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Expressing head-related transfer functions (HRTFs) in the spherical harmonic (SH) domain has been thor-
oughly studied as a method of obtaining continuity over space. However, HRTFs are functions not only of direc-
tion but also of frequency. This paper presents an extension of the SH-based method, utilizing hyperspherical
harmonics (HSHs) to obtain an HRTF representation that is continuous over both space and frequency. The
application of the HSH approximation results in a relatively small set of coefficients which can be decoded into
HRTF values at any direction and frequency. The paper discusses results obtained by applying the method to
magnitude spectra extracted from exemplary HRTF measurements. The HRTF representations based on SHs
and HSHs exhibit similar reproduction accuracy, with the latter one featuring continuity over both space and
frequency and requiring much lower number of coefficients. The developed HSH-based continuous functional
model can serve multiple purposes, such as interpolation, compression or parametrization for machine-learning
applications.
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1. Introduction

Continuous development of virtual and augmented
reality applications rises the need for efficient binau-
ral audio processing algorithms. Especially an impor-
tant role in authentic recreation of an auditory scene is
played by the directivity of human ears, which is com-
monly called head-related transfer functions (HRTFs).
HRTFs are different for each individual as they depend
on the shape of torso, head, and pinna. Even though
there are some similarities among sets of HRTFs ob-
tained for different people, application of individually
measured or matched HRTFs has been proven to im-
prove the localization abilities (Wenzel et al., 1993;
Begault et al., 2001). The importance of HRTFs
is especially prominent in recognizing the position of
a sound source placed in sagittal planes, where simple
binaural cues such as interaural level difference (ILD)
and interaural time difference (ITD) are mostly inva-
riant (Macpherson, Middlebrooks, 2002; Agter-
berg et al., 2012).

HRTFs can be physically measured in two ways.
Most measurements are performed by putting a pair of
microphones inside the subject’s ears and recording the
response to the sound coming from different directions
(e.g., (Andreopoulou, 2015a; Zhang, 2012)). Alter-
natively, one can make use of the Helmholtz reciprocity
principle and place microspeakers inside the ears while
the microphones are set around the subject (Zotkin,
2006). Either way, the results of the measurements are
sets of HRTFs for a finite number of directions. They
are usually stored in the form of discrete head-related
impulse responses (HRIRs), for example using the Spa-
tially Oriented Format for Acoustics (SOFA) (AES,
2015; Majdak et al., 2013).

Since HRTFs are relatively large data sets, some
attempts were made to develop an efficient model
that would reduce the amount of data without a sig-
nificant loss of accuracy. Initially, the research con-
cerned approximating HRIRs, e.g., by expressing them
as filters of either finite or infinite impulse response
(e.g., (Kulkarni, Colburn, 1995; 2004)), but soon
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the focus was moved to the spatial properties. Evans
et al. (1998) proposed expressing HRTFs by means of
spherical harmonics (SHs). Beside reducing the data
size, this representation introduced an even more sig-
nificant feature – continuity over space. Over the
years, the SH-based method has been widely investi-
gated, regarding, i.e., efficiency of different sampling
schemes (Zhang et al., 2012), preprocessing techni-
ques (Brinkmann, Weinzierl, 2018) or mixed-order
approximations (Ben-Hur et al., 2019). Some alter-
native continuous representations were suggested, e.g.,
based on spherical wavelets (Hu et al., 2019; Liu et al.,
2019) or Slepian functions (Bates et al., 2015); how-
ever, SHs still prevail as the most popular basis func-
tions to approximate not only HRTFs but also other
directivity functions such as the sound source directiv-
ity (Szwajcowski et al., 2021; Shabtai et al., 2017)
or the microphone directivity (Ziegler et al., 2017).

Beside focusing on either only spatial or only
time/frequency variations, several attempts were made
to develop a model including both these dependen-
cies. Kistler and Wightman (1992) employed the
principal component analysis to an HRTF database.
While resulting model indeed provided a good accu-
racy, it was discrete and required a priori knowledge of
the database to determine optimal basis vectors. Chen
et al. (1995) developed a representation based on thin-
plate splines that was continuous in space but still dis-
crete in frequency. In 2009, Zhang et al. described
a model based on Fourier series and Bessel functions
which was continuous over both frequency and horizon-
tal angles (Zhang et al., 2009) and which was later
extended to cover the entire sphere and include dis-
tance dependence as well (Zhang et al., 2010). An-
other proposition comes from authors who based their
model on the fusion of infinite impulse response filters
and Legendre polynomials (Shekarchi et al., 2013).
However, the authors focused purely on the compres-
sion of measured data and thus their model cannot be
used to interpolate missing values. Zhang et al. (2015)
created a functional model utilizing SHs for spatial de-
pendency and complex exponentials for the frequency
representation. Both mentioned fully continuous mod-
els (Zhang et al., 2010; 2015) determined coefficients
for basis functions partially by numerical integrating,
which is computationally efficient, but provides worse
accuracy than that obtained by fitting in the least-
squares sense. Furthermore, these researches focused
on retrieving high accuracy complex representations,
even though it is known that humans are insensitive to
fine spectral or spatial details of HRTFs (Kulkarni,
Colburn, 1998; Romigh et al., 2015; Breebaart,
Kohlrausch, 2001; Xie, Zhang, 2010).

