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The empirical mode decomposition (EMD) algorithm is widely used as an adaptive time-frequency analysis
method to decompose nonlinear and non-stationary signals into sets of intrinsic mode functions (IMFs). In the
traditional EMD, the lower and upper envelopes should interpolate the minimum and maximum points of
the signal, respectively. In this paper, an improved EMD method is proposed based on the new interpolation
points, which are special inflection points (SIPn) of the signal. These points are identified in the signal and
its first (n − 1) derivatives and are considered as auxiliary interpolation points in addition to the extrema.
Therefore, the upper and lower envelopes should not only pass through the extrema but also these SIPn sets of
points. By adding each set of SIPi (i = 1,2, ..., n) to the interpolation points, the frequency resolution of EMD
is improved to a certain extent. The effectiveness of the proposed SIPn-EMD is validated by the decomposition
of synthetic and experimental bearing vibration signals.
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1. Introduction

One of the most powerful methods in dealing with
nonlinear and non-stationary time series is the Hilbert–
Huang transform (HHT), introduced by Huang et al.
(1998). The HHT procedure consists of two parts.
At the first step, the empirical mode decomposition
(EMD) process adaptively decomposes a complicated
multi-component signal into sets of mono-component
intrinsic mode functions (IMFs), which can admit well-
behaved Hilbert transform. In the second step, the
Hilbert spectral analysis (HSA) is performed on each
IMF and the instantaneous amplitude and frequency
of all IMFs are computed.

The major deficiency of the traditional EMD is the
mode mixing phenomenon, which is defined as the ap-

pearance of signals at very different scales in one IMF
or the distribution of a specific scale signal among dif-
ferent IMFs. Some researchers have proposed creative
approaches to solve this problem, including ensemble
empirical mode decomposition (EEMD) (Wu, Huang,
2009), complete ensemble empirical mode decomposi-
tion (CEEMD) (Yeh et al., 2010), complete ensem-
ble empirical mode decomposition with adaptive noise
(CEEMDAN) (Torres et al., 2011), ensemble noise-re-
constructed EMD method (ENEMD) (Yuan et al.,
2013), high-fidelity noise-reconstructed empirical mode
decomposition (HNEMD) (Yuan et al., 2022), EMD
manifold (Wang et al., 2020), and other.

EMD is an iterative process with interpolation as
its central part. At each step of the iteration, all local
maxima and minima of the signal are obtained and
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then interpolated to construct the envelope curves.
Although the above-mentioned methods have shown
great improvement in the mode mixing problem, uti-
lizing maxima and minima as the interpolation points
remains an unchanged rule among them. Little re-
search has been so far carried out on utilizing other
interpolation points to construct envelope curves in
the EMD process, so further studies are still needed
in this area. Since there is no difference between the
traditional EMD, EEMD, and CEEMD methods in
terms of the selection of extrema as the interpolation
points, this paper only focuses on the traditional EMD
method. Furthermore, the traditional EMD has an-
other advantage, i.e., the main signal is not repeatedly
affected by different random noises.

By using the genetic algorithm, Kopsinis and
McLaughlin (2007; 2008) showed that the perfor-
mance of EMD will be improved if envelope curves
pass through the extrema of the highest instantaneous
frequency component of the signal instead of the ex-
trema of the signal itself. Xu et al. (2010) presented
a piecewise-defined quadratic interpolation in which
the position information of minimum points (maxi-
mum points) is used in the construction of the upper
envelope (lower envelope). Hence the upper envelope
(lower envelope) not only passes through the maxima
(minima) but also through the intersection points of
the lines connecting the maxima (minima) with the ver-
tical lines going through the minima (maxima). The
extrema detection method is an important matter, es-
pecially in the presence of noise, so Bouchikhi and
Boudraa (2012) introduced a new version of EMD,
which is more robust to noise since the envelopes of the
signal are constructed using smoothing B-splines in-
stead of exact interpolation methods. Chu et al. (2012)
proposed an envelope curve that interpolates the main
and pseudo extrema by the quartic Hermitian poly-
nomial interpolation method. Singh et al. (2014) in-
troduced an EMD algorithm based on pseudo extrema
and nonpolynomial spline interpolation. Instead of cal-
culating the mean of the upper and lower envelopes,
Wang and Li (2013) proposed to calculate the mean
values directly by interpolating the midpoints of line
segments, connecting each maximum (minimum) to its
two neighboring minima (maxima). Li et al. (2015a)
used a similar method but replaced the cubic spline in-
terpolation with the cubic B-spline. Zhao et al. (2017)
put forward adjustable cubic trigonometric cardinal
spline interpolation for the direct construction of the
mean curve. Efforts have also been made to define
a suitable envelope for the EMD method. For instance,
Yang et al. (2014) presented a new model of the en-
velope by using convex constraint optimization.

In this paper, we introduce a special set of inflec-
tion points as the auxiliary interpolation points for the
construction of the envelope curves. These special in-
flection points (SIPs), as well as how to distinguish

them from other inflection points, will be discussed
later in Sec. 3. The popular cubic spline is applied
as the interpolation function in this paper. The cu-
bic spline is a continuous function and has continuous
first and second derivatives. Two boundary conditions
should also be met at the left and right sides of the sig-
nal. We utilize here the not-a-knot boundary condition,
which requires the continuity of the third derivative at
the second and second to last points.

