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A model for a comb transducer is investigated in which the comb-sample interface is
modeled by a periodic system of cracks. Leaky interface crack waves are generated by a
normal incident shear bulk wave beam or by an equivalent excitation of the comb teeth at
the interface. The generation efficiency is analyzed in systems where both the comb and
the sample halfspaces are from the same material, steel or aluminium, for different teeth
width and period, and for the case of solid contact between the two halfspaces between
cracks; the other case of sliding contact is discussed briefly. Numerical results show that
up to 25% of the incident power can be transformed into interface crack waves by a comb
tooth. Optimal number of comb teeth is estimated, and the transducer frequency response
is discussed. Approximated relationships are presented that may help designing a comb.

1. Introduction

A model of comb transducer analyzed below was introduced in two earlier papers
[1, 2]. They present the analysis of the bulk wave scattering by periodic cracks at the
interface of two contacting elastic halfspaces (Appendix A). It has been shown that an
interface “crack wave” can be excited by a normal incident bulk wave beam and that
this is a leaky wave that sheds its energy back to bulk waves due to the interaction with
periodic cracks.

In this paper we continue investigation of the crack wave generation using the con-
venient transfer function model developed in [2] (and shortly presented in Appendix B),
that is applying indirect characterization of the incident bulk wave by certain equiva-
lent excitation of comb teeth at the interface (u̇0). This approach simplifies much the
analysis and delivers sufficiently “flexible” tool for evaluation and optimization of the
comb transducer parameters. For simplicity reasons, the same material is assumed for
both the comb and the sample to which the comb is applied with solid contact between
cracks. The incident wave is a normal propagating shear wave, characterized by a shear
force at the comb teeth-sample contact area. (It is worth to note that in the considered
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case, the normal stress at the interface vanishes [1] because both the contacting half-
spaces vibrate accordingly in this direction. Thus the ‘solid contact’ means vanishing
normal stress at the interface between two identical halfspaces. In the complementary
case of sliding contact and vanishing shear stress, where the normal stress is applied at
the interface, the resulting normal particle displacements of both halfspaces may overlap;
this case requires cautious discussion, perhaps including nonlinear effects [3] which may
prevent such transducer application in nonlinear investigation of materials [4]. This case
is discussed only briefly at the end of this paper.)

The above mentioned relationship is

Tm = Ym−nu̇n , (1)

where Tm is the total force exerted by the m-th comb tooth (placed at x = mΛ where
Λ = 2π/K is the teeth, or crack period) onto the sample, u̇n is the equivalent excitation
of the n-th tooth at the interface which interpretation is presented in Fig. 3 of [2]. It is
sufficient here to describe it as an equivalent difference of displacement velocity of the
comb tooth and the sample that accounts for the displacement velocity of the incident
wave u̇I . As concern Y, its most important component discussed in this paper is that
resulting from the propagation of crack waves along the interface and causing some distant
teeth to respond to the excitation. In the considered case and the interface normal to y

axis, u̇ = [∆u̇x, 0], T = [T yx, 0], and Y are all scalars.
We neglect the local bulk wave field around the excited tooth that vanishes much

faster with distance (n − m)Λ than the leaky interface crack waves do. The discussed
part of the transfer function results from the residuum (at poles ±rc) of the discrete
inverse Fourier transform integral presented below after [2]

Yk =
1
K

K∫

−K

(
a

r − rc
+

a

r + rc

)
e−jrkΛ sin π

r

K
dr. (2)

Note that in the considered systems (|rc| ≈ 0 with respect to K) the integration path
can be extended to ±∞ within accepted accuracy and using the Cauchy theorem, the
integral can be easily evaluated by residua (the Jordan’s lemma is satisfied).

