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The article presents the new 2D asymmetrical PZT (a-PZT) and its effectiveness in the active reduction of
triangular plate vibrations. The isosceles right triangular plate with simply supported edges was chosen as the
research object. To determine the a-PZT asymmetry and its distribution on the plate, a maximum bending
moment criterion for the beam was used. First of all, this criterion points out exact center location of the
a-PZT. It was at the point, at which the plate bending moment has reached its maximum value. Next, at this
point, it was assumed that the piezoelectric consists of active fibers located radially from the center. Each
fiber acted on the plate as a separate actuator. Next, at each direction, the actuator asymmetry was found
mathematically by minimizing the amplitude of the vibrations. By connecting the outer edges of individual
fibers, the 2D a-PZT was obtained. It was quantitatively confirmed that the effectiveness of the new a-PZT was
the best compared with the effectiveness of the standard square and the circular PZTs, adding the same exciting
energy to the PZTs.
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1. Introduction

Active vibration reduction is applied to many com-
mon structural elements such as: beams, plates, shells,
shafts, trusses. A significant problem is to increase the
efficiency of active reduction. Recent publications on
this subject have focused on the problem of optimizing
the location and orientation of mainly square or cir-
cular (regular) PZTs on a structure. Aridogan and
Basdogan (2015) presented the review of active vi-
bration and noise suppression of plate-like structures
with PZT. This article shows numerical methods and
experimental tools to study various aspects of con-
troller architecture, i.e., the variety of control systems
in active vibration control and their influence on the
actuator configuration. Zhang et al. (2018) investi-
gated topology optimization of the electrode cover-
age of a laminated rectangular plate with piezoelectric
patches attached. In this case, the optimization was

carried out in terms of minimizing energy consump-
tion. Zorić et al. (2019) presented research on piezo-
fiber reinforced composite actuators (PFRC) and the
optimization concerning the size, orientation and loca-
tion of the actuator. Gonçalves et al. (2017) consid-
ered active vibration reduction with embedded PZTs.
Similarly to Zorić et al. (2019), the topology opti-
mization method was used to find the optimum de-
sign of actuators; the aim of the optimization was
to determine the distribution of piezoelectric mate-
rial that maximizes controllability for a given mode
shape. The shape of the PZT layer was defined using
the Sequential Linear Programming algorithm. Gar-
donio and Casagrande (2017) published the gen-
eral guidelines for dimensioning the PZT patch and
electrical shunt to maximize the electro-mechanical vi-
bration absorption. Optimization of electrode distri-
bution for two-dimensional structures was also pre-
sented by Wang (2003) and the results of the opti-

https://orcid.org/0000-0002-7686-1136
https://orcid.org/0000-0002-7862-6252


426 Archives of Acoustics – Volume 48, Number 3, 2023

mization algorithms used confirm the correctness of
the maximum bending moment criterion (Brański,
Kuras, 2022). Donoso and Sigmund (2009) consid-
ered optimization of the thickness of the PZT layers
and its width profile on the beam structure. Sun et al.
(2022) investigated analytically, numerically and ex-
perimentally the problem of active vibration control of
a simply supported rectangular plate. The method was
based on the plate deflection theory. In the case of ho-
mogeneous boundary conditions and regular structure
(rectangular plate), this theory coincides with the the-
ory based on the maximum bending moment criterion
(Brański, Kuras, 2022). Trojanowski and Wiciak
(2020) used ring-shaped sensor-actuator hybrid to in-
vestigate efficiency of such a system. The compared
shapes of actuators are: square, disc, and ring with
larger and smaller sensor part. Kozień and Ścisło
(2015) investigated bending vibrations of the beams.
The PZT was located at the maximum bending mo-
ment of the structure and the parameter for control
algorithm was the actual bending moment in the pre-
vious time step.