In this paper, a new approach to the HRTF dimen-
sionality is presented: frequency is imagined as another
spatial dimension. This way, the character of these
functions becomes purely spatial with two truly spa-

tial variables (horizontal and vertical angles) and one
extra variable that represents frequency, but is also
treated as a spatial dependence1. This approach em-
phasizes coupling between frequency and space in di-
rectivity functions and is inspired by the mathematical
structure known as Minkowski space, where time and
three-dimensional (3D) space are combined together to
conveniently express some of the physical phenomena,
most notably regarding the theory of special relativ-
ity. Assuming that SHs are a good choice for express-
ing directivity functions in the 3D space, including the
fourth dimension would require an extention of the ba-
sis to a four-dimensional (4D) space. A similar prob-
lem was tackled in computer graphics, where standard
3D shape descriptors were insufficient for certain cases.
Bonvallet et al. (2007) extended the popular ap-
proach to another dimension by replacing SHs with hy-
perspherical harmonics (HSHs). This method was later
applied in medical imaging by Pasha Hosseinbor
et al. (20015), providing further a proof that HSHs,
previously reserved for theoretical chemistry and nu-
clear physics, can be successfully employed in engineer-
ing. However, to the best of our knowledge, HSHs have
not yet been utilized in acoustics or any related field.
Thus, the application of this basis to represent acous-
tical data is the main novel element of this paper.

The primary advantage of the proposed HSH repre-
sentation over the state-of-the-art SH one is continuity
over both space and frequency. Such a representation
allows to extract the HRTF magnitude not only at
a given direction but also at a given frequency with-
out any additional operations (e.g., interpolation or re-
sampling), thus being computationally attractive. Fur-
thermore, varying the approximation parameters enab-
les easy control of the balance between accuracy and
amount of data; acknowledging psychoacoustical as-
pects in the process of deriving the functional model
can lead to a significant reduction of data size by
ignoring high-order HSHs responsible for impercepti-
ble spectral details. Last but not least, a more holis-
tic HRTF representation can be of great value in re-
search requiring a thorough directivity parametriza-
tion method, e.g., for machine learning applications.

Section 2 provides the necessary theoretical back-
ground on 4D coordinate systems and HSHs. Section 3
describes conversion from raw measurement data to
hyperspherical data and then to the HSH domain. Sec-
tion 4 presents exemplary results of the conversion per-
formed on a typical set of HRTFs and suggests further
improvements of the process. Section 5 consists of gen-
eral comments on the HSH representation, its accuracy
and potential applications. Finally, Sec. 6 summarizes
all the content of this paper.

1This paper concerns far-field HRTFs, where the radius de-
pendence is neglected. This is why three- and four-dimensional
spaces are described by only two and three variables, respec-
tively.
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2. Theoretical background

HRTFs are functions of direction, distance, and fre-
quency. Under the assumption that the distance is grea-
ter than 1 m, the radial dependence can be dropped.
Such simplified functions are called far-field HRTFs,
but since they are measured and applied more com-
monly than full, distance-dependent HRTFs, they are
often called just HRTFs. This is also the case in this
paper; wherever HRTFs are mentioned, they mean far-
field HRTFs, independent of distance.

2.1. Hyperspherical coordinate system

Assuming that the spatial dependence of HRTFs
is to be described in the spherical coordinate system,
an extension of this system is needed to capture vari-
ability over another dimension. This can be achieved
by adding another linear or angular dimension, result-
ing in either spherindrical or 4D hyperspherical coordi-
nate system (HCS), respectively. The HCS has already
proven to be successful in similar research problems
in other fields (Bonvallet et al., 2007; Pasha Hos-
seinbor et al., 2015) and its geometrical properties
enhance natural physical properties of acoustic direc-
tivity characteristics (see Subsec. 2.2.1 and 3.1.1 for
explanation). For these reasons, HCS was chosen over
the spherindrical coordinate system for this research.

HCS consists of hyperspherical radius ρ and three
angles: ϕ ∈ [0,2π), θ ∈ [0, π), and ψ ∈ [0, π). The angles
ϕ and θ correspond to azimuth and inclination defined
in the spherical coordinate system, while ψ is an extra
angle representing another dimension. Since there are
no unified names for angles in 4D space, within this
paper they are referred to just by their symbols or
colloquially as the spatial angles (meaning angles ϕ
and θ) and the frequency angle (meaning angle ψ) (the
details of utilizing an angle to describe the frequency
are provided in Subsec. 3.1.1). The relation between
HCS and 4D Cartesian system (x, y, z, w) is following:

x = ρ sinψ sin θ sinϕ,

y = ρ sinψ sin θ cosϕ,

z = ρ sinψ cos θ,

w = ρ cosψ.

(1)

2.2. Hyperspherical harmonics definition

HSHs can be defined for any multidimensional
space, but within this paper only 4D HSHs are con-
sidered and simply referred to the HSHs. They can be
defined as following (Domokos, 1967):

Zmnl(ϕ, θ,ψ) ≡ N(n, l) sinl ψ Cl+1
n−l(cosψ)Y ml (ϕ, θ), (2)

where N(n, l) is the normalization factor, Cαν (x) are
the Gegenbauer polynomials, and Y ml (ϕ, θ) are the

SHs, while n, l, and m are the integer parameters lim-
ited as following:

n ≥ 0,

0 ≤ l ≤ n,

−l ≤m ≤ l.

(3)

N(n, l) is the normalization factor, making the
HSH basis not only orthogonal but orthonormal. It is
given by the formula:

N(n, l) ≡ 2l+
1
2 (l + 1)!

¿
Á
ÁÀ2(n + 1)(n − l + 1)!

π(n + l + 2)!
. (4)

It is worth noting, that the SHs in Eq. (2) are also
normalized, which is why N(n, l) does not depend on
the parameterm – this dependency is entirely included
in the SH normalization factor.

Cαν (x) are the Gegenbauer polynomials, also known
as ultraspherical polynomials. They can be defined in
multiple equivalent ways; however, for the computa-
tions, the most useful one is that given by the following
recurrence relation (Ultraspherical polynomials, n.d.):

Cα0 (x) = 1,

Cα1 (x) = 2αx,

Cαν (x) =
1

ν
(2x(ν + α − 1)Cαν−1(x)

− (ν + 2α − 2)Cαν−2(x)).

