ω) in Drude’s model of metals (Nkoma
et al., 1974). To the best of our knowledge no such type
of acoustic waves has been yet analyzed in the litera-
ture.

For low frequencies f , the phase vp and group vp
velocities of the surface wave are approximately equal
to v2, i.e. the velocity of the transverse bulk waves in
the elastic upper semi-space.

With increasing frequency (for f → fsp), where fsp
is the surface resonant frequency:

fsp =
fp

√

1 + s
(2)
44 /s0

,

the phase velocity vp and group velocity vgr of the
elastic surface wave decrease monotonically to zero.

An interesting feature of the proposed surface
acoustic wave is that the power of the surface wave
in the upper half-space propagates in opposite direc-
tion than the power in the lower half-space. Conse-
quently, the total power P total

1 carried by the surface
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wave in the direction of propagation x1 converges to
zero, as the wave frequency approaches the surface res-
onant frequency fsp (Fig. 6).

As can be seen in Figs 2, 3, and 4, the phase vp and
group vgr velocities of a new surface acoustic wave are
always inferior to the velocity v2 of bulk shear waves
in the upper half-space.

Moreover, the group velocity of the wave (Fig. 4)
is always lower than the phase velocity (Fig. 3), for all
frequencies less than the surface resonant frequency,
i.e. for f < fsp.

As shown in Fig. 5, the acoustic field is spatially
confined to the interface x2 = 0. The mechanical dis-
placement u3 of the surface wave reaches its maximum
at the interface, and decreases exponentially in both
elastic half-spaces as the distance from the interface
increases for ∣x2∣→∞.

For higher frequencies (f → fsp) the penetration
depth of the mechanical displacement u3 of the sur-
face wave into the upper and lower semi-spaces, is
approximately the same. In this case the penetration
depth can be even lower than the wavelength, for ex-
ample: for a frequency equal to 143 kHz, that is, for
f/fsp = 0.995, the penetration depth into the upper
half-space δupper = 1/q2 is equal to 87 µm and the pene-
tration depth into the lower half-space δlower = 1/q1
equals 86 µm. It should be noted that the wavelength
in this case is equal to 540 µm, i.e. the penetration
depth is over six times smaller than the wavelength.

At lower frequencies (f → 0), the penetration depth
into the upper half-space is much larger than that into
the lower half-space, for example: for f = 10 kHz, i.e.
for f/fsp = 0.07, the penetration depth into the lower
metamaterial elastic half-space δlower equals 0.8 mm,
while the penetration depth into the upper elastic half-
space δupper equals 169.3 mm Here, the wavelength
equals 109.4 mm. And similarly, at f = 20 kHz, i.e.
for f/fsp = 0.14, the penetration depth into the lower
metamaterial elastic half-space δlower equals 0.8 mm,
while the penetration depth into the upper elastic half-
space δupper equals 42 mm. Here, the wavelength equals
53.7 mm.

The phase vp and group velocity vgr of the new
surface wave slow down when the wave frequency f

Table 2. Phase vp and group velocity vgr, penetration
depths in the upper δupper and lower δlower half-spaces and

wavelength λ for various wave frequencies f .

f

[kHz]
vp

[m/s]
vgr
[m/s]

δupper
[mm]

δlower

[mm]
λ

[mm]
10 1094.2 1082.7 169.3 0.805 109.4
20 1077.1 1034.0 42.2 0.802 53.7
50 970.2 782.2 6.55 0.780 19.4

140 194.2 9.45 0.224 0.213 1.39
143 77.6 0.61 0.087 0.086 0.54

approaches the surface resonant frequency fsp (Figs 3
and 4). For example at a frequency f = 140 kHz,
vp = 194.2 m/s and vgr = 9.5 m/s and subsequently
at a frequency f = 143 kHz, vp = 77.6 m/s and vgr =
0.61 m/s, respectively. Here, the surface resonant fre-
quency fsp = 143.569 kHz. The above results can be
summarized in Table 2.

