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Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common and high-risk sleep-related breathing
disorder. Snoring detection is a simple and non-invasive method. In many studies, the feature maps are obtained
by applying a short-time Fourier transform (STFT) and feeding the model with single-channel input tensors.
However, this approach may limit the potential of convolutional networks to learn diverse representations of
snore signals. This paper proposes a snoring sound detection algorithm using a multi-channel spectrogram
and convolutional neural network (CNN). The sleep recordings from 30 subjects at the hospital were col-
lected, and four different feature maps were extracted from them as model input, including spectrogram,
Mel-spectrogram, continuous wavelet transform (CWT), and multi-channel spectrogram composed of the three
single-channel maps. Three methods of data set partitioning are used to evaluate the performance of feature
maps. The proposed feature maps were compared through the training set and test set of independent subjects
by using a CNN model. The results show that the accuracy of the multi-channel spectrogram reaches 94.18%,
surpassing that of the Mel-spectrogram that exhibits the best performance among the single-channel spectro-
grams. This study optimizes the system in the feature extraction stage to adapt to the superior feature learning
capability of the deep learning model, providing a more effective feature map for snoring detection.
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1. Introduction

Obstructive sleep apnea-hypopnea syndrome (OS-
AHS) is a sleep respiratory disease characterized by
the repeated collapse and blockage of the upper
airway during sleep, resulting in apnea or hypop-
nea (Strollo, Rogers, 1996). Obstructive breath-
ing leads to instinctive body responses, such as brain
arousal, sympathetic activation, and decreased blood
oxygen saturation. Seriously interrupted and non-
restorative sleep will occur, causing most patients
with OSAHS to suffer from morning headaches and
daytime somnolence. Long-term poor sleep can even
lead to a series of complications, such as abnormal
metabolism, neurocognitive dysfunction, and cardio-

vascular disease (Young et al., 2002). Surveys show
that the overall prevalence of OSAHS in the general
adult population ranges from 6 to 17%, with the preva-
lence increasing significantly with age (Senaratna
et al., 2017).

Polysomnography (PSG) is the gold standard for
diagnosing OSAHS patients (Ahmadi et al., 2009;
Mendonça et al., 2019). Subjects are required to wear
contact-type monitoring instruments throughout the
night. The PSG signal obtained from these instruments
is used by professional doctors to determine whether
the subjects suffer from OSAHS. Although reliable re-
sults can be obtained, patients may have to bear the
burden of expensive fees and endure discomfort from
physically attached sensors (Mendonça et al., 2019).
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Therefore, there is an urgent need to seek a low-cost,
easy-to-operate, and non-contact method to assist in
the diagnosis of OSAHS. Snoring is the most distinc-
tive clinical feature of OSAHS, occurring in 70–90%
of patients with OSAHS (Karunajeewa et al., 2008;
Maimon, Hanly, 2010). The acoustic characteristics
of snoring reflect changes in the structure of the upper
airway. Moreover, snoring analysis offers the advan-
tages of being non-contact, simple, and reliable, mak-
ing it feasible to identify patients by analyzing the
acoustic characteristics of snoring (Won et al., 2012;
Fiz et al., 1996; Pevernagie et al., 2010; Beck et al.,
1995; Ip et al., 2002; Perez-Padilla et al., 1993;
Sola-Soler et al., 2003; Ng et al., 2008).