(5)

In the HSH definition (Eq. (2)), the Gegenbauer poly-
nomials, together with the factor of sinl ψ, are responsi-
ble for variation among ψ angle (the frequency angle).

Y ml (ϕ, θ) are SHs. SHs can be defined either as
complex- or real-valued functions. This paper focuses
on their application to express magnitude spectra of
HRTFs (see Subsec. 3.1 for explanation) and thus the
real form is used, making the entire HSH basis real
as well. Real SHs are defined as following2 (Varsha-
lovich et al., 1998):

Y ml (φ, θ) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

NY (l,m)Pml (cos θ) cos (mϕ),

if m ≥ 0,

NY (l,m)P
∣m∣
l (cos θ) sin (∣m∣ϕ),

if m < 0,

(6)

where Pml are the associated Legendre functions and
NY (l,m) is the normalization factor for SHs defined
as:

NY (l,m) ≡

¿
Á
ÁÀ(2 − δm0)

2l + 1

4π

(l − ∣m∣)!

(l + ∣m∣)!
, (7)

where δ is the Kronecker delta.
2Sometimes in real SH definitions there is also (−1)m factor

included, but it is irrelevant for approximation purposes as it
merely changes the sign of some coefficients.
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2.2.1. Hyperspherical poles

Hyperspheres, by being extensions of 2-spheres
(regular 3D spheres), display some analogous features.
On a 2-sphere, there are two poles lying at inclina-
tions θ ∈ {0, π}, at which all meridians converge to the
same point. In other words, at these poles, the actual
direction is the same for every azimuthal angle ϕ. In
HSC, such poles exist for every ψ, but there are also
two major poles (hyperpoles) at ψ ∈ {0, π}, where the
direction is dependent on neither ϕ nor θ. Now, apply-
ing the interpretation that ψ is the frequency angle,
this means that values for the limit frequencies have to
be constant for every physical direction. This is inline
with how the directivity (including HRTFs) behaves
at low frequency – the lower the frequency, the less
variance along the directions can be observed, as the
size and shape of objects become less and less relevant
when compared to the length of acoustic waves corre-
sponding to the analyzed frequency. This coincidence
is used in frequency-to-angle mapping, so that the hy-
perpole convergence can be perceived as an advantage
rather than a limitation of the proposed model (see
Subsec. 3.1.1).

The presence of hyperpoles can also be seen as
a part of general property of HSHs, which are meant
to represent the hypersphere boundary evenly. Since
the angular distance between two points on the hyper-
sphere gets lower as the hyperpoles are approached (in
the same vein as meridians get closer near the poles on
a sphere), the ability to capture fine HRTF details de-
creases. For SHs, the same effect is often achieved by
decreasing the maximum order for lower frequencies
(e.g., (Zhang et al., 2015; Li et al., 2021)). This is
not feasible when continuous representations are used;
however, HSHs provide the same effect in a different
way, which further shows that they fit well for handling
directivity data.

3. Hyperspherical harmonic approximation

In order to express HRTFs in the HSH domain, two
steps have to be taken: first, the measurement data
have to be converted to HCS and then the HSH coeffi-
cients need to be determined so that the weighted sum
of HSHs approximates the data in HCS as accurately
as possible. Both these steps are described in details
in the following subsections.

3.1. HRIRs to data in HCS

As stated in Introduction, HRTFs are commonly
stored in the form of HRIRs. It might seem natural
to try to find a way to efficiently represent the data
in the time domain rather than in the frequency do-
main. However, there are several arguments in favour
of the latter. Firstly, in previous research, both ap-

proaches were studied and models based on the fre-
quency representation resulted in lower approximation
errors using objective measures (Evans et al., 1998;
Hartung et al., 1999). Secondly, the human auditory
system, analyzes sounds mostly in the frequency do-
main and thus accurate reproduction of the impulse
response shape is irrelevant to our ears, as opposed
to the shape of the frequency spectrum. Furthermore,
HRIRs usually have much sharper shapes than the cor-
responding HRTFs, which makes representing them as
a sum of basis functions much harder, especially when
the basis is truncated. Last but not least, HRIRs in-
clude information on phase, which is of little impor-
tance; it is widely acknowledged that phase spectra
can be ignored as long as the interaural time difference
is preserved (Kistler, Wightman, 1992; Romigh
et al., 2015; Kulkarni et al., 1999)3, although some
contrary results have also been presented (Rasumow
et al., 2014). Basing a model on the frequency-domain
representation thus allows the information on phase
to be dropped, reducing the efficient amount of data
twice without a significant loss as far as the applica-
tory aspect is concerned. However, HSHs can be de-
fined as complex functions as well, so it is possible to
include the phase information as well, if desired.

The magnitude spectra typically are represented ei-
ther in linear or in logarithmic scale (in dBs). Referring
again to the psychoacoustic aspects of sound percep-
tion, the logarithmic scale is relative and thus it is
more reflective of how the sound pressure is perceived
by the human auditory system. Since the approxima-
tion method of the model proposed within this paper
is based on the least-squares fitting (see Subsec. 3.2.2
for more details), it seems reasonable to use a log-
arithmic scale, so that the solver minimizes relative
errors (Kulkarni, Colburn, 2004; Romigh et al.,
2015; Hartung et al., 1999; Blommer, Wakefield,
1997).

The reference value for the logarithmic scale does
not matter as long as it is uniform within a given HRTF
set; this value is linked only with the coefficient for Z0

00

(the first HSH invariant along all the angles), but oth-
erwise has no impact whatsoever. Therefore, to make
it simple, the reference value was chosen to be 1.