The methods used in the cited articles are most
often based on regular PZTs, optimal distribution of
piezoelectric material or optimal distribution of elec-
trodes. But the parameter that would influence on
the effectiveness of active vibration reduction could
be an asymmetric shape of the PZT. In the 1D case
(Brański, Kuras, 2022), the geometric parameter is op-
timized which leads to the asymmetry of the PZT.
Other parameters that can be also optimized, e.g.,
the PZT location, the voltage supplied to the trans-
ducer. However, for 2D structures, for example trian-
gular, there is one more parameter that follows from
the shape of the actuator and its orientation on the
structure.

The aim of the paper is to find an asymmetrical
shape of the PZT, i.e., a-PZT, and indicate its location
on the triangular plate so that it ensures the maximum
reduction of vibration. To achieve this aim, the max-
imum bending moment criterion is applied. Since the
problem is more complex than in 1D problem, then
the more complex shape and structure of the a-PZT
is chosen into consideration, i.e., it consists of piezoce-
ramic fibers. Hence, each fiber can be analyzed sepa-
rately, leading to separate asymmetries of the individ-
ual fibers.

The common feature of all the fibers is that
they have one common point (the basic a-PZT point),
which is at the point where the plate bending moment
reaches its absolute maximum. Each of the fibers can
be considered separately as a one-dimensional PZT.
The asymmetry of a separate fiber is determined sep-
arately and means that the forces on opposite edges
have different values and the basic a-PZT point is
not in the center of the fiber. Since this point is fixed,
it leads to the determining different arms of forces on

opposite edges of separate fibers. It should be added
that the values of these forces are determined assum-
ing that the asymmetric moments of both pairs of
forces are equal at all fibers. Connecting the outer
edges of separate fibers, the 2D a-PZT is obtained.
Minimizing amplitude of the plate vibration, forces
values of the fibers are determined. The effect of the
a-PZT acting, measured by the reduction of vibration
amplitude, translates into reduction of the bending
moment and shear force.

At the end, the effectiveness of a-PZT and the reg-
ular actuators, namely, square PZT (s-PZT) and cir-
cular PZT (c-PZT) are compared, assuming that the
energy added to all PZTs is the same.

2. Forced vibration of the triangular plate
with PZT actuator

The governing equation of transverse vibration of
the triangular plate is based on Kirchhoff’s classical
small deflection theory. In the steady state the equa-
tion takes the form (Fuller et al., 1997; Hansen,
Snyder, 1997):

c2∆2w − ω2
fw =

f

%h
, (1)

where f = fE+fP – the external forces, fE = fE(x, y) –
the exciting force, fP = fP (x, y) – the forces interacting
between PZT and the plate, w – the transverse dis-
placement in a steady state, ωf – the excited frequency,
c2 = D/(%h), % – the mass density, h – the thickness,

D = Eh3

12(1−ν2) – the flexural rigidity, E – Young’s modu-

lus, ν – Poisson’s ratio, ∆ – the Laplace operator, ∆w =

D2
xw +D2

yy.
The boundary conditions for the simply supported

right triangular plate are defined as follows:

w = 0, Mnn = 0, (2)

where Eq. (2) relates to all of the edges, Fig. 1, Mnn –
normal bending moment, n – normal to an edge.
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Fig. 1. Simply supported right triangular plate
with global symbols: xa = (xa, ya);

x = (x, y) = (ra + r) = (ra cosα + r cosϕ, ra sinα + r sinϕ).
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An external excitation is in the following form:

fE(x, y) = f0δ(x − x0, y − y0), (3)

where f0 – amplitude of the exciting force, x0 = (x0, y0)

– point of applying the exciting force.
The active forces of the PZT interaction depend

on its shape, and for square and circular shapes they
can be found, for example, in (Brański, Szela, 2008;
2010). However, these interaction forces for the a-PZT
are derived below.