In order to improve the initial screening of OSAHS,
an increasing number of scientists are dedicated to de-
veloping new technologies that can achieve a more ac-
curate clinical diagnosis of OSAHS in a simpler manner
(Yadollahi, Moussavi, 2010; Ankişhan, Ari, 2011;
Ankışhan, Yılmaz, 2013). So far, there have been nu-
merous studies on the identification technology of OS-
AHS. Duckitt et al. (2006) extracted 39-dimensional
Mel-frequency cepstral coefficients (MFCC) from sleep
sound recordings of six subjects and classified the sig-
nals into snoring, breathing, duvet noise, and other
noises based on hidden Markov model (HMM). The
recognition rate for snoring can reach the range of
82–89%. Cavusoglu et al. (2007) selected recording
signals from 18 simple snorers and 12 OSAHS pa-
tients to cut the voiced segments by a double threshold
method. Then, the authors calculated the sub-band
energy distribution of the sound segments and used
principal component analysis (PCA) for feature reduc-
tion. Finally, robust linear regression was used to clas-
sify these sound segments into snoring and non-snoring
sounds with an accuracy of 90.2%.

Dafna et al. (2013) adopted a feature selection al-
gorithm to filter the 34 most discriminative features
from 127 time-domain and frequency-domain features,
and then used AdaBoost to construct a snoring recog-
nition model, obtaining an average detection rate of
98.2%, a sensitivity of 98%, and specificity of 98.3%
with a cross-validation method. In a study by Cheng
et al. (2022), a multi-input model based on long short-
term memory (LSTM) was proposed, which can accept
various audio features to synthesize information for
snoring identification. Furthermore, MFCC, Mel filter
banks (Fbanks), linear prediction coefficient (LPC),
and short-term energy were extracted as the input of
the model, finally achieving 95.3% accuracy. With the
development of the field of artificial intelligence, deep
learning models are gradually applied to the classifica-
tion task of snoring and non-snoring.

Khan (2019) developed a deep learning model for
snoring detection and transferred it to an embedded
system that can be connected to a smartphone app
using home Wi-Fi. In Khan’s study, 1000 sound sam-

ples were used to calculate the MFCC images, then
the images were fed into a convolutional neural net-
work (CNN) model, resulting in a snoring recognition
rate of 96%. The spectrogram, Mel-spectrogram, and
constant-Q transformation (CQT) spectrogram col-
lected from the recordings of 15 subjects were used
to classify snoring and non-snoring by Jiang et al.
(2020). The results indicated that the accuracy of Mel-
spectrogram in each group reached 95.07%. The ad-
vantage of the deep learning model is to learn increas-
ingly complex data samples. Previous studies (Khan,
2019; Jiang et al., 2020; Xie et al., 2021) used single-
channel spectrogram as input. However, it is important
to note that different feature maps only contain limited
frequency-domain information, which could potentially
restrict the model’s ability to learn diverse represen-
tations of audio recordings. Therefore, input features
should provide more information about snoring.

In our work, a multi-channel feature map based on
the fusion of Mel-spectrogram, spectrogram, and con-
tinuous wavelet transform (CWT) is proposed. Three
spectrograms of each sound signal are employed as
three channels of the red-green-blue (RGB) image to
construct the feature map. A CNN model is utilized
to perform the classification tasks. In addition, spectro-
gram, Mel-spectrogram, and CWT are used for com-
parative experiments. The comparison of the classifi-
cation performance between the multi-channel spec-
trogram with that of the single-channel spectrogram is
conducted to achieve higher resolution.

2. Methods

2.1. Data acquisition

This study was approved by the Ethics Committee
of Guangzhou Medical University (Reference Number
2019-73), and informed consent was obtained from all
participants.

Thirty subjects who underwent PSG at the First
Affiliated Hospital of Guangzhou Medical University
were selected to obtain snoring sounds throughout the
night. The recording time for each subject’s sleep snor-
ing sounds was not less than 6 hours. The most impor-
tant indicator for PSG detection to assess the severity
of OSAHS is the apnea-hypopnea index (AHI), which
is defined as the average number of sleep apnea or hy-
popnea per hour. It is divided into four categories: sim-
ple, mild, moderate, and severe, based on the follow-
ing ranges: AHI < 5, 5 ≤AHI<15, 15 ≤AHI<30, and
AHI ≥ 30 (Maimon, Hanly, 2010). Table 1 lists sta-
tistical information on the subjects’ gender, age, body
mass index (BMI), AHI, and the severity of OSAHS for
each participant. For recording snoring sounds, a digi-
tal audio recorder (Roland, Edirol R-44, Japan), with
a frequency response range of 40–20 000 Hz and a mi-
crophone (RODE, NTG-3, Sydney, Australia) hanging
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Table 1. Statistical information of subjects.