3.1.1. Frequency mapping

As signaled earlier, in order to express HRTFs in
HCS, frequency has to be mapped to the ψ angle. The
simplest way of doing it would be to set the frequency
f = 0 at ψ = 0 and the frequency f = fs/2 to ψ = π,
where fs denotes the sampling frequency of HRIRs
in the HRTF set. The remaining frequencies would be
then mapped to ψ linearly, following the formula:

3Phase spectra are still important for low frequencies, but
they can be replaced by a linear phase derived from interau-
ral time differences, without any noticeable damage to the locali-
zation abilities.
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ψk =
2πfk
fs

, (8)

where fk is the center frequency of the k-th frequency
bin and ψk is the corresponding value of the frequen-
cy angle. However, such mapping implies convergence
to uniform values at hyperpoles, i.e., at f ∈ {0, fs/2}.
When approaching 0 Hz, HRTFs tend to be omnidi-
rectional anyway, but this is not the case for the high-
est frequencies, especially in the logarithmic scale (see
Fig. 1). While this might seem to be of little impor-
tance, as the convergence to the hyperspherical pole at
the Nyquist frequency would likely affect mostly the
highest frequencies which are inaudible anyway, it is
possible to avoid such distortions; f = fs/2 can be set
to ψ = π/2 instead of ψ = π, so that all the HRTFs can
be mapped to effectively only half a hypersphere. This
requires twice as large resolution of HSH along ψ since
the spectra are squeezed to fit on only half of the full
range of the frequency angle; however, such mapping
allows to ignore all HSHs that are not symmetric about
the hyperplane at ψ = π/2. The application of only ψ-
symmetric HSHs (the HSHs that exhibit the aforemen-
tioned symmetry about ψ = π/2) removes the conver-
gence at f = fs/2 and makes the spectra for the entire
range of ψ ∈ [0, π) symmetric about the Nyquist fre-
quency in the same manner as typical magnitude spec-
tra obtained by performing the discrete Fourier trans-
form on a real signal. With f = fs/2 set to ψ = π/2,
Eq. (8) takes the form of:

ψk =
πfk
fs

, (9)
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Fig. 1. Statistical distribution of an exemplary set of HRTFs
(described in details in Sec. 4) for all directions. Solid black
line is the mean spectrum, while the dark and light grey
areas cover regions of 1 and 2 standard deviations, respec-
tively. First frequency bin was shifted from 0 to 50 Hz, to
be able to fit on the logarithmic axis. At the last frequency
bin, standard deviation is especially large due to the occur-
rence of zero points that were converted to floating-point
accuracy in MATLAB to avoid −∞ values. The plot was

shifted to fluctuate around 0 dB.

Alternatively, different frequency mappings could
be used. Both limit values and the character of scale
can be changed, e.g., to a logarithmic frequency scale,
which is quite popular in audio engineering, or the mel

scale, which is based on a psychoacoustic model of fre-
quency perception. This paper concerns only the linear
frequency mapping and leaves the employment of other
scales for potential future research.

3.2. Data in HCS to HSH coefficients

Once the 4D data are prepared in the form of
a set of triplets of angles (ϕ, θ,ψ) and the corre-
sponding magnitudes, these data need to be approx-
imated by a finite number of HSHs. The approxima-
tion comes down to determining the coefficients αmn,l
for the weighted sum so that approximated function
Ĥ(ϕ, θ,ψ) of the form4:

Ĥ(ϕ, θ,ψ) =
nmax

∑
n=0

n

∑
l=0

l

∑
m=−l

αmnlZ
m
nl(ϕ, θ,ψ) (10)

is as close to the original function H(ϕ, θ,ψ) as possi-
ble. In the analytical approach, when an infinite num-
ber of basis functions can be used (nmax =∞), consec-
utive coefficients can be determined by calculating the
dot product of the approximated function and complex
conjugate of the given HSH:

αmn,l = ∫
S3

H(ϕ, θ,ψ)Zmnl(ϕ, θ,ψ)dχ, (11)

where ∫
S3

dχ means integrating over the surface of the

unit 3-sphere:

∫

S3
dχ =

2π

∫
0

π

∫
0

π

∫
0

sin2 ψ dψ sin θ dθ dϕ. (12)

However, when the number of basis functions is trun-
cated, the accuracy of the approximation decreases.
For this reason, least-squares fitting of the coefficient
values is preferred over the numerical integration of
Eq. (11) to find the optimal set of coefficients.

3.2.1. Determination of the number of HSHs used

The choice of the number of basis functions is one
of the most important decisions affecting the quality of
the approximation. In general, increasing this number
improves the overall accuracy of the approximation.
However, using too many basis functions requires more
computational resources and can lead to overfitting.
It is thus important to determine what is the optimal
number of basis functions for a given problem.

HSHs are described by three parameters: n, l,
and m. Analyzing the definition given in Eq. (2), one
can notice that these parameters are responsible for
variations along the angles ψ, θ, and ϕ, respectively.
Limiting just n results in the same spatial frequency

4Equation (10) assumes approximation using all the HSHs
up to n = nmax. However, all of the parameters n, l and m can
have independent limits (see Subsec. 3.2.1).
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along all the angles. However, some extra limitations
for l and m can be imposed to obtain different reso-
lution along angles θ and ϕ. Equation (10) then takes
the form of:

Ĥ(ϕ, θ,ψ) =
nmax

∑
n=0

min (n,lmax)
∑
l=0

min (l,mmax)
∑

m=−min (l,mmax)

⋅αmnlZ
m
nl(ϕ, θ,ψ), (13)

where the limits have to satisfy the following relation5:

nmax ≥ lmax ≥mmax. (14)

These maximum values of nmax, lmax, and mmax

should be determined with respect to the sampling
theorem and depend on both spatial and frequency
sampling. However, HRTFs do not need to be recon-
structed with the highest available accuracy, since fine
details are psychoacoustically irrelevant. Thus, it is im-
portant to find the minimum values of the limits for
which the approximation error is negligible.

