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DIFFRACTION OF A CYLINDRICAL ACOUSTIC PULSE BY A WEDGE
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In the paper, the diffracted field of a cylindrical pulse, approximating
an explosion, at a wedge with the V angle ¢ = 3/2w, was calculated. This problem
was golved on the basis of the Oberhettinger theory. The drop of the acoustic
pressure level at the edge of the wedge, depending on the energy of the source,
and the drop of the pressure level along the wall of the wedge in the silence zone,
were calculated.

1. Introduction

The protection of the environment against noise is becoming increasingly
significant. Kinds of noise sources and the means of protection against noise
were described synthetically in paper [2] and the bibliography given in it. Apart
from the means of protection described in [1], the problem of planner-designed
protection against sounds is of particular significance; this is the method of
situating buildings with respect to the noise sources. The theoretical problem
consists in the calculation, in the acoustical shadow zone, of the so-called
diffracted field at the corner of the building. A large number of papers has so
far been devoted to this problem (see [8] and the list of references given
here), but they take into account the diffraction of a harmonic wave, while
pulses, and among them explosion, are the most annoying forms of noise.
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In the present paper, the diffracted field of a eylindrical pulse, approxima-
ting an explosion, was calculated. The diffraction of the pulse of a planar-type
explosion was described in paper [9], whereas a paper on the diffraction of
a spherical pulse of the same type, will be published in the near future.

The problem of pulse diffraction was considered by SoMMERFELD [6],
FRIEDLANDER [2], OBERHETTINGER [4], [5] and others (see the bibliography
given in [b]).

In this paper, the theoretical considerations were based on the general
Oberhettinger theory [5], [7], OBERHETTINGER solved the problem of the dif-
fraction of unitary pulses; a plane one on a wedge, and cylindrical and spherical
ones on a half-plane. The problems solved are not of any greater practical
significance. The subject of the present paper seems to be more practical and
more general. ‘

* The theory given by OBERHETTINGER describes a linear physical pheno-
menon. Its application to deseribe the explosion-type diffraction, can raise
some doubts. However, at a sufficiently long distance from the source, this
assumption appears to be wvalid.

2. Basic assumplions

In the present paper, as shape of the pulse f(#*) (Fig. 1) was chosen, which
describes the explosion with the good approximation. Physically, it describes
the time distribution of the velocity potential of the acoustic field [3].

fe)l
[m%s]

fltf) b=

N ——————— e D

—s

LA A ]

Fig. 1. The time shape of the pulse

It was assumed that the pulse changed linearly in sections, which can be
written in analytical form as:

bt O tetiny
J(@) =1 —ba(t—1y) +f(TT) T <i< T; (1)
0 other ¢
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where t[m] is the reduced current time, ¢ = t*¢, t* [8]; ¢ [m/s] is the sound
velocity, b, = f(e1)/7], bs = —[f(z})/za—71].

The geometrical aspect of the problem is shown in Fig. 2. The diffraction
phenomenon oceurs at a corner, i.e. on the structural element of the building.
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Fig. 2. The geometry of the problem: wave diffraction at a corner

The source @ was located with reference to the corner in such a way as to
form a acoustical shadow zone. It was also assumed that a cylindrical wave of
the zeroth order, HY)(kr), was diffracted. This assumption seems to be valid,
since the source is at some distance from the edge, and higher-order cylindri-
cal waves are damped.

3. General theory of pulse diffraciion at a wedge according to Oberhettinger

The problem was solved by applying the Laplace’s transform and the
diffraction problem solved for harmonic waves by OBERHETTINGER [4], [T].
According to this theory, for a harmonic source, the field diffracted at a
wedge is the product of the field distribution function U (z, ¥, 2, )= U and the
harmonic function exp(yet), (y = ik).

OBERHETTINGER proposed a similar approach to the pulse. First, the fun-
ction of the pulse f(#) is resolved into the sum (integral) of harmoniec components
(on the basis of the simple Laplace’s transform), subsequently the diffracted
field of each harmonic component is calculated, and thege fields are summed up
(integrated on the basgis of the inverse Laplace’s transform):

1 c—]-'co 00
0@,9,24,9) = 5= [ [Vexptyen [ sexp(—perar|age). @

Formula (2) can be given in the form

@(m,y,z, ff t_rdr’ (3)
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where @,,(t—7) is the field of the Dirac pulse, calculated from formula (2),
when f(t) is taken to be the distribution of 4.

In order to fing the field of any pulse in the region of the wedge, it is ne-
cessary to calculate:

a. the field distribution function U(z, v, 2, y) = U;

b. the Dirac pulse field, from formula (2);

¢. finally, to use formula (3),

The field distribution function is obtained by solving the wave equation-
in the eylindrical coordinates in the space of the wedge (a = 3/2n), with the
predescribed conditions.on its planes [4], [7]. In the present case, ideal rigid
walls were assumed, i.e. the acoustic potential must satisfy the following bou-
ndary conditions:

oD

— =0 forg =0ande¢ = a. (4)
e

The field distribution function obtained can be given by the formula [4], [7]

1‘2 o
U =3 3B (k) + [ H(kE,)6 (@, 0)da], )
v=1 r=r; 0
where
Rﬁ = o+ p'2—2p0"cos (37r 4 0,), Ri — o2+ 02+ 200’ cosha; (6)
2
1 s 3
7} _ —_— vp ide i 0
G(-’B! v) 3751]_21 cosh(2/3ﬂ')—cvp, S-up Sln(2 ’."C:I: u),
3 r
G‘up = CO8 ? T4+ ev 3 61'2 = q):l:qj - (7)