The rest of this paper is organized as follows: the
main procedure and adjustable parameters of the tra-
ditional EMD algorithm are explained in Sec. 2. Sec-
tions 3 and 4 describe the theoretical aspects of our
new method. In Sec. 3, the SIPn points of a signal
are defined and the differences between the traditional
and new envelopes are shown. The additional required
steps for the proposed EMD method are described in
Sec. 4. In Sec. 5, the performance of the proposed
EMD method is verified for numerous two-tone sig-
nals and a real vibration signal of a rolling element
bearing and the decomposition results are compared
with the traditional EMD. Finally, a brief conclusion
is provided in Sec. 6.

2. Empirical mode decomposition (EMD)
algorithm

The EMD algorithm decomposes a signal into sev-
eral IMFs and a final residual, which is the trend of the
signal. The extraction process for each IMF is called
the sifting process. The IMFs are expected to simul-
taneously meet the following two conditions (Huang
et al. 1998): 1) in the whole data set, the number of
extrema and the number of zero crossings should be
equal or differ at most by one; 2) the mean value of
the envelope defined by the local maxima (upper en-
velope) and the envelope defined by the local minima
(lower envelope) should be approximately zero, at any
point. In practice, the definition of the term “zero” in
the second condition should be defined more clearly
and it is better to evaluate the amplitude of the mean
compared to the amplitude of the extracted mode. The
traditional EMD steps are as follows:

1) Initialize r0 = y, where y is the main signal.

2) Initialize i = 1 and k = 1, where i counts the num-
ber of IMFs, and k counts the number of sifting
iterations for each IMF.

3) Set hi(k−1) = r(i−1).

4) Identify all local maxima of hi(k−1) and interpo-
late them by cubic spline to construct the upper
envelope. Similarly, construct the lower envelope
by interpolating minima.

5) Calculate the meanmi(k−1) of the upper and lower
envelopes and subtract it from hi(k−1) to obtain
hik = hi(k−1) −mi(k−1).
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6) If hik satisfies the stop-sifting criteria, set IMFi =
hik; else set k = k + 1 and go to step (4).

7) Set ri = r(i−1) − IMFi.
8) If the number of extrema of ri is less than three or

the desired number of IMFs is extracted, the de-
composition process is finished. Otherwise, first
set i = i + 1, k = 1, and then go to step (3).

Therefore, the given signal y(t) is decomposed into sev-
eral IMFs and a final residual rN as follows:

y(t) =
N

∑
i=1

IMFi (t) + rN(t). (1)

The EMD method is an adjustable algorithm and
can be improved by several approaches, such as opti-
mizing the method of interpolation, adjusting the stop-
ping criteria for the sifting process, changing the end
conditions of the signal, and selecting new sets of in-
terpolation points instead of signal’s extrema.

Various interpolation methods have been proposed
so far. The well-known cubic spline is the first and most
widely used one (Huang et al., 1998), but other meth-
ods such as B-splines (Bouchikhi, Boudraa, 2012;
Chen et al., 2006; Wang, Li, 2013), cubic and quar-
tic Hermite (Chu et al., 2012; Li et al., 2015b; Guo,
Deng, 2017), Akima interpolation (Egambaram
et al., 2016), power function (Qin, Zhong, 2006), ra-
tional splines (Pegram et al., 2008), cubic trigonomet-
ric cardinal spline (Zhao et al., 2017), cubic trigono-
metric B-spline (Li et al., 2018) and nonpolynomial
spline (Singh et al., 2014) have also been employed.

To generate physically meaningful IMFs, an accu-
rate stopping criterion should be defined. At least four
stopping criteria for the sifting process have been intro-
duced so far (Huang et al., 1998; 2003; Wu, Huang,
2009; Rilling et al., 2003). In this paper, the criterion
introduced by Rilling et al. (2003) is used. They sub-
stituted the second condition of the IMF for a more
practical one by defining the relative mean as follows:

σ(t) = ∣
envmax(t) + envmin(t)

envmax(t) − envmin(t)
∣ , (2)

where envmax and envmin are the upper and lower en-
velopes, respectively and σ(t) is the ratio of the mean
of the upper and lower envelopes to the half distan-
ce of them. The sifting is iterated until (1) σ(t) < θ1

for a predetermined fraction α of the signal and
(2) σ(t) < θ2 for the total length of the signal. Common
values for the thresholds and fraction are θ1 = 0.01,
θ2 = 0.1, and α = 0.99. The first condition guarantees
a globally small fluctuation of the mean because the
relative mean becomes smaller than 0.01 for at least
99% of the signal. The second condition prevents lo-
cally large deviation of the mean because there is no
part of the signal in which the relative mean exceeds
the value 0.1.

The endpoints of the signal are not necessarily
its extrema. Since the envelope curves should pass
through the extrema, some boundary extrema should
be extended beyond the existing data range. In this pa-
per, we use the reflection method proposed by Rilling
et al. (2003). Without mirroring, considerable distor-
tions at two ends of IMFs may emerge. This phe-
nomenon is called the end effect of the EMD method
(Lei et al., 2013).