The spatial dependence is described by SHs and
thus the limits for spatial frequency (lmax and mmax)
can be determined basing on SH-related research.
Romigh et al. (2015) noticed that some of the local-
ization abilities occur for HRTFs approximated by SHs
of the maximum order as low as 2. Approximations
using SHs of the maximum order 6 are already statis-
tically indistinguishable from the unprocessed HRTFs
and the localization does not improve with further in-
creasing the maximum order. It is important to notice
that Romigh et al. (2015) used the same preprocessing
as proposed within this paper, i.e., the least-squares fit-
ting based on magnitudes in a logarithmic scale. These
results suggest that setting lmax and mmax to 6 should
be sufficient to prevail the localization properties of
a set of HRTFs.

Similar research was conducted regarding sensi-
tivity to spectral details of HRTFs. Kulkarni and
Colburn (1998) checked how much smoothing in fre-
quency can be applied to HRTFs without a significant
impact on the localization abilities. For this reason,
they prepared stimuli by truncating the Fourier se-
ries representing the logarithmic spectra of empirical
HRTFs. The listeners that took part in the experi-
ment were unable to discriminate between the real and
smoothed virtual sound sources in most of the setups
for HRTFs reconstructed from only 16 coefficients. For
32 coefficients and above, all of the listeners performed
at chance for all the tested directions. Even though
the frequency angle in HSHs is not represented by the
Fourier series, the same spatial frequency along that
angle can be chosen by setting appropriate nmax. Since

5It is possible to obtain a higher spatial frequency, e.g., along
θ than along ψ by using only a selection of HSHs for higher
values of the corresponding parameters. However, this case is not
applicable within this paper and thus it is not further discussed.

for chosen frequency mapping the spectra are supposed
to fit on only half the hypersphere, nmax must be dou-
bled to exhibit a desired resolution over the effectively
used range of ψ. Thus, to match the spatial frequency
of 32 spectrum coefficients from the described expe-
riment, nmax should be set to 64.

Furthermore, as stated in Subsec. 3.1.1, effectively
utilizing only half of the hypersphere allows to ig-
nore non-ψ-symmetric HSHs. Following the HSH and
Gegenbauer polynomials definitions given in Eqs. (2)
and (5), it can be noted that for Zmnl to be ψ-symmetric,
the difference between n and l has to be even. All the
parameter configurations where this difference is odd
should be thus disregarded when summing over l in
Eq. (13).

3.2.2. Computations

Assuming sampling at K 4D directions Ωk ≡ (ϕk,
θk, ψk), the HSH coefficients can be determined by
solving the following matrix equation:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Z0
00(Ω1) ... Zmmax

nmaxlmax
(Ω1)

⋮ ⋱ ⋮

Z0
00(ΩK) ... Zmmax

nmaxlmax
(ΩK)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α0
00

⋮

αmmax

nmaxlmax

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H(Ω1)

⋮

H(ΩK)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(15)
where H(Ω) are given in dBs to minimize errors in
logarithmic scale.

Since the system is overdetermined, it is usually
impossible to find coefficients which would perfectly
satisfy this equation. However, it can be solved in the
least-squares sense, minimizing the error of approxima-
tion. This approach is commonly embraced in research
concerning the SH approximation (Zhang et al., 2012;
Romigh et al., 2015; Pasqual e al., 2014; Alon et al.,
2018). A few existing 4D directivity models featured
separate computation of spatial and frequency depen-
dencies, using least-squares fitting for space and then
direct integration for frequency (Zhang et al., 2010;
2015). Including both frequency and spatial depen-
dent functions in a single least-squares minimization
to the best of my knowledge has not been yet applied
for these kind of data, making it another novel element
of the paper. While such an approach demands more
computational resources, it provides better fitting and
acknowledges coupling of space and frequency in di-
rectivity functions. It is also worth noting that the
increased computational complexity mainly concerns
determining the HSH coefficients and is caused by re-
placing multiple smaller matrix equations by one large.
In real-time, with proper optimization, rendering bin-
aural sound should be comparably fast for both SH
and HSH HRTF representations.

HRTF sets usually lack data for low elevation an-
gles (θ → π) because of the measurement setup restric-
tions. This can lead to some irrational values in the



A. Szwajcowski – Continuous Head-related Transfer Function Representation Based. . . 133

unsampled region, since the least-squares solver mini-
mizes an error only at the points where data is avail-
able. One way of dealing with this effect is to apply
a proper regularization (Zhang et al., 2015; Zotkin
et al., 2009). Ahrens et al. (2012) proposed another,
even more efficient solution based on filling the missing
region by means of the low-order SH approximation.
However, since in the HSH definition the direction de-
pendence is described by SHs, it is logical to assume
that these issues can be handled for the HSH approx-
imation in the same manner. For the comparison be-
tween HSHs and SHs, applying any of these methods
should not impact the analysis results (both approxi-
mations are expected to be impacted in the same way).
Thus, simple, non-regularized least-squares fitting was
used for both bases.

The computations and analysis were performed in
MATLAB using Objective-Oriented Directivity (Szwaj-
cowski, 2021). Both the classes used in this research
as well as precomputed objects containing raw and ap-
proximated data can be found in its database.

4. Exemplary approximations

To showcase efficiency of the HSH approximation,
the method was tested on exemplary data. The cho-
sen set of HRTFs comes from the original measure-
ments of Knowles Electronics Manikin for Acoustic Re-
search (KEMAR) with large pinnae performed at Mas-
sachusetts Institute of Technology (Gardner, Mar-
tin, 1995) and is a typical HRTF set for evaluat-
ing different models (Zhang et al., 2009; 2010; 2015;
Shekarchi et al., 2013). The set contains 710 HRIRs
for each ear, measured at different directions and
each consisting of 512 samples recorded with the sam-
pling frequency of 44.1 kHz. The HRIRs were con-
verted to HCS as described in Subsec. 3.1. Only data
for the left ear was used.

