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The voiced parts of the speech signal are shaped by glottal pulse excitation, the vocal tract, and the
speaker’s lips. Semantic information contained in speech is shaped mainly by the vocal tract. Unfortunately,
the quasiperiodicity of the glottal excitation, in the case of the HFCC parameterization, is one of the factors
affecting the significant scatter of the feature vector values by introducing ripples into the amplitude spectrum.
This paper proposes a method to reduce the effect of quasiperiodicity of the excitation on the feature vector.
For this purpose, blind deconvolution was used to determine the vocal tract transfer function estimator and the
corrective function of the amplitude spectrum. Subsequently, on the basis of the obtained HFCC parameters,
statistical models of individual Polish speech phonemes were developed in the form of mixtures of Gaussian
distributions, and the influence of the correction on the quality of classification of speech frames containing
Polish vowels was considered in details. The aim of the introduced solution was to narrow the GMM distribu-
tions, which clearly, according to the detection theory, reduces classification errors. The results obtained confirm
the effectiveness of the proposed method.
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1. Introduction

In automatic speech recognition (ASR) systems,
there is a need to compensate for the influence of
many factors, such as recording conditions, interper-
sonal variability, contextuality, etc., which negatively
affect the performance of the system. The most widely
used compensation methods are (Makowski, 2011):
1) clustering with developing independent statistical
models for speakers with similar personal charac-
teristics (Hossa, Makowski, 2016);

2) normalisation, which involves modifying the val-
ues of parametrization coefficients (Prasad,
Umesh, 2013);

3) adaptation, involving changing the parameter val-
ues of statistical models (Zambrzycka, 2021);

4) robust parametrization (Mrówka, Makowski,
2008), which should make the parameter vector

robust to the factors mentioned above or at least
reduce their impact.

The present work stands for the robust parametriza-
tion.
Among at least a dozen different parametrization

methods available in the literature (Sharma et al.,
2020), the most commonly used and effective solu-
tions in practical applications include methods that use
short time-frequency transformations and cepstral rep-
resentations of the resulting coefficients. To this group
of solutions we can include the algorithms:

– Mel-frequency cepstral coefficients, MFCC
(Davis, Mermelstein, 1980);
– human factor cepstral coefficients, HFCC
(Skowronski, Harris, 2003);
– the basilar-membrane frequency-band cepstral co-
efficient, BFCC (Kuan et al., 2016);
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– the gammatone cepstral coefficient, GTCC
(Yin et al., 2011).

On the other hand, the second group of solutions are
algorithms using linear prediction methods and exam-
ples of their implementations are the parametrizations:

– linear prediction cepstral coefficients, LPCC
(Rabiner Juang, 1993);
– the perceptual linear prediction, PLP
(Hermansky, 1990).

Most of the aforementioned parametrizations natu-
rally have mechanisms for robustness against small
noise interference, which can be further enhanced by
supplementing the method with the relative spec-
tral (RASTA) algorithm to suppress those of the
components that are not related to speech artic-
ulation. Based on such an idea, the RASTA-PLP
hybrid algorithm (Koehler et al., 1994) and the
multi-resolution RASTA filtering solution (Herman-
sky, Fousek, 2005) were developed. Another equiv-
alent representation in the form of the amplitude
modulation filter bank (AMFB) has been considered
in (Moritz, Kollmeier, 2015). Among the robust
parametrization algorithms, we can also distinguish al-
gorithms based on the minimum variance distortionless
response (MVDR) the estimator proposed in (Murthi,
Rao, 2000) and further developed into the MVDR-
MFCC algorithm in (Dharanipragada, Rao, 2001).
In general, the voiced parts of the speech signal

are shaped by linear cascade without interactions of
the glottal pulse excitation, the vocal tract, and the
speaker’s lips (Quatieri, 2002). Hence a widely ac-
cepted source-filter model of speech production is of
the form

s(n) = x(n) ⋆ h(n) ⋆ r(n), (1)

where x(n) is the excitation, h(n) is the impulse re-
sponse of the vocal tract, r(n) is the impulse response
characterizing the sound emission by the lips, n is the
discrete time, and ⋆ is the discrete time convolution
operator.
The semantic information contained in speech is