5. Conclusions

From the results of the research presented in this
study, the following main conclusions can be drawn:

1) We have demonstrated that a pure SH acoustic
surface wave can propagate along the plane in-
terface between two rigidly bonded elastic semi-
spaces, where one of the semi-infinite medium is
an elastic metamaterial with negative elastic com-
pliance. It is worth noting that according to the
classical elastic wave theory, the shear horizontal
surface acoustic waves cannot occur at the inter-
face between two pure elastic semi-spaces.

2) In the low frequency range (wavenumbers), the
new surface acoustic wave has a large penetration
depth of the acoustic field into the upper conven-
tional elastic half-space. Whereas the penetration
depth into the lower (metamaterial) semi-space is
small.

3) In the frequency range close to the surface reso-
nant frequency fsp (for large wavenumbers K),
the energy of the surface acoustic wave is concen-
trated in the proximity of the interface (x2 = 0).
The acoustic field of the surface wave penetrates
into the upper and lower half-spaces at a distance
shorter than the wavelength.

4) The phase vp and group vgr velocities of the new
acoustic wave slow down and tend to zero as the
wave frequency f approaches the surface resonant
frequency fsp. This property can result in an ex-
ceptionally large sensitivity of the new wave to
mass loading on the interface.

5) The Poynting vectors of the new SH acoustic sur-
face wave in the upper half-space P upper

1 and lower
half space P lower

1 are always oriented in oppo-
site directions along the axis x1. The total power
P total
1 = P lower

1 +P lower
1 carried by the surface wave

in the direction of propagation x1 converges to
zero, when the wave frequency tends to fsp.

6) This new SH acoustic surface wave exhibits some
similarities to the shear horizontal Maerfeld–
Tournois acoustic wave which propagates at the
interface of two elastic half spaces, at least one
of which is a piezoelectric body. In both types of
waves, the mechanical displacement of the wave
decays monotonically to zero with increasing dis-
tance from the interface (x2 = 0).
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7) The mathematical model describing the new sur-
face acoustic wave is very similar to the mathe-
matical model describing electromagnetic surface
waves of the SPP type. Therefore, this new acous-
tic surface wave inherits much of the properties of
SPP electromagnetic waves and can be considered
as an elastic (acoustic) analog of an electromag-
netic surface wave of the SPP type.

The penetration depth of the new acoustic wave
can be smaller than the wavelength λ (e.g. of the or-
der of λ/10). Due to this strong concentration of the
acoustic field in the vicinity of the interface, the pro-
posed new SH surface acoustic wave can be applied
in extremely highly sensitive sensors of physical quan-
tities (e.g. viscosity), biosensors, chemosensors, near
field acoustic microscopy (with subwavelength resolu-
tion), as well as in miniaturized micro and nano-scale
modern acoustic devices.

Acknowledgments

The project was funded by the National Science
Centre (Poland), granted on the basis of Decision No.
2020/39/B/ST8/03505.

References

1. Achenbach J.D. (1973), Wave Propagation in Elastic
Solids, North-Holland, Amsterdam.

2. Ambati M., Fang N., Sun C., Zhang X. (2007),
Surface resonant states and superlensing in acoustic
metamaterials, Physical Review B, 75(19): 195447, doi:
10.1103/PhysRevB.75.195447.

3. Auld B.A. (1990), Acoustic Fields and Waves in So-
lids, Vol. I, II, Krieger Publishing Company, Florida.

4. Bleustein J.L. (1968), A new surface wave in piezo-
electric materials, Applied Physics Letters, 13: 412-413,
doi: 10.1063/1.1652495.

5. Born M., Wolf E. (1980), Principles of Optic, 6th
ed., p. 625, Cambridge University Press, Cambridge.

6. Deng K., He Z., Ding Y., Zhao H., Liu Z. (2014),
Surface-plasmon-polariton (SPP)-like acoustic surface
waves on elastic metamaterials, arXiv, doi: 10.48550/
arXiv.1408.2186.