3. Special inflection points (SIP)

The EMD algorithm considers a signal as the su-
perposition of some fast and some slow oscillating
parts. After extracting the fastest oscillating part, the
algorithm considers the remainder as a new signal.
This process continues until just the slowest oscillat-
ing part remains. Oscillation, in signal processing ter-
minology, refers to a repeated variation of a measured
quantity. Repetition immediately brings into mind the
concept of extrema. On this basis, the EMD algorithm
first detects the extrema and then passes the upper and
lower envelopes just through the detected extrema. By
subtracting the mean of the lower and upper envelopes,
the EMD indeed separates the slower detectable os-
cillating parts from the signal, step by step. The ap-
pearance of extrema plays a very important role in the
EMD method. Some researchers believe that EMD can
only extract a component if it can detect extrema that
are related to it (Rilling, Flandrin, 2007). How-
ever, the origins of some oscillations are difficult to
trace with the extrema alone. In these cases, the in-
flection points can be used as auxiliary points along
with extrema to detect the oscillations. To investigate
this claim, consider a simple composite signal, which
consists of linear and harmonic components as follows:

y(t) = αt + cos (2πt) , (3)

where α is an arbitrary constant. The time of occur-
rence of the extrema can be calculated by:

tE =
1

2π
sin−1

(
α

2π
) + n, n = 0,1,2, ... . (4)

If α ≤ 2π, the signal can be easily decomposed into
its two components, but if α > 2π, EMD cannot decom-
pose the signal because y is a monotonically increasing
function and it does not have any extrema. Although
there is no fundamental difference between the two
cases with α = (2π)+ and α = (2π)−, the traditional
EMD algorithm treats them entirely differently. This is
because of the insistence on using the first derivative of
the signal (extremum points) in the traditional EMD
and neglecting higher-order derivatives (for example,
inflection points). Figure 1 shows this signal for eight
different values of α. The minimum, maximum, and
inflection points in the time range from 1 to 1.5 s are
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Fig. 1. Convergence of the maximum and minimum points
in the signal y(t) = αt + cos(2πt) with increasing α.

demonstrated by the black circles, white circles, and
white rectangles, respectively. As α increases, the max-
imum and minimum points converge on each other and
meet at the inflection point. In the uppermost curve,
where α equals 7, there are no extrema, but from the
oscillation point of view, the signal behaves similarly
to the other cases. A closer look at Fig. 1 reveals that
the inflection point of the uppermost curve differs from
those of the other curves because it is not surrounded
by two extrema. This leads us to the concept that in
the local absence of extrema, the oscillatory motion can
still be realized by the inflection points. However, only
finite sets of inflection points should be determined as
auxiliary points along with extrema to construct the
envelope curves. By considering the arrangement pat-
tern of extrema and inflection points, these special in-
flection points are identified. The first SIP1 of a signal
can be defined as follows.

An inflection point of a signal is its SIP1 if, by
moving away from that point toward either the left or
right directions, we first reach another inflection point
before reaching an extremum. We can generalize this
definition to SIPn in the same fashion. The SIPn of
a signal is the SIP1 of the (n − 1)-th derivative of the
original signal.

For example, in a simple sine function, after each
maximum, the signal starts to decrease and is forced
to change its curvature sign before reaching the mini-
mum point. Hence, in the sine function, every inflection
point is always located between two extrema and thus
there is not any SIPn in the simple sine function. There
should be more than two inflection points between two
successive extrema to generate SIP1. To demonstrate
SIPn graphically, consider a two-component signal in
the form of

y(t) = cos (2πt) + ar cos (2πfrt) , (5)

where ar is the amplitude ratio and fr is the fre-
quency ratio of the two components. We have plot-
ted these signals and their first and second derivatives
for ar = 2 and ar = 4 in the left and right columns
of Fig. 2, respectively. The frequency ratio is consid-
ered as fr = 0.65 for both of them. These signals are
two simple numerical examples to clarify the graph-
ical interpretation of SIP1 and SIP2. By determining
the location of extrema and inflection points of the first
signal, i.e., ar = 2, one SIP1 is detected at t ≅ 1.357 and

y, y, y
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Fig. 2. Appearance of SIP1 and SIP2 points in two simple
signals. In all curves, red, blue, and black circles represent
extrema, inflection points, and SIPn, respectively. Top row:
the two-component signal with fr = 0.65 and ar = 2 in the
left and with fr = 0.65 and ar = 4 in the right column with
their first and second derivatives. Bottom row: the tradi-
tional EMD envelopes (dotted line), SIP1-EMD envelopes
in the left (dashed line), and SIP2-EMD envelopes in the

right column (dashed line).

shown in the left top diagram. It is a SIP1 because it
is surrounded by two other inflection points (blue cir-
cles) and not two extrema (red circles). For the second
signal, i.e., ar = 4, the extrema and inflection points
of its first derivative are determined, which leads to
detecting one SIP2 at t ≅ 1.4, shown in the right top
diagram. It is a SIP2 of the main signal because it is
a SIP1 of the first derivative of the signal. It should
be noted that the frequency and amplitude ratios of
these signals are selected in such a way that the first
signal has just one SIP1 and the second has just one
SIP2, but in general, there may be any number of SIPn
points in an arbitrary signal.

The bottom row of Fig. 2 compares the envelopes of
the traditional EMD with those of the SIPn-EMD.
In the SIPn-EMD method, both the upper and lower
envelopes should pass through all the SIPn points. It
may seem a little unreasonable that both envelopes
pass through a common point. However, Fig. 1 shows
how two successive minimum and maximum points
converge to one SIP1, so we can suppose one SIP1

as two infinitely close maximum and minimum points
that coincide with each other.