mainly shaped by the vocal tract. Unfortunately, the
quasiperiodicity of the glottal excitation, in the case
of parametrizations based on different time-frequency
representations, e.g., MFCC or HFCC, is one of the
factors affecting the significant scatter of the fea-
ture vector values, by introducing ripples into the
amplitude spectrum (see Sec. 2). Furthermore, in
(Skowronski, Harris, 2003) it was shown that the
HFCC parametrization is characterized by greater ro-
bustness to noise than the MFCC and studies have
shown differences in recognition performance of up
to 30 %. As a result, the classical solution, i.e., the
HFCC parametrization, was selected as the represen-
tative for further research on ripple reduction.
The paper proposes an algorithm to reduce the im-

pact of glottal flow excitation through its filtering op-

eration. The first step is to estimate the glottal exci-
tation signal x(n) and then determine the HFCC co-
efficients based on the magnitude of the vocal tract
transfer function. The estimation of the excitation sig-
nal is one of the most important problems in speech
signal processing, and in practical applications it is
used, among others, for speaker recognition (Plumpe
et al., 1999), analysis of the speaker’s emotional state
(Waarama et al., 2010) or speech synthesis (Raitio
et al., 2011). Inverse filtering algorithms are most com-
monly used in the literature to filter out the influence
of the components h(n) and r(n) of the speech signal
model form (Eq. (1)) based on their parametric models
determined by the LPC analysis. In this approach, it
is important to determine a reliable vocal tract model,
which is possible in several ways (Walker, Murphy,
2005). Among them, it is worth mentioning:
1) closed phase inverse filtering, CPIF, the algorithm
(Wong et al., 1979) with the closed phase of the
vocal cord vibration cycle analysis only;

2) algorithms that use an iterative approach and
synchronization mechanisms, e.g., iterative adap-
tive inverse filtering – IAIF (Alku, 1991; Raitio
et al., 2011), and pitch synchronous iterative
adaptive inverse filtering – PSIAIF (Alku, 1992).

In addition to inverse filtering, there are also paramet-
ric methods (Quereshi, Syed, 2011) and algorithms
based on a mixed-phase model of the speech signal.
They assume that the impulse response of the vocal
tract and the part of the excitation corresponding to
the return phase are treated as causal components,
while the part of the excitation representing the open-
ing phase in the vocal cord cycle is treated as a non-
causal component. Separation of these components can
be done using the zeros of the Z-transform (ZZT) algo-
rithm (Bozkurt et al., 2005) or the complex cepstrum
decomposition (CCD) algorithm (Drugman et al.,
2009). In the present work, as starting point in our
research, the IAIF algorithm was used. The elimina-
tion of excitation influence are performed for each
of the speech frames containing vowels. The HFCC
parametrization is then performed, resulting in the
cepstral coefficient vectors c(t,m), that is

c(t,m) =
J

∑
j=1

Yl(t, j)cos(m(j −
1

2
)
π

J
) , m = 1, ...,M,

(2)
where Yl(t, j) is the logarithm of the ERB-scaled
spectrum Y (t, j) obtained from the amplitude spec-
trum S(t, f) under correction multiplied by a bank of
Mel filters whose widths were determined according
to the equivalent rectangular bandwidth (ERB) scale,
t is the frame number, j is the Mel band number, J is
the number of Mel bands, and M is the number of
HFCC coefficients. The use of a Mel scale of frequen-
cies and a nonlinear function on the values of the spec-
trum allows a better representation of the performance
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of the human auditory system by taking into account
the nonlinearity of the perception of frequency and
intensity of sound. The expected purpose of the am-
plitude spectrum correction was to narrow the GMM
distributions and reduce classification errors. The ef-
fectiveness of the proposed solution was evaluated on
the basis of the distance between individual GMM dis-
tributions and FER measure before and after the cor-
rection.

2. The influence of fundamental frequency
on HFCC coefficients

Figures 1 shows the amplitude spectra of consecu-
tive frames of phoneme a selected from longer utter-
ances by the same speaker, recorded under identical
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Fig. 1. Amplitude spectra of consecutive frames of phoneme a with applied ERB-scale filterbank; the fundamental frequency
is about 130 Hz (a) and about 195 Hz (b).
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Fig. 2. Spectra of consecutive ERB-scaled frames of the phoneme a; the fundamental frequency is about 130 Hz (a)
and about 195 Hz (b).

conditions, differing in fundamental frequencies (fre-
quency f0), e.g., for Fig. 1a this is f0 ≈ 130 Hz, and for
Fig. 1b – f0 ≈ 195 Hz.
The main difference between these spectra is in the

other positions of the local maxima, which are multi-
ples of the frequency f0. Furthermore due to the pres-
ence of ripples, the formants are not clearly visible,
although their frequencies are approximately: 800 Hz,
1.3 kHz, 2.4 kHz, and 4.0 kHz. In these figures, filters
with centre frequencies corresponding to the Mel scale
(as in the HFCC parametrization) are also indicated by
dotted lines. The consequence of the different positions
of the local maxima of the spectrum is the different
energy per successive Mel filter band, which leads to
different ERB-scaled spectra at different f0. This can
be observed on the plots presented in Fig. 2. Especially
large differences are found for the fourth band.
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Fig. 3. HFCC coefficients of the phoneme a frames; the fundamental frequency is about 130 Hz (a) and about 195 Hz (b).