2.1. Free vibration problem by the superposition
method

The superposition method was applied to solve the
free vibration problem (Gorman, 1983; 1999; Rao,
2007; Saliba, 1990; 1996). It is the solution of the ho-
mogeneous Eq. (1), i.e., ∆2w−λ4w = 0, λ – eigenvalue,
λ4 = ω2

f%h/D, and simply supported boundary condi-
tions along three edges (Leissa, 1969), Eq. (2). First
of all, as in standard, non-dimensional coordinates are
introduced, i.e., ξ = x/a, η = y/b, and ψ – the plate as-
pect ratio. Then, the idea of the Lévy solution, based
on two building blocks BB1 and BB2, is used, Fig. 2.

BB1





0

1





1

1 10

BB2

Fig. 2. Building blocks used in the solution.

The solution is assumed to be of the form satisfying
SS-BC for each building block. This solution satisfies
the SS-BC in advance along the edge ξ = 0, ξ = 1,
and η = 0. According to the displacement and bending
moments along the edge η = 1, the solution for the BB1
can be formulated as:

wBB1(ξ, η)=
m∗

∑
m

G1mθ11m [a∗+θ1m sin (γmη)] sin (mπξ)

+
∞
∑
m∗+1

G1mθ22m [a∗+θ2m sinh (γmη)] sin (mπξ), (4)

where
a∗ = sinh (βmη) ,

and G1m is the Fourier coefficient,m = 1,2, ...,m∗. The
first sum is related to condition λ2 > (mπ)2, the second
sum ought to be used if λ2 < (mπ)2, and

θ1m =
[β2
m − νψ2(mπ)2] sinh (βm)

[γ2
m + νψ2(mπ)2] sin (γm)

,

θ2m = −
[β2
m − νψ2(mπ)2] sinh (βm)

[γ2
m − νψ2(mπ)2] sinh (γm)

,

(5)

θ11m =
1

sinh (βm) + θ1m sin (γm)
,

θ22m =
1

sinh (βm) + θ1m sin (γm)
,

(6)

βm = ψ
√
λ2 + (mπ)2,

γm = ψ
√
λ2 − (mπ)2 or γm = ψ

√
(mπ)2 − λ2.

(7)

The solution for the BB2 is obtained from Eq. (4)
by replacing G1m by G2m and where

θ1m = −
sinh (βm)

sin (γm)
,

θ11m =
1

θ1mγ2
m sin(γm) − β2

m sinh(βm)
,

(8)

θ2m = −
sinh(βm)

sinh(γm)
,

θ22m =
1

θ2mγ2
m sinh(γm) − β2

m sinh(βm)
.

(9)

The last step is to enforce the simply supported
boundary condition along the hypotenuse. For this
purpose, the BB1 and BB2 are overlapped. Hence,
the SS-BC on two perpendicular sides of the triangle
are satisfied. However, the boundary condition along
the hypotenuse is enforced by adjusting the Fourier
coefficients in wBB1(ξ, η) and wBB2(ξ, η), i.e., G1m

and G2m. Thus along the hypotenuse, η may be writ-
ten as η = 1 − ξ and wBB1(ξ,1 − ξ), wBB2(ξ,1 − ξ) are
obtained. Formulating the contributions of the BB1
and BB2 and adjusting the G1m and G2m to sat-
isfy the bending moment along the hypotenuse, the
formal solution of the problem is obtained. To solve
the triangular plate free vibration problem, all bound-
ary conditions should be simultaneously satisfied. The
method leads to the system of homogeneous algebraic
equations. The determinant of the coefficient matrix
is equal to zero and eigenvalues λ2 are calculated. It
leads to the solution of the triangular plate free vibra-
tion problem SS-BC in the form:

w(ξ, η) = wBB1(ξ, η) +wBB2(ξ, η). (10)

To verify the numerical code, the eigenvalues λ2 for
the first five mode shapes are calculated, and they
are the same as in (Saliba, 1990). To obtain the plate
deflection in the (x, y) coordinates, in the above for-
mulas the (ξ, η) dimensionless coordinates have to be
transformed again.