Parameter Data

Male/female 27/3

Age (years) 44± 13 (range: 23–70)

BMI [kg/m2] 26.7± 2.8 (range: 20.8–31.9)

AHI [events/h] 40.8± 28.3 (range: 3.2–91.1)

OSAHS [y/n] 28/2

vertically on the heads of patients, positioned about
45 cm above the mouth and nose were used. The orig-
inal sleep sound signals were recorded by the micro-
phone. PSG device (Alice-5, Pittsburgh, Pennsylvania,
USA) was used to monitor PSG signals. The recorded
sound was digitized at a sampling rate of 44 100 Hz
and a resolution of 16 bits.

2.2. Feature extraction

2.2.1. Spectrogram

A snoring sound is a one-dimensional time-domain
signal, making it challenging to observe the frequency
conversion pattern. While the frequency distribution of
the signal can be viewed by Fourier transform, time-
domain information is lost. Many time-frequency ana-
lysis methods have emerged to address this problem.
Short-time Fourier transform (STFT) is the most clas-
sical time-frequency analysis method in speech and au-
dio processing applications and offers minimal calcu-
lation and low cost. First, the audio signal is framed
into a short time window. In this work, the size of
windows is 25 ms with 50% overlap. Next, the Ham-
ming window is applied to each frame signal, and fol-
lowed by the fast Fourier transform (FFT) to obtain
its power spectrum (Rabiner et al., 1975). Each frame
is then spliced along the time dimension to form a two-
dimensional signal map called the spectrogram.

2.2.2. Mel-spectrogram

While the frequency of the spectrogram is linearly
distributed, the extracted features may not be useful
for signals with an inhomogeneous frequency distri-
bution. The Mel-scale filter banks are used to trans-
form the spectrogram into the Mel-spectrogram (Peng
et al., 2019; Winursito et al., 2018), where the Mel-
scale describes the nonlinear characteristics of human
ear frequency, and its relationship with frequency can
be approximately expressed by the equation:

Mel(f) = 2595 × log (1 + f

700
). (1)

In this study, features are calculated using frames
of 25 ms frame size with 50% overlap. The Mel-
spectrogram is computed using a group of 128 triangu-
lar filters in the Mel-scale based on the STFT, and the
logarithm of the filtered signal is determined. Figure 1
shows the triangular filter banks used in this study.
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Fig. 1. 128 triangular filters in the Mel-scale applied to the
STFT for obtaining the Mel-spectrogram.

2.2.3. Continuous wavelet transform

The time and frequency resolutions of STFT are
determined by the size and time shift of the window.
A small window size can lead to poorer frequency res-
olution. Compared to STFT, CWT has the character-
istics of window adaptation, enabling high-frequency
values to have high-frequency resolution and low time
resolution (Qian et al., 2019).

CWT uses wavelet basis functions to decompose
signals, and is defined as:

CWT(τs) = 1√
s

+∞

∫
−∞

x(t)ψ ( t − τ
s
) dt, (2)

where x(t) is the audio signal, ψ(x) is the mother
wavelet (Morlet wavelet in this study), and τ and s,
respectively, represent displacement and scale.

Usually, when analyzing time series, it is expected
to obtain smooth and continuous wavelet amplitude,
so a non-orthogonal wavelet function is more suitable.
In addition, to include the information of both ampli-
tude and phase of the time series, a complex-valued
wavelet should be selected, because the complex-va-
lued wavelet has an imaginary part and can express
the phase very well. The Morlet wavelet is not only
non-orthogonal, but also exponential complex-valued
wavelet, so it is used in this experiment to obtain the
information of both amplitude and phase.