In turn, Fig. 3 shows plots of HFCC coefficient
values for the amplitude spectra presented in Fig. 1.
Significant differences can be observed in these figures
and the presented examples show the strong influence
of the frequency f0 on the final values of the HFCC
coefficients.

3. Glottal excitation signal estimation,
correction implementation

In consequence of the experiments analyzed in de-
tail in Sec. 2, the aim of the proposed method is to
minimize the effect of excitation signal periodicity on
the values of the HFCC coefficients. Theoretically, the
excitation signal, for each voiced frame, can be deter-
mined using the IAIF (Raitio, 2011; Drugman et al.,
2011), i.e.:

x(n) = s(n) ⋆ (h(n) ⋆ r(n))
−1

, (3)

where (.)−1 denotes the inverse in the convolution
sense. Introducing w(n) = x(n)⋆ r(n), i.e., as the con-
volution of the excitation signal x(n) and the function
r(n) describing the lips radiation, the quantity w(n)
can be determined from the equation

w̃(n) = s(n) ⋆ h̃(n)−1. (4)

Equation (4) presents a case of the blind deconvolu-
tion problem. This operation requires the estimation
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Fig. 4. Block diagram of the applied inverse filtering algorithm (PS-IAIF).

of the h(n) and then the determination of its inverse in
the convolution sense. In the considered situation, the
problem of stability can arise, but, this property is
guaranteed if the h(n) is a minimum phase or an algo-
rithm, enforcing this minimum phase property, is used.
The most popular solution in the case is mean-square
filtering (Quatieri, 2002) and is used in the applied
pitch synchronized IAIF (PS-IAIF) filtering.
The PS-IAIF block diagram, modified for the pur-

poses of the work, is presented in Fig. 4. In the
preprocessing step the estimator YIN (Cheveigné,
Kawahara, 2002) for the fundamental frequency f0 of
the input voiced speech is calculated. This algorithm
is widely applied in the literature and is known as an
effective solution. An input signal s(n) is partitioned,
based on the YIN estimator, into frames with length
equal to current values of the fundamental period
T0 = 1/f0. Next, for each input frame, in the first step
of PS-IAIF, a preliminary estimator of the filter is
determined that models the combination of glottal
excitation and the lip radiation using an LPC filter
of the order the 1. In the second step, after compen-
sating for the influence of G1(z) on the signal s(n),
a preliminary estimator Hv1(z) of the vocal tract
is determined with LPC filter of the order 10. The
resulting estimator Hv1(z), in the third step, is used to
filter out the influence of the vocal tract from the sig-
nal s(n). In this step, the influence of the lip emission
properties is also eliminated by integration, and a more
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accurate parametric model G2(z) is determined with
the LPC filter of the order 8. In the fourth step, using
G2(z), by means of inverse filtering, integration, and
LPC analysis, the parameters of the Hv2(z) model of
the vocal tract of the order 8 are determined. Given
Hv2(z), the frequency domain transfer function is of
the form

Hv2(f) =
1

1 −
7

∑
p=1

ape−j2πfp/fs
. (5)

The result of this operation is used to determine the
HFCC coefficients after compensating for the influ-
ence of the glottal excitation (the HFCCa1 algorithm).
Since the phase of the signal spectrum is not taken into
account in the HFCC parametrization, we assume here
that modelling using the LPC techique will yield min-
imum phase property of all elements of Eq. (1).

4. Correction quality measures

In order to evaluate the effectiveness of the pro-
posed methods of modifying the HFCC parametriza-
tion, numerical tests were carried out on Polish speech
vowels occurring in the recording database described in
Subsec. 5.1. Performing experiments required the prior
development of acoustic models of these vowels in the
form of GMM probability distributions, two measures
were used to evaluate the effectiveness of the compen-
sation:

1) the Kullback–Leibler distance between the proba-
bility distributions (Kullback, 1968) – the KL(⋅)
measure;

2) the single frame error recognition – the FER mea-
sure (Makowski, 2011).