2.2. Determination of the a-PZT and its action
on the plate

Standard (regular) piezoelectric actuators have
square, rectangular and circular shapes. In a 2D analy-
sis of the actuator acting on a plate, it is assumed
that the actuator induces a bending moment along its
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edge. If the piezoelectric material has the same prop-
erties in two directions, the induced bending moments
are the same at each end of the cross-section of the
actuator (Fuller et al., 1997; Her, Chen, 2020).
More precisely, in the case of a square or rectangu-
lar actuator, the bending moments at opposite edges
are the same. However, in the case of a circular actu-
ator, the bending moment along the edge is the same.
As shown in (Brański, Szela, 2008; 2010), bending
moments in one cross-section can be replaced by two
the same pairs of forces.

To form the a-PZT, the active fibers are consid-
ered, arranged radially at a certain point on the plate.
Next, it is necessary to find this point that would con-
nect all fibers, i.e., the point around which the actua-
tor would be created. It turns out that at this point,
marked by xa = (xa, ya), the bending moment of the
plate reaches the absolute extreme. Then, the maxi-
mum bending moment criterion is used to find the xa
(it is a common point for all fibers, and the basic one
of a-PZT).

To create the shape of the a-PZT, by analogy
to one-dimensional structure, namely, to the beam
(Brański, Kuras, 2022), the plate bending moments
in all directions with ∆ϕk = ϕk −ϕk−1 = 1 degree inter-
val are calculated (Fig. 3). On separate fibers in both
directions from point xa, the points xk = (x1k, y1k)

with the same plate bending moments are found. Then
the neighboring points at the ends of the fibers were
connected with a line and this line created the edge of
the a-PZT.
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Fig. 3. The idea of constructing the a-PZT
and global symbols.

An arbitrary fiber of the a-PZT acts on the plate
with the bending moments:

2Mk =M1k +M2k = f1k`1k + f2k`2k, (11)

where `k = {`1k, `2k} are the arm lengths of the asym-
metric fiber.

Bending moments can be replaced by two pairs of
forces:

fPk = fPk(x, y) = f1kδ(x − x1k, y − y1k)

− (f1k + f2k)δ(x − xa, y − ya)

+ f2kδ(x − x2k, y − y2k), (12)

where k – the number of PZT fibres in the actua-
tor, fk = {f1k, f2k} – the forces due to a fibre,
{x1k = (x1;k, y1;k), xa = (xa, ya), x2k = (x2;k, y2;k)} –
the points of applying forces of a fibre; for simplicity
xk = (x1k, x2k), x = (x, y) = (ra+r) = (ra cosα+r cosϕ,
ra sinα + r sinϕ) – an arbitrary point of the plate.

Equation (12) defines the acting of one fiber of
the a-PZT on a plate. To determine the acting of the
a-PZT, it is necessary to sum the acting of all fibers:

fP = fP (x, y) =∑
k

fPk(x, y). (13)

3. Forced vibration reduction by actuator

As we assumed the response of the plate and the
excitation are harmonic, one can express these func-
tions as

wf(x, y) =∑
n

Anwn(x, y), (14)

f(x, y) =∑
n

Bnwn(x, y), (15)

where An is the constant to be determined, and

Bn =
1

ζn

x

Ω

f(x, y)wn(x, y)dxdy,

ζn =
x

Ω

w2
n(x, y)dxdy.

(16)

The force f(x, y) represents both the exciting force
and forces due to PZT, Eq. (1), so the integral in
Eq. (16) can be written as In = In;E + In;P , where

In;E =

x

Ω

fEwn(x, y)dxdy

=

x

Ω

f0δ(x − x0, y − y0)wn(x, y)dxdy

= f0wn(x0, y0). (17)

According to Eq. (12)

In;P =

x

Ω

∑
k

fPk(x, y)wn(x, y)dxdy

= ∑
k

[f1kwn(x1k, y1k) − (f1k + f2k)wn(xa, ya)

+f2kwn(x2k, y2k)] . (18)

Substituting Eq. (11) into square brackets and after
some calculations, one can obtain

∑
k

[f1kwn(x1k, y1k) − (f1k + f2k)wn(xa, ya)

+ f2kwn(x2k, y2k)]

= −
1

2D
∑
k

`1k(`1k + `2k)Mk(xa, ya), (19)
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whereMk(xa, ya) is the plate bending moment at point
(xa, ya).