The symbols r,, r, are given by: r, = [ —2(n+ 0)/3x], r, = [2(x—0)[3x],
where the symbol [2(=+ 0)/3=], denotes the highest integer which is less
r2

than the symbol given in the bracket. The sum 2‘ is zero when r; > r,.
r=r

The field of the Dirac pulse is calculated from formula (2), if f(t) is repla-
ced by the distribution 6 [4], [5], [T]:

2

= 2 o0
Opt—1) = 22 SUN [—ep— B + [ 4=~ B P6a, 0,
(8)

v=1 r=ry
where @, (t—17) is different from zero for (t—7)®> R; and (t—1)*> R,. For
the other wvalues of (t—7z), @,(t—7) = 0.
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4. Field of the pulse approximating the explosion

The field potential of the pulse f(?) is calculated from formula (3). In view
of the form of @, (t— 1), integral (3) can be given in the form of the sum

b =D+ Py, 9)
where
2 oo
o, =— 3 N [ f() [t —v)2— R, " (10)
vgl:f'=1'1f :

@, ———Zfe(m e,,){ff t—r)B—R;]-”zdz}dw. (11)

P=1

It can be noted that the subintegral function in formula (10) and the internal
integral in formula (11) have the same form. The integral @, has the solution

O =B, = ZZW 0 <ty < 7

v=1 1‘27'1

2
D, =Dy, =?22Wb! Ty < fp < Taj (12)

v=1 r=ry

@1 = 0 Othel.' toj_,
where W, = b,I;, W, = — byl + [byry +f(71)11s, tay = t—R,,

T : §
Il = ——— d I — — d .
fl/(t—'r)”—Rf, Lot f}/(t—t)z—Ri i

The integrals I, and I, are simple inexchangable integrals. In these integrals,
the integration limits are determined from the conditions 7 < t—R,0<r1<my
or t<i—R,, 1, <71<7, With R, given by formula (6).

In order to ecalculate the expression @,, the internal integral was first
calculated in the same way as the integral @; was, whose solution is given by
the symbol W,, W, (12), with the additional fact that the quantity #,, replaced
ty1, and the quantity R, (f,, =t—R,) replaced Py

The solution of integral (11) can be given in the form

2 2
1%
v=1 p=1
b, = 228 Zyy  T1<log < Ty (13)
v=1 i

®, =0 other iy,
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where Z, = b, (tI;—tI,—I;), Z, = [ba(7;—1) +f(r)1(I5 = I,) +b.I5; for s,, see
tormula (7). I, I,, I, are the symbols of definite integrals (the integration limits
are determined from the conditions imposed on ty,) in the form
In|t+ Vi2— R? InR Viz—R?
1, = f———“—zd I, = = g i P i 14
3 M (@) @,y 4 M () 5 M () dz, (14)

where M (z) = cosh (2 [3x) — ¢, (for ¢,, see formula (7)). The integrals Iy and I
have the respective form of I, and I, except that ¢ should be replaced by ¢ — 7,
in formulae (14).

After some calculations, the integrals I, I, and I, are reduced to hy-
perelliptic ones, and these, in turn, cannot be expressed by elementary
funetions. Therefore, numerical integration remains.

The final solution has the form:

D =D, +Dygy 0 <lgyytoe<7Ti;
D =D+ DBy, Ty <Tg1ytoa < Taj (15)
@ =0 for other fy, lys.

5. Numerical calculations and conclusions

1t is purposeful, from the practical point of view, to calculate the drop in
the pressure level at the edge of the wedge for the different maximum values
of the field potential f(z}) close to the source. Since the relative value of the drop
in the sound level is of interest, the point 4, was assumed to be in the acousti-
cal shadow zone, while the reference point B was localised in the sonicated
zone (Fig. 3).
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Fig. 3. The distribution of the caleulation points (4;) in the acoustical shadow zone
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The pulse shape is determined by the values 7} and z; it was assumed that
77 = 0.015 [s] and 7; = 0.06 [8]. The maximum value of the field potential
f(t7) at the point Q(¢, ¢’) was assumed to vary between 1 and 10 m?/s. The
assumption of the different values of f(7;) close to the source, aims at the achie-
vement, in the sonicated zone close to the edge, of such values of the acoustic
pressure level which would correspond to a real explosion.
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Fig. 4. The digtribution of the acoustic pressure level before the edge of the corner in the
gonicated zone (B) and behind it, in the silence zone (4,), as a function of the peak value
“ of the pulse

Fig. 4. shows the value of the acoustic pressure level L(4,) at the point 4,,
and L(B) at the point B(L(A4,)) is calculated from the formula L(4;) = 20
log (p;/p,) [dB], where p, =2 x10~° Pa. It follows from Fig. 4 that this
drop is about 9 dB and is independent of the maximum value of the velocity
potential f(z7) close to the source.

The drop in the pressure level along the wall of the wedge in the silence
zone, was also caleulated. With the view to the application of the results,
the following calculation points were selected: A, =10m, 4, =20m... 4,,
= 100m. The position of the point A4, less than 10 m from the edge of the corner
has no practical justification, while at a distance of more than 100 m from the
edge, it is tantamount to the design of a building that long. Buildings longer
than 100 m are not often met and the agssumption 4,, = 100 m seems sufficient.
In the caleulations, the value of f(7]), varying between 1 to 10 m2/s, was assu-
med. :

It follows from the caleulations that the drop in the pressure level L(4,,) —
—L(4,) along the wall of the wedge in the silence zone is independent, up to
significant places, on f(z}) (over the investigated range of f(z})); it is about
10dB and is approximately linear.
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It follows from the whole of the calculations that the corner can be consi-
dered as an element protecting against noise. When the drop in the pressure
level at the edge of the corner and that along its wallin the shadow zone are con-
sidered, its total is dozen-odd [dB], and this value is already of practical si-
gnificance.
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