4.1. Probabilistic acoustic model of phonemes

The acoustic GMMmodels used in the frame recog-
nition process are a mixture of K = 7 multidimen-
sional normal probability distributions with a diago-
nal covariance matrices Σp,i determined based on the
expectation-maximization (EM) algorithm (Demp-
ster et al., 1977), i.e.:

pf(o) =
K

∑
i=1

wfiN (o,mf,i,Σf,i), (6)

where

N (o,mf,i,Σf,i) = Π
N
n=1

1
√
2πσf,i,n

e
− 1

2σ2
f,i,n

[on−mf,i,n]2
.

(7)

4.2. Distances between GMM distributions

In general, a typical measure to calculate the dis-
tance between two probability density distributions

ph(o) and pg(o) for a N -dimensional vector of random
variables o is the Kullback–Leibler divergence defined
as follows (Kullback, 1968):

KL(ph ∥ pq) = ∫
O

ph(o) log(
ph(o)
pg(o)

)do. (8)

Unfortunately, for the case of distributions represented
by a mixture of Gaussian GMM distributions of the
form

ph(o) =
K

∑
i=1

wh,iN (o,mh,i,Σh,i) =
K

∑
i=1

wh,iph,i(o),

pg(o) =
K

∑
i=1

wg,iN (o,mg,i,Σg,i) =
K

∑
i=1

wg,ipg,i(o),

(9)

where mh,i and mg,i are the mean value vectors and
Σh,i and Σg,i the autocovariance matrices of the com-
ponents of the Gaussian distributions in the mixtures,
there is no closed form formula of the KL(⋅) measure
determination. However, we can use a deterministic ap-
proximation of Eq. (8) based on the unscented trans-
form (UT) transformation (Julier, Uhlmann, 2004).
Under the assumption that the distributions ph(o) and
pg(o) are of the GMM form (Eq. (9)) with diago-
nal covariance matrices, i.e., Σh,i = diag{σ2

h,i,k} and
Σg,i = diag{σ2

g,i,k} for k = 1,2, ...,N , we can write that

KL(ph ∥ pq) = ∫
O

ph(o) log(
ph(o)
pg(o)

)do

= E
ph

[log ph(o)] − E
ph

[log pg(o)]

=
K

∑
i=1

wh,i E
ph,i

[log ph(o)]

−
K

∑
i=1

wh,i E
ph,i

[log pg(o)]. (10)

According to the UT method, for each of the
K component distributions of the GMM mixture
ph,i(o) = N (o,mh,i,Σh,i) with diagonal matrices
Σh,i = diag{σ2

h,i,k}, we generate a set of 2N “sigma”
points of the form

oi,k =mh,i −
√

Nσ2
h,i,kek,

oi,k+N =mh,i +
√

Nσ2
h,i,kek,

(11)

where ek for k = 1,2, ...,N are basis vectors in the N
dimensional Cartesian coordinate system and we deter-
mine the approximation of the integral E

ph,i

[log pg(o)]

based on the formula (Goldberger, Aronowitz,
2005)

E
ph,i

[log pg(o)] = ∫
O

ph,i(o) log pg(o)do

≈
1

2N

2N

∑
k=1

log pg(oi,k). (12)



64 Archives of Acoustics – Volume 50, Number 1, 2025

We include all the partial results of the calculations
into Eq. (10) and obtain the approximation of the
distance value KL(⋅) between the considered distribu-
tions. To satisfy the symmetry property of the distance
measure KL(⋅) between the GMM distributions pg(o)
and ph(o), the final form

d(pg, ph) =
1

2
(KL(ph ∥ pq) +KL(pg ∥ ph)) (13)

was applied in numerical experiments.

4.3. Frame error rate

The frame error rate (FER) is typically used to
evaluate the quality of speech recognition at the indi-
vidual frame level and is defined as

m =
Terr
T
⋅ 100 %, (14)

where T is the number of all frames to be recognised
and Terr is the number of frames incorrectly recognised.