2.2.4. Multi-channel spectrogram

Multi-channel spectrogram has been used in speech
recognition with beneficial effects (Adavanne et al.,
2018; Xu et al., 2018; Arias-Vergara et al., 2021).

The spectrogram, Mel-spectrogram, and CWT,
each with a size of 224× 224× 3, were extracted from
each audio segment. Figure 2 shows the above three
feature maps of a snore signal. Subsequently, they
are normalized to fall between −1 and 1, serving as
three channels of the RGB image to construct the
multi-channel spectrogram with a size of 224× 224× 3.
In this construction, the spectrogram is the first chan-
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Fig. 2. Feature maps of a snore segment from an OSAHS
patient: a) spectrogram; b) Mel-spectrogram; c) CWT.

Input Convolutional and pooling layers
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Fig. 3. Process of feeding the multi-spectrogram to a deep learning model (CNN).

Table 2. Structure of CNN.

Layer (type) Input shape Output shape Params

Conv2D (None, 224, 224, 32) (None, 222, 222, 32) 896

MaxPooling2D (None, 222, 222, 32) (None, 111, 111, 32) 0

Conv2D (None, 111, 111, 32) (None, 109, 109, 64) 18 496

MaxPooling2D (None, 109, 109, 64) (None, 54, 54, 64) 0

Conv2D (None, 54, 54, 64) (None, 52, 52, 128) 73 856

MaxPooling2D (None, 52, 52, 128) (None, 26, 26, 128) 0

Flatten (None, 26, 26, 128) (None, 86 528) 0

Dense (None, 86 528) (None, 128) 11 075 712

Dense (None, 128) (None, 2) 258

nel, the CWT is the second channel, and the Mel-
spectrogram is the third channel. When the input data
contains multiple channels, the number of input chan-
nels of the convolutional kernel in the model is the
same as that of the input data. In this way, the convo-
lutional kernel of different channels can perform cross-
correlation operations with the input data of differ-
ent channels, and the multi-channel input will enable
CNN to supplement information from two other time-
frequency representations.

2.3. Model architecture

In order to obtain reasonable results, the classifier
must be matched with a suitable input representation.
Manual features such as MFCC were used with the
traditional machine learning model, which effectively
decorrelates features (Adavanne et al., 2018). On the
contrary, the advantage of CNN lies in their ability
to learn spectral time characteristics of the spectrum
through weight sharing and pooling technology. Pre-
vious studies have applied CNN to speech recognition
with good effects (Abdel-Hamid et al., 2012; 2014).
For this experiment, a CNN model was designed, con-
taining an input layer, three convolution layers with
rectified linear unit (ReLu) activation functions. The
size of the convolution kernel was multiplied layer by
layer, leading to 256 neurons activated by ReLu, and
the output layer was activated by a softmax function.
The incorporated dropout layer will randomly discard
some weights in the training process to suppress over-
fitting, and the dropout ratio is 0.5 (Hinton et al.,
2012). Figure 3 shows the process of feeding the multi-
channel spectrogram into the CNN. The model param-
eters are presented in Table 2.
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For excellent training results, the Adam optimizer
is used for training, with a learning rate of CNN set to
0.0001. In our experiments, categorical cross-entropy
was chosen as the loss function, and each model was
trained for 200 epochs on an NVIDIA GTX 1080Ti
with a batch size of 128.

2.4. Validation method

In this study, the adaptive threshold method is used
to segment the audio sounds from all recording sub-
jects to obtain sound fragments that are subsequently
labeled as either snoring or non-snoring under the guid-
ance of ear-nose-throat (ENT) experts. Only sound
segments less than 4 seconds long are retained, and
two adjacent sound segments less than 0.02 seconds
apart are merged. A total of 59 293 sound segments
are obtained, consisting of 29 789 snore segments, and
29 504 non-snoring segments, which included sounds
of footsteps, speech, breathing, coughing, door closing,
and other environmental sounds. In order to evaluate
the performance of different spectra, three experiments
were designed: independent split training set and test
set, leave-one-subject-out cross-validation (LOSOCV),
and training set and test set containing all subjects.
Table 3 shows the details of the data partition.