The performance of the SIP1-EMD and the tradi-
tional EMD in separating the first component of the
previous two-component signal with ar = 2 and fr =

0.65 has been shown in the left and right column dia-
grams of Fig. 3, respectively. To provide a better com-
parison, the main signal (cos (2πt) + 2 cos (2π × 0.65t))
and the higher frequency component (cos (2πt)) have
been plotted in all diagrams with black continuous
and red dotted lines. The output of the decomposi-
tion (h1k) after the first, tenth, and hundredth sifting
iterations (k = 1, 10, 100) has been drawn with the
blue lines in the first, second, and third rows, respec-
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Fig. 3. Performance comparison of the SIP1-EMD (left col-
umn) and the traditional EMD (right column) methods
for the case y = cos (2πt) + 2 cos (2π × 0.65t). In all dia-
grams, the continuous and dashed black lines represent the
main signal and its envelopes, the continuous and dashed
blue lines represent h1k and its envelopes and dotted red li-
nes represent the first component (cos (2πt)). Black and
blue circles demonstrate extrema in all curves, and the SIP1

point is shown by one white rectangle. The top, middle, and
bottom rows are related to the first, tenth, and hundredth

sifting iterations (k = 1, 10, and 100), respectively.

tively. The main signal has one SIP1 at t ≅ 1.357, which
is demonstrated with a white rectangle in the left col-
umn, top row diagram. Both upper and lower envelopes
pass through it and immediately after one sifting iter-
ation, one maximum and one minimum point are gen-
erated in h11 before and after the SIP1 at t ≅ 1.242
and t ≅ 1.383. These two newly generated extrema
help the h1k get closer and closer to the first com-
ponent. In the third row of the left column, after 100
iterations, the h1−100 almost coincides with the first
component, which is the desired result. As can be seen
in the right column, the traditional EMD is completely
unable to decompose this signal. As the number of sift-
ing iterations increases, instead of approaching the first
component, h1k moves away from it. Since the upper
and lower envelopes of h1−100 in the right column are
two parallel horizontal lines, there would be no point
in continuing the sifting process.

4. SIPn-EMD method

The main difference between our proposed EMD
method in this paper and the traditional EMD is in
step (4) of the previously mentioned steps. We develop
the SIPn-EMD method by extending step (4) of the
traditional EMD as:

a) Identify all local maxima and local minima of
hi(k−1), similar to the traditional EMD.

b) Take the first derivative of hi(k−1) and find all lo-
cal minima and local maxima of ḣi(k−1). These
points are the inflection points of hi(k−1) and the
SIPs of hi(k−1) should be selected from them. This
set of points will be referred to as SIP1.

c) Take the second derivative of hi(k−1) and find all

local minima and local maxima of ḧi(k−1). These
points are the inflection points of ḣi(k−1) and the
SIPs of ḣi(k−1) should be selected from them. This
set of points will be referred to as SIP2.

d) Repeat this process n times. In the n-th step, take
the nth derivative of hi(k−1) and find all local min-

ima and local maxima of dnhi(k−1)

dtn . These points
are the inflection points of the (n − 1)-th deriva-
tive of hi(k−1) and the SIPs should be selected
from them. This set of points will be referred to
as SIPn.

e) Pass the upper envelope through the maxima and
SIP1, SIP2, ..., SIPn. Similarly, the lower envelope
should pass through the minima and SIP1, SIP2,
..., SIPn. Go to step (5) of the traditional EMD.

Theoretically, the SIPn-EMD method can be ex-
tended to n-th derivatives and each new set of SIPi
(i = 1,2, ..., n) should improve the performance of this
method. But since differentiation is a noise amplifying
process, in practice, after some order of derivatives,
the disadvantages of the additive noise outweigh the
advantages of new SIPn points. Hence, in this paper,
we have restricted the procedure to extract SIP1 and
SIP2 for the synthetic signals and SIP1 for the real-
world signals. When extracting the SIP2 at step (c),
we use a simple low pass filter in order to eliminate
the additive noise induced by an extra differentiation
made in this step.

5. Practical application

In this section, the aim is to compare the ability of
the traditional and proposed EMD method to decom-
pose some synthetic and real signals, including a gen-
eral form of two-tone signals and a vibration signal of
a rolling bearing. All calculations have been performed
using MATLAB software.

5.1. Two-tone signals

We rewrite the general form of a two-tone signal
here again as:

y (t) = C1 (t) +C2 (t) = cos (2πt) + ar cos (2πfrt), (6)

where t = [0 ∶ 0.001 ∶ 15] is the time vector, ar is the
amplitude ratio, fr is the frequency ratio (0 < fr < 1),
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and C1 and C2 are two components of the signal. Be-
cause the frequency ratio is limited to change in the
range from zero to one, C1 and C2 are the higher fre-
quency (HF) and lower frequency (LF) components,
respectively. The performance of the traditional EMD
algorithm on the decomposition of this signal has been
previously studied (Rilling et al., 2003; Rilling,
Flandrin, 2007).