Although, according to Subsec. 3.2.1, the param-
eter limits of {lmax,mmax} = 6 and nmax = 64 should
be sufficient, it is important to remember that the SH-
focused research used exact frequency spectra, and the
spectral-focused one used exact spatial representation.
Smoothing in both space and frequency can thus have
more impact on the localization abilities. For this rea-
son, the limits used in the exemplary approximation
were set to slightly higher values of {lmax,mmax} = 8
and nmax = 80.

For the comparison, the SH approximation was also
performed on the same exemplary data. The proce-
dure was exactly the same as for the HSH approxima-
tion, but the computations were carried out separately
for each frequency bin. Then, approximated values for
given directions were put together to retrieve discrete
spectra. The maximum order and degree of SHs used
for approximation was set to 8, to match the limiting
parameters of SHs embedded in the HSHs. Exemplary

raw spectra and their SH and HSH approximations are
shown in Fig. 2.
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Fig. 2. Raw and approximated spectra of KEMAR HRTFs
for two exemplary directions: a) azimuth: 0○, elevation: 0○,
far-field; b) azimuth: 30○, elevation: 30○, far-field. The spec-
tra are offset by 20 dB for clarity. See text for more details.

The HSH approximation retrieves the general
shape very well, but the resulting spectra are smoother
than both the ones computed from the raw data and
the ones obtained by means of the SH approxima-
tion. The most problematic details to represent in the
HSH domain are deep notches, e.g., around 10 kHz in
Fig. 2b. However, this is not exclusive to HSH ap-
proximation but comes from the spatial dependence
represented by SHs, as the SH approximation fea-
tures the same issues. The notches are caused by rapid
changes in phase. Zagala and Zotter (2019) devel-
oped a method to deal with such a problem for the
low-order SHs. Their algorithm could be extended and
applied to HSHs if necessary.

By the properties of ψ-symmetric HSHs, their first
derivative with respect to ψ has to be 0 at π/2, which
causes minor discrepancies at the highest frequencies.
However, since they lie beyond the human hearing
range, these discrepancies are irrelevant from the per-
ceptual point of view. Another problematic frequency
band is the very lowest one. In this case, the SH ap-
proximation is much more precise than the HSH one;
for low frequencies, the directivity takes very simple
shapes (mostly omnidirectional), which are easy to ex-
press in the SH domain. One of the reasons for the
inaccuracy of the HSH approximation in this band are
rapid changes of magnitude levels within first few fre-
quency bins, which come from the audio chain used in
the HRTF measurement rather than the physical prop-
erties of HRTF themselves. This issue is investigated
in depth in the following subsection.
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4.1. Frequency weighting

Since some frequency bands lie beyond human
hearing range, their impact on the approximation re-
sults should not be as high as the impact of the audi-
ble part of the spectra. This variation in relevance can
be achieved by applying weighting to the least-squares
minimization. Equation (15) then takes the form of:

(ZTWZ)α = ZTWH, (16)

where Z, α, andH denote the respective matrices from
Eq. (15), T denotes matrix transposition, and W is
a diagonal matrix with weights for consecutive angle
triplets:

W =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎣

w(Ω1) 0 ... 0
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0 ... 0 w(ΩK)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (17)

One of the regions where fitting could be improved
by applying proper weights is the frequency band rep-
resented by the first few frequency bins. For all the di-
rections, a drop-off can be noticed as the frequency ap-
proaches 0, which could be caused by a low-frequency
limit of sound sources used in the HRTF measure-
ment or a high-pass filter embedded in the audio chain.
For the lowest frequencies, where the corresponding
sound waves are much longer than the size of a human
head, the HRTFs can be considered omnidirectional
(see Fig. 1). This omnidirectionality mirrors the con-
vergence of HCS for the frequency angle ψ → 0. Since
the problematic first bins do not hold any important
information, they can be completely removed at the
stage of computing the HSH approximation (i.e., have
weight equal to 0). However, one needs to be wary that,
under some circumstances, removing data from certain
regions can lead to overfitting.

The other perceptually irrelevant part of the
spectra are the highest frequencies. In this case, there
are more than one frequency bins lying beyond the
human hearing range. Their weights were arbitrarily
chosen to start decreasing above 20 kHz and reach 0
at the Nyquist frequency following the shape of cosine
function.

The HSH approximation was performed once again,
applying the weights as described above. For most
parts of the frequency spectrum, no noticeable changes
occurred in regard to the previously performed the
HSH computation on the complete data. Since there
is on average more weight on the audible frequency
band, the resulting approximation should be closer to
the original data, but the improvements were minus-
cule in most of the frequency range. However, the fit-
ting for the lowest frequencies has been notably im-
proved, except for the region corresponding to the first

bins, which were effectively removed from the least-
squares minimization (Fig. 3). Even though the re-
sulting approximation is less accurate with regard to
the measured data (large errors at first two bins),
it is likely more accurate with regard to the factual
physical HRTFs and improves fitting at several follow-
ing bins.
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Fig. 3. Raw and approximated spectra of KEMAR HRTF
for the direction straight ahead zoomed on the lowest fre-
quencies. HSHw and HSHw2 denote the HSH approxima-
tion with weights applied ignoring first or first two fre-

quency bins, respectively (see text for more details).

From the perceptual point of view, the fitting in re-
gions outside of the hearing range is irrelevant, and so
the reduced impact of extreme frequency bins should
improve the overall accuracy, even if only slightly.
Thus, the following sections consider only this new ap-
proximation.