Experiment 1 : the dataset of 30 subjects was di-
vided into a validation set with 4 subjects, a test set
with 4 subjects, and training set with the remaining
22 subjects, and the subjects in the training set, the
test set, and the validation set were independent. For
the purpose of eliminating the contingency of the ex-
periment, five different partition methods were applied
to the data set, and the model was trained on each
divided dataset. Finally, the average and standard de-
viation were taken as the results.

Experiment 2 : in a dataset containing 30 subjects,
an independent test set and training set were con-
structed for each participant using the LOSOCV strat-
egy. The data of one subject was selected as the test
set, and the data of the remaining 29 subjects were
used as the training set. This process is repeated 30
times and the average accuracy is calculated. This
maximizes the use of data while ensuring that the sub-
jects in the training set and the test set are from dif-
ferent independent subjects.

Experiment 3 : the sound clips of all subjects are
combined into a whole dataset, which is then divided
into training, validation and test set, with a ratio
of 6:1:3.

Table 3. Data distribution of training, validation, and test sets in experiments.

Experiment 1 Experiment 2 Experiment 3
Train Validation Test Train Test Train Validation Test

Subject 22 4 4 29 1 30

Snore 23 767 3117 2905 LOSOCV 19 133 2872 7784

No-snore 21 971 4094 3439 16 443 3057 10 004

2.5. Model evaluation

The classification effect of each feature map can
be evaluated by multiple indicators, including accu-
racy, precision, recall, F1-score, and the area under
the curve (AUC) calculated from the receiver operat-
ing characteristic (ROC). Accuracy is the proportion of
correct samples to the total number of samples. Pre-
cision relates to the ratio of the number of positive
samples correctly classified by the classifier to the num-
ber of all positive samples classified by the classifier.
Recall rate refers to the ratio of the number of posi-
tive samples correctly classified by the classifier to the
number of all positive samples. F1-score is the harmo-
nic mean of precision rate and recall rate. The AUC
is meant by the area under the ROC curve, represent-
ing the probability that the predicted positive cases
rank higher than the negative ones, ranging from 0.5
to 1. The calculation equation is:

Accuracy = TP +TN
TP +TN + FP + FN , (3)

Precision = TP

TP + FP , (4)

Recall = TP

TP + FN , (5)

F1score = 2Precision ⋅Recall
Precision +Recall , (6)

where TP, TN, FP, and FN represent true positive,
true negative, false positive, and false negative, respec-
tively.

3. Results

To evaluate the classification performance, four
different feature maps are imported into the model
to compare which feature map is more discriminative
for snoring. The CNN model is established by the
validation set and evaluated on the test set. According
to the data set division rules of experiment 1, the
classification results are presented in Table 4. In terms
of single-channel spectrograms, the classification per-
formance of Mel-spectrogram was superior to those of
spectrogram and CWT, with an accuracy of 91.58%,
precision of 92.09%, sensitivity of 86.57%, F1-score of
88.85%, and AUC of 0.9614. The PPV of the spec-
trogram and Mel-spectrogram reached more than 90%,
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Table 4. Classification results of experiment 1.

Map type Accuracy [%] Precision [%] Recall [%] F1-score [%] AUC

Mel-spectrogram 91.58 92.09 86.57 88.85 0.9614

Spectrogram 88.33 91.23 81.56 85.56 0.9448

CWT 85.24 81.78 85.10 83.00 0.9192

Multi-channel spectrogram 94.16 92.64 93.35 92.93 0.9730

indicating that the recognition of the snore fragments
was reliable.