5. Correction results

5.1. Speech recordings

The set of recordings that constitute the database
for the experiments consists of 36 male adult voices
recorded in different Polish cities. For each speaker,
150 words of Polish were recorded and speech frag-
ments containing vowels from preliminary chosen
43 words were used in the experiment. The sampling
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Fig. 5. Example results of the HFCCa1 algorithm for three consecutive frames of the phoneme a: a) moduli of the
preliminary estimator G1(f); b) transfer function moduli of the preliminary estimator Hv1(f); c) moduli of the estimator
G2(f); d) transfer function moduli of the estimator Hv2(f); e) amplitude spectra of the signal frames; f) amplitude spectra

of the frames after correction.

rate of the signals was 12 kHz. The results obtained
from numerical experiments are for noisy signals with
a signal-to-noise ratio of 35 dB. All of these recordings
were manually segmented and labelled, and the pho-
netic unit in the labelling process was the phoneme.
The frame length was 30 ms with the frame shift
10 ms and the number of cepstral coefficients was
N = 14.

5.2. Examples of algorithm results

The section presents example results of the
HFCCa1 algorithm for three consecutive frames of the
a phoneme, whose statistics are presented in Figs. 1–3.
Figure 5 presents successively:

a) the magnitude of the preliminary estimator
G1(f);

b) the magnitude of the transfer function of the pre-
liminary estimator Hv1(f);

c) the magnitude of the estimator G2(f);
d) the magnitude of a transfer function of the esti-
mator Hv2(f);

e) the amplitude spectra of the signal frames;
f) the amplitude spectra of the frames after correc-
tion.

The cepstral coefficients in the HFCCa1 method
are calculated based on the results, examples of which
are presented in Fig. 5d. Comparison of plots from
Figs. 5d and 5e shows the effectiveness of the pro-
posed algorithms to eliminate ripples caused by the
quasiperiodicity of the glottal excitation.
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5.3. Global results of compensation quality assessment

In Fig. 6, in the form of a table, the KL differences
after and before correction between the GMM distri-
butions of the six Polish vowels are presented. Fur-
thermore, the red colour indicates a decrease in the
distance after correction and the green colour an in-
crease.

i

i

y

y

e

e

a

a

o

o

u

u

Fig. 6. Differences in KLD distances after and before cor-
rection between the six vowels of Polish speech. The red
colour indicates a decrease in distance and the green colour

an increase.

It is easily observed that in most cases of compar-
isons an increase in these distances is observed, and the
differences are largest for the phonemes i and u. Simul-
taneously, significant decreases in distance are noticed
between the phonemes y and a. Presenting the results
more synthetically, by summing the distances between
a given GMM distribution and the other distributions,
i.e., determining the values

Df =
F

∑
i=1

d(pf , pi) (15)

we obtain global KLD distances for individual pho-
nemes before and after correction. These measures are
presented in Fig. 7, where it can be seen that an in-
crease in KLD distances occurred for all vowels.

Phoneme
i y e a o u

Before correction
After correction

Fig. 7. Global KLD distances for vowels.

In turn, the results of the FER measure in one-to-
one recognition for Polish speech vowels are presented

in the form of a table in Fig. 8. The upper values in
the table elements indicate the FER before correction
and the lower values after correction. Furthermore, the
green colour indicates situations for which there was
a decrease in FER, and the red colour indicates an
increase.

i y e a o u

i

y

e

a

o

u

Fig. 8. FER values for Polish speech vowels.

The results presented in Fig. 8 imply that in most
cases there was a reduction in single frame recognition
errors. On the other hand, Fig. 9 shows plots of the
FER sum following the table rows of Fig. 8.

Phoneme

Frame error rate

i y e a o u

Before correction
After correction

Fig. 9. Global FER values for Polish speech vowels.

This form of obtained data analysis shown in Fig. 9
also confirms that the proposed correction results in
a reduction in FER errors.

6. Conclusions

The modification of the HFCC parametrization
proposed in this paper meets the predicted expecta-
tions. Through estimation and inverse filtering it is
possible to minimise the influence of the quasiperiod-
icity of the source of voiced speech, in the function
of the amplitude spectrum ∣Hv2(f)∣ used to determine
the HFCC coefficients. Consequently, the area of fluc-
tuations of the feature vector values is reduced. This
form of the conclusion is confirmed by the obtained
results of the Kullback–Leibler distances between the
GMM distributions of Polish speech vowels, which are
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larger after the correction. Simultaneously, the classi-
fication errors of individual frames evaluated by the
frame-error-rate measure are also reduced. As a result,
the proposed modification of the HFCC parametri-
zation should result in an increase in the efficiency of
the complete ASR system. Finally, it should be kept in
mind that, in general, the variability of the components
of the feature vector, in addition to the considered in-
fluence of the quasiperiodicity of the glottal excitation,
is affected by a number of other factors such as inter-
and intrapersonal variability, contextual variability, in-
fluence of recording conditions, etc.
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