At first sight, it may be expected that the first and
second IMFs should be matched with the HF and LF
components, respectively. However, this assumption
will not be true for a wide range of frequency and am-
plitude ratios. In practice, depending on the adjustable
parameters of the EMD, one, two, or more IMFs may
be extracted. If only one IMF is obtained, it means that
the EMD method cannot decompose the signal, and
both components are considered as a whole. This is not
always a weak point because, in the EMD algorithm,
there is a greater emphasis on extracting zero-mean
components versus extracting sinusoidal functions. For
example, if ar = 1 and fr ≅ 1, the superposition of two
close tones may be interpreted as a zero-mean ampli-
tude modulation signal, which is not a false interpre-
tation, and in some cases (such as beat phenomenon),
may even make more sense (Rilling, Flandrin, 2007;
Deering, Kaiser, 2005). If two IMFs are extracted,
the decomposition has probably been well conducted,
and the first and second IMFs are related to the HF and
LF components, respectively. But there is still a pos-
sibility of mode mixing. If more than two IMFs are ob-
tained, mode mixing will certainly occur, and at least
one, if not all, of the extracted IMFs, will deviate from
the signal’s components. So, even for this simple signal,
several possibilities may arise after the EMD analysis.
To eliminate the ambiguity caused by the number of
extracted modes, only the first IMF will be extracted
here for a two-tone signal. The tone separation error
(TSE) will be assessed based only on the first IMF ac-
cording to the following formula (Rilling, Flandrin,
2007):

TSE =
∥I1 −C1∥2

∥C2∥2

, (7)

where I1 is the first IMF and ∥.∥2 stands for the Eu-
clidean norm. In the case of perfect separation of the
two components, the first IMF matches the first com-
ponent thoroughly, so TSE becomes zero. On the other
hand, if the EMD method cannot detect the HF com-
ponent at all and no decomposition is possible, the first
IMF matches the main signal thoroughly, so TSE be-
comes one. It should be noted that, by the definition of
TSE, it is not limited to changes between zero and one.
However, it would not become much greater than one.
This claim is based on experience and there is not any
mathematical constraint on the upper value of TSE.

Figure 4 illustrates TSE values on the (ar−fr) plane
with more than 100 000 different signals. The white

and black areas present the minimum (zero) and max-
imum (a little more than one) errors, respectively. The
decomposition process of the top, middle and bottom
diagrams, has been simulated by the traditional EMD,
SIP1-EMD, and SIP2-EMD methods, respectively. For
all diagrams, 10 fixed sifting iterations are considered
stop-sifting criteria. Moreover, all steps of the EMD
method have been carried out in the time range from
0 to 15 s, but the values of TSE have been calculated
from 0 to 10 s, so relatively large end effect errors at
the right side of the signal vanished in the TSE calcu-
lations.

Error ≈ 0

Error ≈ 1
fr = 1

ar

0.5

0
10–2 10–1 100 101 102

fr = 1

ar

0.5

0
10–2 10–1 100 101 102

fr = 1

ar

0.5

0
10–2 10–1 100 101 102

Fig. 4. TSE values on the (ar − fr) plane with 10 fixed
number of sifting iterations and three border curves, plot-
ted by the continuous (arfr = 1), dashed (arf2

r = 1), and
dotted (arf3

r = 1) red lines. Top – traditional EMD; middle
– SIP1-EMD; bottom – SIP2-EMD.

The top diagram, which corresponds to the tradi-
tional EMD algorithm, has been previously presented
by Rilling and Flandrin (2007). We show it here
to compare it with diagrams of our proposed EMD
method. As can be seen, the EMD always performs well
at the beginning of the frequency ratio range (fr < 0.2)
and returns the main signal as the first IMF at the end
of the frequency ratio range (fr > 0.8). In fact, as
the LF component gets closer to the HF component
by increasing the frequency ratio, both IMFs start to
deviate from their corresponding components, and si-
multaneously, the first IMF commences to approach
the main signal. There is always a frequency ratio in
which the EMD behavior is changed and tends to give
back the main signal instead of the signal’s compo-
nents. This frequency ratio is referred to as the cut-
off frequency ratio and can be seen as a color change
from white (lower error region) to black (higher error
region). Generally, the larger cut-off frequency ratio
indicates a higher tone separation ability. For ar < 1,
the cut-off frequency ratio is almost independent of the
amplitude ratio and is near 0.67, but for ar > 1, it de-
creases with the amplitude ratio increasing. Although
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in this region, the cut-off frequency ratio has severe
fluctuations, Rilling and Flandrin (2007) proposed
two border curves that bound the cut-off frequency ra-
tio. These curves are arfr = 1 and arf2

r = 1, which are
plotted by the continuous and dashed red lines, re-
spectively. We also add another curve arf3

r = 1, which
is represented by the dotted red line.

The middle diagram illustrates the superiority of
the SIP1-EMD over the traditional EMD. While the
cut-off frequency ratio (the border between black and
white regions) of the traditional EMD lies between
curves of arfr = 1 and arf2

r = 1, it completely crosses
the arf2

r = 1 curve, applying the SIP1-EMD, so in the
middle diagram, the cut-off frequency ratio is located
between curves of arf2

r = 1 and arf3
r = 1. Similarly, the

SIP2-EMD leads the cut-off frequency ratio beyond
the curve arf3

r = 1 in the bottom diagram. Considering
that the horizontal axes of these diagrams are logarith-
mic, SIP1-EMD and SIP2-EMD methods significantly
increase the percentage of the white-colored area. If we
define the frequency resolution as the power of distin-
guishing between two adjacent spectral components,
the growth of the white-colored area by the SIP1-EMD
and SIP2-EMD methods can be interpreted as the im-
provement of the frequency resolution. It should be
noted again that Fig. 4 consists of 100 000 different
signals, so the improvements in the results are not ran-
dom.