Figure 4 shows that the classification of the multi-
channel spectrogram is significantly improved com-
pared to that of the single-channel spectrogram, and
it has an accuracy of 94.16%, which was 2.58% higher
than that of Mel-spectrogram with the best effect in
single-channel spectrograms. Other classification in-
dexes were increased, respectively, by 0.55% (PPV),
6.78% (Recall), and 4.08% (F1-score). Although there
was little difference in PPV between the two fea-
ture maps, the Recall of the multi-channel spectro-
gram classification was significantly higher than that
of the Mel-spectrogram, which is beneficial for detect-
ing the snoring segments of the patients throughout
the entire night and further evaluating the severity of
OSAHS patients.

Accuracy

[%
]

Precision Recall F1-score

Multi-channel spectogram
Mel-spectogram

Fig. 4. Comparison histogram of Mel-spectrogram
and multi-spectrogram in experiment 1.

Table 5. Classification results of experiment 2.

Map type Accuracy [%] Precision [%] Recall [%] F1-score [%] AUC

Mel-spectrogram 90.51 90.83 93.08 91.94 0.9511

Spectrogram 89.36 93.18 88.85 90.97 0.9599

CWT 85.38 89.51 84.82 87.10 0.9191

Multi-channel spectrogram 93.10 92.28 96.66 94.42 0.9774

Table 6. Classification results of experiment 3.

Map type Accuracy [%] Precision [%] Recall [%] F1-score [%] AUC

Mel-spectrogram 93.67 98.28 91.44 94.74 0.9817

Spectrogram 91.76 93.03 93.34 93.19 0.9717

CWT 88.99 91.74 89.84 90.78 0.9569

Multi-channel spectrogram 97.80 97.14 99.18 98.15 0.9979

Tables 5 and 6 show the classification results
for experiments 2 and 3. The results show that the
recognition effect of the multi-channel spectrogram
is consistently better than that of the single-channel
spectrogram when using different dataset partitioning
methods.

4. Discussion

In this study, the performance of Mel-spectrogram,
spectrogram, CWT, and multi-channel spectrogram in
classifying snoring and the non-snoring sound was in-
vestigated. The results show that the Mel-spectrogram
has the best recognition effect when the single-channel
spectrograms were used as input, which is in agreement
with the results of the study by Jiang (2020). The en-
ergy peak frequency of the snoring sounds mentioned
in the study is 250 Hz, and most of the energy is dis-
tributed below 1000 Hz, while the energy of respiratory
sounds and other noise is distributed above 1000 Hz
(Pevernagie et al., 2010; Jiang et al., 2020). The fre-
quency of the spectrogram is linear distribution, which
leads to the insufficient frequency resolution in the low-
frequency part, making it challenging to detect some
weak snoring changes. The Mel-spectrogram converts
the linear frequency into the Mel frequency, offering
detailed representation of the low-frequency informa-
tion and rough representation of the high-frequency
information, which aligns with the energy distribution
of the snoring spectrogram.

Apart from Spectrogram and Mel-spectrogram, which
are computed based on STFT, the CWT commonly
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used in speech recognition is also imported into the
same CNNmodel. A study byHuzaifah (2017) proved
that CWT performs significantly worse than spectro-
gram and Mel-spectrogram when employed in a CNN
to classify various environmental sounds. The same re-
sult was obtained when the three feature maps were
applied to snoring and non-snoring sound classifica-
tion. It means that CWT cannot provide more snoring
sounds details in the low frequency compared to the
other two maps. However, it is premature to conclude
that CWT is always inferior to the feature maps based
on STFT, because the experiment may be influenced
by parameter settings for map extraction and model
structure.