Equation (19) determines the direct relationship
between transverse displacement of the plate caused
by the actuator and the plate bending moment at the
point (xa, ya). Based on Eqs. (17)–(19), the Bn can
be calculated. Substituting Eqs. (14)–(15) into Eq. (1)
and taking into account the mode shape functions,
Eq. (10), the An coefficients can be expressed as fol-
lows:

An=
Bn

(n2π2 − β2
n)

2 − ω2
f

,

An=
Bn

(n2π2 + γ2
n)

2 − ω2
f

or An=
Bn

(n2π2 − γ2
n)

2 − ω2
f

(20)
whichever is real.

Substituting Eq. (20) into Eq. (14):

wf(x, y) =∑
n

1/ζ (In;E + In;P )

(n2π2 − β2
n)

2
− ω2

f

wn(x, y), (21)

and considering only the part due to excitation, one
can obtain a function that is an optimization objective
function:

In;f = f0wn(x0, y0) −
1

2D
∑
k

`1k (`1k + `2k)Mk(xa, ya)

= In;E + In;P . (22)

Equation (22) was used to model three types of
PZT: square, circular, and asymmetrical. The In;f re-
duction leads to a reduction of the plate vibrations.
Equation (22) means that a total reduction of vibra-
tion is possible if the plate response to the exciting
force fE equals the plate response to the forces from
all fibers composing the two-dimensional actuator, i.e.,
if In;f = 0. Thus, the objective function is trivial; the
derived expression is minimized and can be written as
follows:

J = min (In;f) . (23)

4. Reduction effectiveness coefficient

The vibration reduction effectiveness is measured
by analysing the vibration amplitude of the plate. The
coefficient which is used to calculate the amount of
vibration reduction is formulated as follows:

Rn =
wn;E −wn;f

wn;E
⋅ 100%, (24)

where wn;E is the transverse displacement of the plate
at the point of maximum amplitude (without PZT);
vibrations are forced only by the force fE(x, y), wn;f

– the transverse displacement of the plate at the point
of maximum amplitude (with acting PZT); vibrations

are forced by fE(x, y) and reduced by forces from the
PZT fibers.

Similarly to Rn, other coefficients can be formu-
lated, based, for example, on the bending moment or
the shear force. The paper presents the results of Rn,
because the amplitude value is related to the values of
the other two quantities.

5. Analytical calculations

The object of the calculations is an isosceles right
triangular plate with simply supported edges. The fol-
lowing data were assumed in the calculations: a = 1 m,
b = 1 m, h = 1.59 ⋅ 10−3 m, E = 71.7 ⋅ 109 Pa, % =

7169 kg ⋅m−3, ν = 0.33, the lengths of each PZT fiber
are the same and equal 0.2a. The number of fibers was
constant for all cases and equal 40. The amplitude of
the exciting force was selected experimentally to obtain
significant plate deflections for a given mode shape:
{f0;n}={f0;1, f0;2, f0;3, f0;4, f0;5}={2,20,20,40,40} N.

5.1. Vibration reduction of triangular plate via PZTs

Based on the assumptions made, the shapes of
asymmetrical piezoelectric actuators are determined,
and then the effect obtained after their application is
compared with the effect of regular PZTs. Taking into
account the asymmetric actuator determined by the
exact method, its simplified version is presented, in
which the asymmetry points of each fiber are arbitrar-
ily set at the point of the maximum bending moment
of the plate (Fig. 4). The quantitative results of the
calculations are shown in Table 1 and Fig. 5.

Fig. 4. a-PZT for first mode shape.

Table 1. Vibration reduction coefficient results.