7. Kadic M., Bückmann T., Schittny R., Wegener M.
(2013), Metamaterials beyond electromagnetism, Re-
ports on Progress in Physics, 76(12): 126501, doi:
10.1088/0034-4885/76/12/126501.

8. Kiełczyński P., Szalewski M., Balcerzak A.,
Wieja K. (2015), Group and phase velocity of love
waves propagating in elastic functionally graded ma-
terials, Archives of Acoustics, 40(2): 273–281, doi:
10.1515/aoa-2015-0030.

9. Kiełczyński P. (2018), Direct Sturm–Liouville prob-
lem for surface Love waves propagating in layered vis-
coelastic waveguides, Applied Mathematical Modelling,
53: 419–432, doi: 10.1016/j.apm.2017.09.013.

10. Kiełczyński P. (2021), New Fascinating Properties
and Potential Applications of Love Surface Waves,
Invited Speaker presentation at the IEEE, Interna-
tional Ultrasonic Symposium, September 11–16, 2021,
Xi’an, China, http://zbae.ippt.pan.pl/strony/publika
cje.htm.

11. Love A.E.H. (1911), Some Problems of Geodynamics,
Cambridge University Press, London.

12. Maerfeld C., Tournois P. (1971), Pure shear elas-
tic surface wave guided by the interface of two semi-
infinite media, Applied Physics Letters, 19(4): 117, doi:
10.1063/1.1653836.

13. Maier S.A. (2007), Plasmonics: Fundamentals and
Applications, Springer, Berlin.

14. Nkoma J., Loudon R., Tilley D.R. (1974), Elemen-
tary properties of surface polaritons, Journal of Phy-
sics C: Solid State Physics, 7(19): 3547–3559.

15. Rosenblatt G., Feigenbaum E., Orenstein M.
(2010), Circular motion of electromagnetic power shap-
ing the dispersion of surface plasmon polaritons,
Optics Express, 18(25): 25861–25872, doi: 10.1364/
OE.18.025861.

16. Royer D., Dieulesaint E. (2000), Elastic Waves in
Solids I, Springer, Berlin Heidelberg New York.

17. Wu Y., Lai Y., Zhang Z.-Q. (2011), Elastic meta-
materials with simultaneously negative effective shear
modulus and mass density, Physical Review Letters,
107(10): 105506, doi: 10.1103/PhysRevLett.107.105506.

18. Yu S.-Y. et al. (2020), Slow surface acoustic waves via
lattice optimization of a phononic crystal on a chip,
Physical Review Applied, 14(6): 064008, doi: 10.1103/
PhysRevApplied.14.064008.

19. Zaccherini R. et al. (2020), Locally resonant meta-
surfaces for shear waves in granular media, Physical
Review Applied, 13(3): 034055, doi: 10.1103/PhysRev
Applied.13.034055.

20. Zhang J., Zhang L., Xu W. (2020), Surface plasmon
polaritons: physics and applications, Journal of Phy-
sics D: Applied Physics, 45(11): 113001.

https://doi.org/10.1103/PhysRevB.75.195447
https://doi.org/10.1063/1.1652495
https://doi.org/10.48550/arXiv.1408.2186
https://doi.org/10.48550/arXiv.1408.2186
https://doi.org/10.1088/0034-4885/76/12/126501
https://doi.org/10.1515/aoa-2015-0030
https://doi.org/10.1016/j.apm.2017.09.013
http://zbae.ippt.pan.pl/strony/publikacje.htm
http://zbae.ippt.pan.pl/strony/publikacje.htm
https://doi.org/10.1063/1.1653836
https://doi.org/10.1364/OE.18.025861
https://doi.org/10.1364/OE.18.025861
https://doi.org/10.1103/PhysRevLett.107.105506
https://doi.org/10.1103/PhysRevApplied.14.064008
https://doi.org/10.1103/PhysRevApplied.14.064008
https://doi.org/10.1103/PhysRevApplied.13.034055
https://doi.org/10.1103/PhysRevApplied.13.034055