It should be pointed out that the peak energy fre-
quency of snoring sound among different people is not
consistent, and even the snoring of the same person
is different. Jiang et al. (2020) analyzed the energy
distributions in snoring and non-snoring sub-bands of
subjects and found that 60% of the snoring spectral en-
ergy was distributed between 100 and 300 Hz, and 40%
of it was also distributed in each frequency band above
300 Hz. The information contained in a single-channel
input may be restricted, which can limit the poten-
tial of the deep learning model to learn more compli-
cated representations from snoring sound signals. The
multi-channel map was used to overcome the limita-
tion of a single-channel input in speech recognition.
Various methods were used to construct multi-channel
maps in such studies.Adavanne et al. (2018) proposed
a method where multi-channel could be extracted from
the same signal recorded by different microphones. An-
other approach by Fu et al. (2017) involved comput-
ing the real and imaginary parts of the STFT to form
a 2D-channel spectrogram.

Arias-Vergara et al. (2021) computed CWT, Mel-
spectrogram, and gammatone spectrogram from the
audio signal and combined them into a 3D-channel

Table 7. Summary of previous studies on snoring detection.

Author Subjects Datasets Features Methods Result [%]

Khan (2019) 1000 MFCC image CNN Accuracy: 96

Jiang et al. (2020) 15 12 457 Mel-spectrogram CNN+LSTM+DNN
Accuracy: 95.07
PPV: 94.62
Sensitivity: 95.42

Cheng et al. (2022) 43 15 520 MFCC, Fbanks,
Short-time average energy, LPC

A multi-input
model based on LSTM

Accuracy: 95.3
PPV: 95.7
Sensitivity: 94.9

Dafna et al. (2013) 67 281 953 Time-related features,
Spectral-related features

AdaBoost Accuracy: 98.2
Sensitivity: 98.1

Cavusoglu et al. (2007) 30 9000 Average normalized energy
in each subband

Robust linear regression Accuracy: 90.2
PPV: 98.7

Sun et al. (2022) 24 36 938 Bark sub-band feature,
MFCC, LPC, etc.

XGBoost
Accuracy: 87.22
PPV: 95.09
Sensitivity: 87.16

This work 30 59 293 Multi-spectrogram CNN
Accuracy: 94.16
PPV: 92.64
Sensitivity: 93.35

spectrogram. Compared with single-channel maps, the
performance of these multi-channel maps with a CNN
model was improved. In our work, when a multi-chan-
nel spectrogram was used as the model input to iden-
tify snoring sounds, the result was consistent with
the expectation, which was better than the Mel-
spectrogram with the best classification effect of sin-
gle-channel feature maps. This suggests that the multi-
channel spectrogram contains more spectrum infor-
mation than a single spectrum. The CNN model can
capture more feature information from the fusion map
than from a single-channel feature map through multi-
layer convolution layers.

Many researchers have proposed a variety of exper-
imental methods to classify snoring and non-snoring.
Table 7 compares the research methods in related fields
with the current experiment. Khan (2019) collected
online snoring resources as datasets, extracted MFCC
images, and input them into a CNN model training
and obtained a 96% accuracy. However, the number of
experimental samples was only 1000, and the source of
snoring sound was singular. In our experiment, 59 293
sound samples were extracted from 30 subjects with
better generalization ability, and three different verifi-
cation methods were used to evaluate the performance
of the feature map, resulting in the generalization of
the results. Jiang et al. (2020) used two classifiers,
CNNs-DNNs and CNNs-LSTMs-DNNs, to identify
snores from sound fragments, including spectrogram,
Mel-spectrogram, and CQT-spectrogram. The results
demonstrate that the combination of Mel spectrogram
and CNNs-LSTMs-DNNs was well suited for the task.
However, the input images contained limited infor-
mation from single-channel spectrogram. Moreover,
the data of the training set and the test set are not
independent and using this model to detect individual
snore fragments throughout entire night may lead to
deviation. Cheng et al. (2022) designed a multi-input
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model based on LSTM and extracted MFCC, Fbanks,
short-term energy, and LPC as four branches of the in-
put layer. After integration, ANN was used as the clas-
sifier, and finally, a 95.3% snoring recognition rate was
obtained, an improvement compared with a single fea-
ture processing network. Nevertheless, the model’s in-
put layer has multiple parallel input branches, and the
network structure is relatively complex.