Mode
Rn [%]

s-PZT c-PZT a-PZT
1 97.43 97.70 99.69
2 97.84 97.82 99.71
3 98.45 99.55 99.89
4 99.93 99.60 99.94
5 97.00 97.98 99.66
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Mode shape

Fig. 5. Rn coefficient for first five mode shapes.

Figure 6 shows the effect of applying s-PZT, c-PZT,
and a-PZT. Figures 7a–c corresponds to the first mode
shape and they are compared with different shapes of
actuators. Figures 7d–f shows the same for the second
mode shape. In Fig. 8 there are a-PZTs for higher mode
shapes.

Fig. 6. Results of the PZTs acting for the first three mode
shapes: s-PZT (left); c-PZT (center); a-PZT (right).

The results show a big advantage of the a-PZT over
the s-PZT. The maximum difference in efficiency oc-
curs for the 5th mode and it is almost 3%. The shape
of the a-PZT closely corresponds to the shape of the
nodal lines for a given mode. For the 1st, 2nd, and 5th
mode shape, in which the nodal lines form triangles si-
milar to the shape of the plate, one gets an irregular
shape of the actuator with three vertexes. Moreover,
for these mode shapes, a clear axial symmetry can be
seen in the shape of the actuator. The axial symmetry
can also be seen in the other two vibration modes,
3rd and 4th. In these cases the nodal lines in the
area of the a-PZT location are close to a square with
rounded vertices (one rounded vertex in the case of
3rd mode, Fig. 8a, two rounded vertices in the case

a) b)

X 

c) d)

e) f)

Fig. 7. PZTs shapes and locations for the first two mode
shapes – 1st mode shape: a) s-PZT, b) c-PZT, c) a-PZT;

2nd mode shape: d) s-PZT, e) c-PZT, f) a-PZT.

a) b)

c)

Fig. 8. a-PZTs shapes and locations for other mode shapes:
a) 3rd mode shape; b) 4th mode shape; c) 5th mode shape.
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of 4th mode, Fig. 8b). In these cases the axial symme-
try is due to the plate geometry (isosceles triangle).

The shape of the nodal lines also affects the dif-
ference between the efficiency of the c-PZT and the
a-PZT. It can be seen that for 1st, 2nd, and 5th mode
shapes the difference is about 2% in favour of the
a-PZT. However, for 3rd, 4th, and higher mode shapes,
the reduction effectiveness coefficient for the c-PZT is
very close to the a-PZT. The greater difference in ef-
ficiency for these mode shapes can be seen with the
reduction of the PZT fiber length.

6. Conclusions

The article presents an active vibration reduction
of triangular plate via asymmetrical PZT. Based on
the principle of operation of the PZT, the problem of
its optimal shape was solved. This led to the creation
of the a-PZT. It consists of radial one-dimensional fiber
actuators with a common point. This point is located
at the maximum plate bending moment. Each actu-
ator fiber was considered separately to optimize its
arm lengths. By joining the adjacent ends of the sepa-
rate fibers, an a-PZT shape was created. The a-PZT
provides the most effective reduction of vibrations for
a given structure. The results, presented in Table 1,
show that the use of the a-PZT in the active reduction
of vibrations of two-dimensional structures provides
greater efficiency than regular actuators, both square
and circular ones. Based on the calculations, the con-
clusions can be formulated:

– the a-PZT consists of the radial one-dimensional
fiber actuators with a common point;

– this is the basic a-PZT point at which the plate
bending moment reaches its maximum; it leads to
the formulation of the maximum bending moment
criterion, to obtain the a-PZT shape;

– the a-PZT reduces vibration more effectively than
s-PZT and c-PZT assuming the same energy
added to all systems;

– the a-PZT shape closely correlates with the nodal
lines of a given mode, i.e., the type of asymmetry
depends on the shape of the nodal lines around
the maximum plate bending moment.

The idea of the a-PZT presented in the paper can
be a starting point for considerations on the active re-
duction of vibrations of more complex two-dimensional
structures, e.g., cylindrical or three-dimensional struc-
tures.
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