4.2. Approximation error analysis

Since 4D data is difficult to display efficiently as
a 2D image, it is required to introduce numerical mea-
sures to compare accuracy of the SH and HSH ap-
proximations over the whole sphere. The key difference
between these two approaches is the way of handling
the frequency dependence and thus, for the compar-
ison, the approximation error should be presented in
the frequency domain. In similar research, various mea-
sures of approximation error were used. Currently, one
of the most popular approaches is to evaluate it as
the root-mean-square (RMS) error of the differences
between logarithmic spectra (e.g., (Liu et al., 2019;
Romigh et al., 2015; Nishino et al., 1999; Li et al.,
2021)). A common alternative is to evaluate the er-
ror based on the linear magnitude (e.g., (Hu et al.,
2019; Zhang et al., 2015)). Since this article has been
written, there is no clear indication which of these ap-
proaches surpasses others, including the authors’ spec-
ulations. However, the measure based on dB is more
intuitive to interpret and the computations were per-
formed on the logarithmic data, so it seems appropria-
te to use the logarithmic error as well. RMS errors for
the HSH approximation6 were computed by averaging

6From this section on, the HSH approximation is the one
with first two frequency bins removed and weights applied for
the high frequencies (earlier denoted as HSHw2).
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over all 710 directions available in the measurement
data using the following formula:

RMSĤ(f) =

¿
Á
Á
Á
Á
ÁÀ

a∗
K

∑
k=1

δψkψf

, (18)

where

a∗ =
K

∑
k=1

(Ĥ(ϕk, θk, ψk) −H(ϕk, θk, ψk))
2
δψkψf

and ψf is the frequency angle corresponding to the fre-
quency f , derived from Eq. (9). The RMS error for the
SH approximation was computed in an analogous way.
In addition, for both methods and for each frequency
bin, the 95th percentile (P95) was determined for ab-
solute values of Ĥ(Ω) −H(Ω). Errors in the form of
RMS an P95 values for both the SH and HSH approxi-
mations are plotted in Fig. 4, while Fig. 5 shows dif-
ference between the RMS plots from Fig. 4 as well as
5th and 95th percentile determined on the sets of dif-
ferences between absolute errors in dB for these two
methods:

PxHSH-SH(f) = Px({∣Ĥf
HSH −Hf

∣ − ∣Ĥf
SH −Hf

∣}), (19)

where Hf , Ĥf
SH, and Ĥf

HSH are sub-vectors of the orig-
inal data, SH and HSH approximations, respectively,
which contain only values for a given frequency f .
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Fig. 4. RMS and P95 of the HSH and SH approximation
errors in reference to the discrete data.
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Fig. 5. Difference in RMS errors and 5th, and 95th per-
centile of differences between the HSH and SH approxima-

tion errors.

For the vast majority of the hearing range, the dif-
ference in accuracy between the HSH and SH approx-
imations is small, reaching about 1 dB around 500 Hz

and becoming less and less significant as the frequency
rises. The largest discrepancies occur for the lower fre-
quency regions (below 1 kHz), where the SH approxi-
mation provides near perfect reconstruction of the orig-
inal data, but even there the absolute error is still
overall low (around 0.5–1 dB). The values of P5 indi-
cate that in some cases the HSH approximation yields
lower errors than the SH one (especially for higher fre-
quencies). The RMS error, however, is lower for the SH
approximation for each frequency bin, even if only to
a small extent.

4.2.1. Single-term error

To improve the comparability of the HSH approx-
imation accuracy, the error needs to be provided as
a single value averaged over all directions and frequen-
cies. For logarithmic scale, an error measure called
spectral distortion (SD) is usually employed. Its def-
inition resembles the RMS definition in Eq. (18) but
without the Kronecker deltas, so that the averaging is
performed over both space and frequency:

SDĤ =

¿
Á
ÁÀ 1

K

K

∑
k=1

(Ĥ(Ωk) −H(Ωk))
2
. (20)

SD values were computed for both SH and HSH
approximations in the range 100 Hz to 20 kHz (the
lower limit was imposed to exclude the first two fre-
quency bins). The results were SDSH = 2.32 dB and
SDHSH = 2.44 dB. Since SD requires a ground truth
data, it cannot accurately capture the magnitude of
differences between two approximations and so the dif-
ference between SD values is more representative than
the SD of the differences between approximated data
(just like the RMS difference is more accurate than the
RMS differences in Fig. 5).

5. Discussion

In general, the HSH and SH approximations pro-
vide very similar accuracy within the hearing range.
However, it is important to note that the minuscule
difference in the approximations’ errors for middle and
audible high frequencies does not mean that there are
no errors within these bands. In fact, the errors in both
cases are lower for the lowest frequencies, but the SH
approximation is very accurate in this region and thus
the difference is bigger than for the middle and high
frequencies. Such characteristics suggest that the lower
accuracy of HSH approximation for higher frequencies
comes from inability of low-order SHs to properly ex-
press the spatial variability of HRTFs in these bands.
However, the maximum order of SHs was chosen based
on perceptual studies and so it indicates that these
magnitudes of errors are imperceptible. It is notable,
that the approximations are not identical even when
the RMS error is close to 0; the differences are small
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(mostly below 1 dB) and are distributed relatively
evenly between being in favor of either SH or HSH
approximation. Such small differences in middle and
high frequencies have been proven to be perceptually
insignificant by many researchers (e.g., (Breebaart,
Kohlrausch, 2001; Xie, Zhang, 2010; Huopaniemi
et al., 1999)).

At low frequencies, the accuracy of the HSH ap-
proximation improved significantly after removing the
first two frequency bins from the least-squares mini-
mization. However, the SH approximation still outper-
forms the HSH one, providing near perfect reconstruc-
tion of the original spectrum at low frequencies. The
largest differences occur around 500 Hz, which might
be specific for the dataset used for evaluation. The way
accuracy depends on frequency can be impacted by fre-
quency mapping. Linear mapping treats all frequencies
as equally important in the least-squares fitting, while
it may be beneficial to employ a frequency scale more
aligned with how the human hearing system works,
e.g., the logarithmic or mel scale. On the other hand,
it is known that spectral localization cues are depen-
dent mostly on the shape of pinna, which impacts only
higher frequencies (Algazi et al., 2001; Langendijk,
Bronkhorst, 2002). Alternatively, the importance of
accuracy in certain frequency bands can be manipu-
lated by the frequency weighing if needed.