In their experiment, the fusion feature maps were
employed in feature extraction, and only one entry
was needed for model input. In Dafna et al. (2013),
127 features from both the time domain and fre-
quency domain were extracted. Using a feature selec-
tion method, 34 most effective features were selected
objectively, and the AdaBoost classifier was used and
yielded a 98.2% recognition rate. However, the extrac-
tion process involved various features, making the pro-
cess of feature extraction complicated.

Cavusoglu et al. (2007) divided the frequency
range of snoring sounds (0–7500 Hz) into 500 Hz sub-
bands and calculated the average normalized energy in
each sub-band to obtain spectral characteristics. The
linear regression model was used and a 90.2% accuracy
was obtained. However, the energy distribution of snor-
ing was mainly concentrated in the low frequency and
the band division of equal intervals may lead to insuf-
ficient low-frequency resolution. Sun et al. (2022) pro-
posed a snoring detection algorithm based on acoustic
features and XGBoost. Various training and test data
splitting methods were used to evaluate model perfor-
mance, and the results showed that when the training
set and test set are from all subjects, the classification
performance was better than that of the training set
and test set from different independent subjects.

In terms of experimental accuracy, the method pro-
posed in this work is significantly improved compared
with 90.2% reported by Cavusoglu et al. (2007) and
92.78% obtained by Sun et al. (2022). However, it is
important to acknowledge that different research sam-
ples are distinct, the subjective standards of labeled
samples are different, and the methods of splitting data
sets are also different. It is therefore difficult to com-
pare the classification results to make a unified judg-
ment. The multi-channel spectrogram proposed in this
study has more than 92% in all evaluation indexes on
the CNN model, indicating that this method can effec-
tively detect snoring sound.

5. Conclusion

This study explored a classification method for
distinguishing between snoring and non-snoring using
a CNN model with a focus on a multi-channel spec-
trogram with a CNNmodel. Mel-spectrogram, spectro-
gram, and CWT were used as three channels for con-
structing multi-channel maps. The four feature maps
of the snoring sound signals of 30 subjects were ex-

tracted for training and testing, and the results demon-
strate that the classification performance indicators of
the multi-channel spectrogram are improved compared
with single-channel spectrograms. The main contri-
bution of this work lies in proposing a multi-chan-
nel spectrogram based on the fusion of a single-channel
spectrogram for snoring detection. The study also com-
pared the classification performance of each feature
map under the same network model.

This work focused on improving the feature ex-
traction stage, extracting the feature maps contain-
ing more time and frequency domain information, to
adapt to the strong fitting ability of the deep learn-
ing model. Future work can be carried out in differ-
ent directions. Firstly, a comparison of diverse types
of multi-channel spectrograms combined with various
classification networks could be explored to further im-
prove the accuracy of current snoring detection algo-
rithms. Another direction is to explore how snoring
sound detection contributes to the task of detecting
OSAHS. This experiment can be used as the first step
in OSAHS detection because snoring events are closely
related to apnea. In addition, the snoring sound iden-
tified by this model could be further used to quantita-
tively evaluate the severity of OSAHS.

However, the snoring data collected in this exper-
iment is limited to a hospital environment. Differ-
ent recording environments have different background
noise, which cannot guarantee the performance of the
model in other recording settings. Therefore, more
recording data in diverse environments (bedroom, dor-
mitory, hotel, etc.) is needed to obtain a more reliable
snoring recognition model and make it more robust
and generalized. In addition, it is necessary to pay at-
tention to the computational efficiency and memory
overhead of the model to ensure that model meets the
requirements for mobile deployment.
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