To conduct an in-depth analysis of the impact of
SIP on EMD, we assign three different constant val-
ues to the frequency ratio (fr = 0.6, 0.65, and 0.7) and
investigate the TSE as a function of the amplitude ra-
tio. Abrupt change of the TSE value occurs in a specific
amplitude ratio. We define the n-th critical amplitude
ratio as:

ar,cn =
1

fnr
, n = 1,2,3, ... . (8)

Figure 5 shows that the SIP1-EMD and SIP2-EMD
extend the acceptable error range at least to [01/f2

r ]

and [01/f3
r ], respectively.

A question that should be answered here is whether
increasing the number of sifting iterations in the tra-
ditional EMD can always reduce the TSE. In other
words, could increasing the number of sifting itera-
tions substitute for SIP1-EMD and SIP2-EMD meth-
ods? To answer this question, three two-component sig-
nals with the same frequency ratio (fr = 0.65) and dif-
ferent amplitude ratios (ar = 2, 3, and 4) are selected
and their TSE are computed for different sifting itera-
tions.

Figure 6 represents the TSE in terms of the num-
ber of sifting iterations. In the first case (ar = 2), the
traditional EMD does not return an acceptable re-
sponse even after 10000 iterations, while both SIP1-
EMD and SIP2-EMD converge to low error just af-
ter 60 iterations. The coincidence of the SIP1-EMD
and SIP2-EMD curves in the top diagram comes from
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Fig. 5. TSE values as a function of ar for fr = 0.6 (red),
0.65 (black), and 0.7 (blue), with 100 fixed number of sift-
ing iterations. The critical amplitude ratios are plotted by
vertical dashed lines in each diagram. Top – TSE of the tra-
ditional EMD, the critical amplitude ratio is ar,c1 = 1/fr;
middle – TSE of the SIP1-EMD, the critical amplitude ra-
tio is ar,c2 = 1/f2

r ; bottom – TSE of the SIP2-EMD, the
critical amplitude ratio is ar,c3 = 1/f3

r .
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Fig. 6. TSE of three two-tone signals as a function of the
number of sifting iterations. Signals have the same fre-
quency ratio (fr = 0.65) but different amplitude ratios (top
diagram – ar = 2; middle diagram – ar = 3; bottom diagram
ar = 4). TSE values are calculated using the traditional
EMD (red), SIP1-EMD (black), and SIP2-EMD (blue).

the fact that in the first case, the signal has some
SIP1, but it does not have any SIP2, so the SIP2-EMD
gains no more benefits here. In the middle diagram
(ar = 3), the traditional EMD cannot decompose the
signal at all. The SIP1-EMD and SIP2-EMD methods
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converge to low error levels after 2500 and 70 sifting
iterations, respectively. The benefit of the SIP2-EMD,
in this case, is its lower computational cost. In the
third case (ar = 4), which is plotted in the bottom dia-
gram, neither the traditional EMD nor the SIP1-EMD
can decompose the signal, but SIP2-EMD separates
the signal’s components after 400 iterations. The ad-
vantage of the SIP2-EMD is more apparent here.

5.2. Vibration signal of a rolling bearing

Rolling element bearings are one of the most impor-
tant components of rotating machines, and their failure
may cause machinery breakdowns or safety hazards.
Among the existing bearing fault diagnosis methods,
vibration signal processing stands out for its accuracy,
applicability, and simplicity.

Using EMD (traditional or modified variants) as
the main decomposition method or along with other
methods for bearing fault diagnosis has been the sub-
ject of many studies in recent years (Lei et al., 2013;
Guo, Deng, 2017). Sun et al. (2021) presented a novel
bearing fault diagnosis on the basis of the EMD and
improved Chebyshev distance. Shu et al. (2022) used
modified CEEMDAN and the modified hierarchical
amplitude-aware permutation entropy (MHAAPE) to
decide whether the bearing was healthy and accurately
identify different fault states in the bearings. Wang
et al. (2022) studied a fault feature extraction method
of variable speed rolling bearings based on statistical
complexity measures (SCM). The SCM selects the op-
timal IMF component and evaluates an index for the
optimal response of stochastic resonance. Zheng et al.
(2022) proposed a spectral envelope-based adaptive
empirical Fourier decomposition (SEAEFD) method
and compared its performance with some other meth-
ods, including EMD.

The occurrence of any fault in any part of the bear-
ing, including the inner race, outer race, rolling ele-
ments, and the cage, can be diagnosed by its specific
frequency.

In the top row of Fig. 7, a typical acceleration sig-
nal yFB (t) of a faulty bearing is shown as a function of
time. This signal is taken from the bearing data center
of Case Western Reserve University (Case Western Re-
serve University [CWRU], n.d.). The CWRU Bearing
Data Center has provided access to valuable datasets of
normal and faulty bearing acceleration signals. These
datasets are frequently used as reference signals in the
majority of bearing diagnostic studies. The ball pass
frequency of the inner race (BPFI) of this bearing is
approximately 162 Hz (SKF, n.d.). Further informa-
tion about the categories of datasets, test stand, bear-
ing details and experimental conditions are presented
in (CWRU, n.d.; Smith, Randall, 2015).