To further put the magnitude of errors in per-
spective, the approximation errors can be put against
the measurement errors. Some research has been
presented on the impact of different variables on
the spectral variations between HRTF measurements
(Andreopoulou et al., 2013; 2015); the HSH approx-
imation error is on par with (or lower than) the human-
related variations in repeated individual HRTF mea-
surements or the differences between HRTF sets of the
same artificial head but obtained in different labora-
tories. What is more, the difference between SH and
HSH approximations is lower than the differences be-
tween the measurements performed in the same lab-
oratory within a week (0.12 dB versus 0.17 dB). The
frequency smoothing introduced by the HSH approx-
imation, although changing the original values, might
also be perceived as a positive effect, since some of the
distortion in the raw data might be caused by noise
and imperfections of the measurement setup.

Generally, the application of HSHs instead of SHs
to approximate a magnitude of HRTFs yields almost
the same accuracy while exhibiting some additional
advantages. First of all, the resulting representation
is fully continuous, not only in space but also in
frequency. This continuity enables retrieving discrete
HRTFs of any frequency resolution without any ad-
ditional processing. The most prominent advantage of
application of SHs to directivity functions was thus ex-
tended to another dimension. An exemplary benefit of
using the HRTF model of infinite frequency resolution

is the control of balance between precision and latency
of binaural rendering by reading discrete HRTFs of any
desired resolution.

What is more, even less amount of data is required
to store a HRTF set in the HSH domain; in the ana-
lyzed example, the HSH approximation was described
by 3081 coefficients, while the SH one required 81 for
each of 257 frequency bins (255 excluding the first
two bins that were ignored in the HSH approxima-
tion either way). The total number of SH coefficients
was thus 20817 (20655), which is almost seven times
more than in the HSH approximation, while retaining
similar amount of perceptually relevant information.
Even if SH approximation was determined at only 40
frequency bands to match the reduced frequency res-
olution of HSHs for nmax = 80, the total number of
SH coefficients would be 3240 which is slightly more
than the number of HSH coefficients (3081). It is also
worth noting that 40-bin HRTFs would be computa-
tionally inefficient and would need to be resampled
while no such operation is needed in the HSH rep-
resentation, where spectra of any resolution can be
read without any extra processing. Furthermore, com-
paring the number of HSH coefficients (3081) to the
number of raw data samples (182470), the reduction
of data size is almost 60-fold with SD below 2.5 dB,
while the best configuration of the HRTF compression
method proposed by Shekarchi et al. (2013) reached
the compression ratio of only 40 for the same accuracy
(to get the compression ratio of 60, SD increases to
about 2.8 dB). Furthermore, their method is discrete
in both space and frequency while the HSH represen-
tation is fully continuous. HSHs can be thus useful in
designing a compression format that would include all
the variability of HRTFs within a single set of coeffi-
cients, allowing them to be expressed holistically and
compactly.

The downside of the HSH representation is that
it requires more computational resources to determine
the HSH coefficients via least-squares fitting. However,
with the continuous development of processing units,
this issue becomes less and less relevant.

The mathematical structure of the HSH represen-
tation allows it to be utilized not only for HRTFs but
for any type of directivity function, e.g., directivity of
electroacoustic devices, whether they are sound sources
or receivers. These types of directivity functions are
easier to measure and so applying HSHs as approx-
imation tools might be of lesser value, but they can
still be useful for such objects in any machine learning
problems requiring proper directivity parametrization.
HSHs, capturing holistic nature of the far-field direc-
tivity, seem to be better fitted for such tasks than SHs.

One of the interesting questions regarding the pre-
sented method is the impact of the choice of limiting
parameters nmax, lmax, and mmax on the approxima-
tion accuracy. Increasing these limits will improve the
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accuracy, but the quality and quantity of the improve-
ment remains to be determined. This is intrinsically
linked with the question of what is the minimum re-
quired accuracy from the perceptual standpoint and
what is the best way to achieve it. However, the pre-
sented subject is very broad and requires a thorough
analysis to provide reliable answers. For this reason, it
is decided to be out of scope of the present paper, but
will be considered in future studies.

6. Conclusions

Within this paper, the theory of HCS, real HSHs,
and their application to express frequency-dependent
directivity data such as HRTFs was presented. The
entire computational process was described, starting
from discrete HRIRs to determining HSH coefficients.
The special focus was put on efficient mapping of fre-
quency scale to an angle, which was required to ex-
press the directivity data in HCS. The location of the
hyperspherical poles was leveraged to match the om-
nidirectionality of directivity functions such as HRTFs
for low frequencies, making the HSH basis surprisingly
well-suited to express such functions, without physical
motivation.

The exemplary HSH representation was de-
termined for KEMAR HRTFs using perceptually-
motivated number of HSHs. The HSH approximation
yields similar levels of accuracy to the corresponding
SH one, while providing continuity in frequency and
a significant reduction of required amount of data.
Thanks to the continuity over both space and fre-
quency, the HSH representation captures the holis-
tic nature of far-field HRTF characteristics. Thus, the
HSH representation can be considered an upgrade over
the currently popular SH-based approach in practical
applications such as binaural rendering, parametriza-
tion or data storage. However, there are still many as-
pects to investigate, such as, e.g., impact of the lim-
iting parameters on the accuracy, exploring different
frequency mapping or weighing, perceptual tests, etc.

The method described within this paper not only is
a value by itself, but also presents wider possibilities of
perceiving directivity functions by modeling frequency
as an extra dimension, introducing coupling between
their spectral and spatial properties. The HSH model
can serve as a base for development of similar repre-
sentations applying different 4D functions, e.g., created
by merging basis functions of lower dimensions. Fur-
thermore, this paper focuses only on the magnitude of
far-field HRTFs, which can be in future complemented
by the distance and phase dependencies if needed.
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