To assess the ability of the proposed EMD method
to separate different modes, a simple sinusoidal func-
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Fig. 7. Acceleration signal of the faulty bearing, yFB(t)
(top), simple cosine function with ar = 1 and f2 = 30 Hz,
y2(t) (middle), and a combination of them, y(t) (bottom).

tion y2(t) with variable amplitude and frequency is
added to the faulty bearing signal as follows:

y (t) = y1 (t) + y2 (t) = yFB (t)

+ar (
√

2RMS (yFB (t))) cos (2πf2t), (9)

where f2 is the frequency of y2 (t), and ar is the ratio
of the root mean square (RMS) of y2 (t) to the RMS of
y1 (t), e.g., ar = 1 means that the energy of the two
terms is the same. Thus, the vibration signal y (t) may
be considered the superposition of two distinct defects,
y1 (t), which is the signal of the faulty bearing with in-
ner race fault, and y2 (t), which can be, for example,
a signal of an unbalanced rotor (f2 = 30 Hz). The pa-
rameter ar explains the severity of two defects relative
to each other. These three time signals y1 (t), y2 (t),
and y (t) are plotted in the top, middle, and bottom
rows of Fig. 7, respectively. The duration of the origi-
nal yFB (t) is more than 10 s, but only the first second
of it is used to reduce the computational time in all
calculations of this paper.

Unlike the deterministic synthetic signals of the
previous sections, the components of the bearing non-
deterministic signal are unknown. Hence, we will de-
fine some criteria for evaluating the performance of the
traditional and SIP-EMD.

Figure 8 shows the first nine IMFs of the vibration
signal y (t) (with ar = 1 and f2 = 30 Hz) and their
residual after extraction of the ninth IMFs. The re-
sults of the traditional EMD and the SIP1-EMD are
displayed in the left and right columns, respectively. In
this figure, only the first tenth of the second of IMFs
are drawn for better clarity of the graphs. But all calcu-
lations are performed within one second, as mentioned
before. Due to the noise and sampling frequency re-
strictions in real-world signals, the traditional EMD is
only compared with the SIP1-EMD in this section.
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Fig. 8. First nine IMFs and residual of the vibration signal y (t) (with ar = 1 and f2 = 30 Hz) for the traditional EMD (left)
and the SIP1-EMD (right). All IMFs and residuals are plotted with black lines, while y2 (t) is plotted with the red line.

After the extraction of all IMFs, one of them shows
the highest similarity with the cosine function y2 (t).
From now on, this IMF is called IMF∗, which is plot-
ted with black lines and fits well with the ideal cosine
function y2 (t) plotted with red lines in the eighth and
ninth rows of the left and right columns of Fig. 8, re-
spectively.

The SIP1-EMD method extracts one more IMF
than the traditional EMD. Although it should not be
listed as an advantage by itself for either method, it
must be taken into account in interpreting the results.
The RMS of the difference between the IMF∗ with the
ideal cosine function y2 (t) will be applied as the first
evaluation criterion (EC) as follows:

EC1 = RMSE = RMS(IMF∗
− y2). (10)

The errors of the traditional and SIP1-EMD in this
example are 0.013 and 0.009, respectively, which shows
the better coincidence of the IMF∗ and y2 in the SIP1-
EMD method.

To have an idea of energy conservation after de-
composition, the index of energy conservation (IEC)
is defined as the sum of the energies of all IMFs divi-
ded by the energy of the signal without considering the
residual (Chen et al., 2006). In this paper, the param-
eter IEC is considered as the second EC:

EC2 = IEC =

N

∑
i=1
∑
t
∣IMFi(t)∣

2

∑
t
∣y (t) −Res(t)∣

2
, (11)

where N is the number of extracted IMFs. Values grea-
ter or less than one indicate the generation or leakage
of energy during the sifting process. In this example,

the IECs for the extracted IMFs of the traditional and
SIP1-EMD are 1.022 and 1.005, respectively, which
shows better energy conservation in the SIP1-EMD
method.

The existence of spectral peaks at the bearing fault
frequencies, their harmonics, and sidebands should be
examined to detect the bearing faults. For example,
a faulty bearing with a fault on its inner race should
have a clear spectral peak at the BPFI, its harmonics,
and sidebands. The spectrums of the most important
IMFs of the traditional and SIP1-EMD are displayed in
the left and right columns of Fig. 9, respectively. The
spectrums of other IMFs are omitted for the sake of
brevity. In this special case with f2 = 30 Hz, however,
it can be shown empirically that the BPFI (162 Hz)
content emerges in one or two IMFs before the IMF∗

(30 Hz). Here, the amplitudes of frequency spectrums
are investigated at the BPFI (162 Hz), its harmon-
ics (162 k, k = 1,2,3, ...), and sidebands of the BPFI
and its harmonics (162 k ± 30, k = 1,2,3, ...). The lo-
cations of the BPFI harmonics, their sidebands, and
the shaft rotation frequency are indicated by the ver-
tical continuous red lines, dashed red lines, and blue
lines in Fig. 9, respectively. All amplitudes of this fig-
ure are normalized to the RMS of amplitudes for each
frequency spectrum. This normalized amplitude is de-
fined as the third EC as follows:

EC3 =Max{
IMFi(BPFI)

RMS(IMFi)
}, i = 1,2, ...,N, (12)

where IMFi is the frequency spectrum of the i-th IMF.
The first three rows of Fig. 9 show that the SIP1-EMD
produces higher spectral peaks at the BPFI than the
traditional EMD method.
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The envelope of the raw signal contains more di-
agnostic information than the raw signal itself. Hence,
the spectrum of the envelope curves for the four IMFs
of the traditional and the SIP1-EMD are plotted in
the left and right columns of Fig. 10, respectively. The
spectral peaks are clearly evident at the BPFI (162 Hz)
and its sidebands (132 and 192 Hz), especially in the
first four IMFs. Then they continue to become shorter
until they vanish at the final envelope spectrums. The
fourth EC is defined as follows:

EC4 =Max{
envi(BPFI)

RMS(envi)
}, i = 1,2, ...,N, (13)

where envi is the spectrum of the envelope of the IMFi.
As shown in Fig. 10, the traditional EMD method pro-
duces higher spectral peaks at the first and second
IMF envelopes, while the SIP1-EMD method produces
higher spectral peaks at the third and fourth IMF en-
velopes. This is partly due to the abovementioned ad-
ditional IMF of the SIP1-EMD method; consequently,
the vibratory energy of the faulty bearing is distributed
into one more IMF. Hence, the final EC is defined ac-
cording to the average of spectral peaks:

EC5 = Mean{
envi(BPFI)

RMS(envi)
}, i = 1,2, ...,4. (14)

Table 1. Evaluation criteria of the traditional EMD and SIP1-EMD for the decomposition of the vibration signal
of the faulty bearing with (right column) and without (middle column) the added cosine term.

Evaluation criteria
ar = 0 ar = 1, f2 = 30 Hz

Traditional EMD SIP-EMD Traditional EMD SIP-EMD
EC1: RMS of error – – 0.013 0.009
EC2: Index of energy conservation 1.052 1.011 1.022 1.005
EC3: Maximum spectral peak of IMFs 27.82 28.27 28.97 37.27
EC4: Maximum spectral peak of IMF envelopes 38.68 37.23 38.64 37.18
EC5: Average of spectral peaks of IMF envelopes 29.07 30.26 30.07 30.21
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Fig. 11. Evaluation criteria for different signals with a variable frequency of f2 = [10 to 100] Hz and a constant amplitude
ratio of ar = 1. The curves of the traditional-EMD and SIP1-EMD methods are plotted with blue and red lines, respectively.

The evaluation criteria of the traditional EMD and
SIP1-EMDmethods for the decomposition of the faulty
bearing vibration signal with and without the added
sinusoidal function are presented in Table 1. In the
absence of the added cosine function (ar = 0), the first
evaluation criterion does not make sense. The better
performance in each case is emphasized with a bold
font in the table. The results show the superiority of
the SIP1-EMDmethod to the traditional EMDmethod
in all items except for EC4, the reason for which was
mentioned before.

To investigate the performance of the proposed
SIP1-EMD method in a wider frequency range, the
frequency of the sinusoidal term (f2) is assumed to be
a variable parameter that varies from 10 Hz to 100 Hz.
In this case, the amplitude ratio is considered a con-
stant value of one (ar = 1). The values of all evalua-
tion criteria are then calculated and plotted with blue
and red lines for the traditional EMD and SIP1-EMD
methods, respectively, in Fig. 11. The horizontal axis
of all graphs in this figure is the frequency of the si-
nusoidal term in Hz. The results confirm the superior-
ity of the SIP1-EMD method to the traditional EMD
through the specified frequency range for all evaluation
criteria except for EC4.
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6. Conclusions

This paper evaluated how the interpolation points
of the envelope curve affect the EMD results. In the
traditional EMD, the extremum points of the signal
are used as the interpolation points for the construc-
tion of the envelope curves. We propose to add new
sets of interpolation points to the existing one. These
new points are special inflection points of the signal
(SIP1), special inflection points of the first derivative
of the signal (SIP2), and so on to the special inflection
points of the (n − 1) derivative of the signal (SIPn).
The results indicate that adding each of these sets to
the previous interpolation points makes an obvious im-
provement in the tone separation ability of the EMD
method. This claim was validated by the 2D diagram
of the tone separation error on the (ar − fr) plane,
where the tone separation errors of more than 100 000
two-tone signals are plotted with different frequencies
and amplitude ratios. If a signal itself does not have
any SIPn and no SIPn appears in hik during the sifting
process, the results of the traditional EMD will coin-
cide with the SIPn-EMD method. However, as soon
as at least one SIPn appears in the signal or during
the sifting process, the SIPn-EMD obtains a significant
reduction in the error diagram, while the traditional
EMD method either does not reduce the error at all or
reduces the error after many times of sifting iterations.
A vibration signal of a rolling element bearing with the
inner race fault was analyzed to evaluate the effective-
ness of both the traditional and SIPn-EMD methods
in the decomposition of a real-world signal. The results
show a better performance of the proposed method in
the fault feature extraction of the bearing.
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