Equation (1) allows us to evaluate 1) the delivered power from the excitation source
u̇n directly to the crack interface waves, that is necessary in evaluation of the efficiency
of the comb transducers, 2) how this efficiency depends on the comb/sample material,
teeth width and period, 3) and how much power of interface wave can be achieved at
the comb edge for long combs having many teeth, accounting for that some distant teeth
contribute weakly due to the leaky nature of the interface crack waves causing them
to decay along the propagation path. The above subjects are discussed detaily in this
paper on the basis of extended numerical examples for steel and aluminium materials.
The analysis is carried out for particular frequency (we apply ω = 106 s−1 like in [1]),
note however that varying K is equivalent to varying ω−1 at constant Λ as discussed
in [1]. That means that the comb frequency characteristic can be figured out from the
transducer efficiency dependence on K.
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2. Approximation parameters

It is shown in [1] that the interface “free vibration” exists for certain wave number of
cracks Kc, and the leaky interface crack waves exist for K > Kc. Thus the primary task
is to find Kc for the considered system: crack width 2w, the material of comb and sample
(in this paper they are the same), and the type of contact between cracks (considered
solid here). Figure 1 presents the results of computations carried out on the basis of
theory presented in [1]. Note that the free vibrations correspond to rc = 0 in Eq. (2),
and that a = 0 in this case because, as was shown in [1], no normal incident bulk wave
is able to excite them.

Fig. 1. “Free interface vibration” wave number Kc for cracks in steel (thick solid line) and aluminium
(dash), for different crack width (∆ = cos Kcw). Thin lines with corresponding symbols present cases
of sliding contact between the same or different halfspaces. Free vibrations, if exist, have their wave

number between corresponding shear and Rayleigh wave numbers, kt and kR.

In Eq. (2), two parameters are introduced which must be evaluated numerically for
the considered systems: the interface excitation strength a and the wave number rc

that is related to the wave number of the right propagating interface wave by kc =
−rc + K. We apply rc because conveniently rR

c = Re {rc} > 0 and rI
c = Im {rc} > 0.

Naturally, Im {kc} < 0 because the leaky wave propagating right, exp(jωt−jkcx), decays
at x → +∞ [2].

Starting from Kc, any higher K produces a and rc different from 0, their evaluation
is discussed in [2]. The results are presented in Fig. 2 for steel and aluminium, for several
values of crack relative width characterized by ∆ = cos Kw and for certain domain of
K > Kc. The applied material data are for Al: ρ = 2.7[103 kg/m3], µ = 27[109 Nm−2],
λ = 108[109 Nm−2] resulting in the shear wave number kt = .3162[1/mm], and for Fe:
ρ = 7.8, µ = 79, λ = 112, and kt = .3142, in corresponding units.
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Fig. 2. Parameters of the spectral transfer function approximation, rc and |ac|, dependent on crack wave
number K, for steel and aluminium and different ∆. Horizontal and vertical axes are nondimensional:
(k∗c − kt)/kt (imaginary part of k∗c is 2.5× exaggerated) in the upper row, and ac/Zt in the lower.
The interface wave number kR

c = K − rR
c is little above kt and almost constant for larger K, while

its damping coefficient, rI
c , has maximum at K close to kt. If the difference kc − kt is larger, then the

interface wave field decays faster in depth of the body and thus is more similar and matched to Rayleigh
waves propagating at free sample surface. Dash lines present a standing wave coefficient γ (actually γ/20

to match the scale) discussed in the last section.

3. Energy flow

Let’s assume that only u̇0 6= 0, and the remaining u̇n are all zero accordingly to the
solid comb/sample contact condition without existence of any incident bulk wave there
(it means, within the interpretation of [2], that we consider a narrow incident wave beam
of width constrained to a single comb period). Using Eqs. (1), (2), we easily obtain for
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m 6= 0 on both sides of the excited tooth at x = 0

Tm = ju̇0Λace
−jkc|m|Λ, ac = a sin πrc/K. (3)

Neglecting unimportant phase, the total force excerted by m-th comb tooth on the con-
tacting sample behaves like |T0| exp(−rI

cmΛ) where T0 is a limit of Tm as formally
evaluated from Eq. (3) at m → 0. This comb tooth/sample contact force results from the
decaying leaky interface crack waves that spread the acoustic signal along the interface
from the excited tooth to infinity in both directions. This was illustrated in figures pre-
sented in [2] in logarithmic scale producing easily recognizable linear dependencies with
slope determined by rI

c .
The above results deserves deeper discussion. For rc ∼ 0, the bulk wave reradiated due

to the above mentioned leakage, propagates in almost normal direction to the interface.
Moreover, the decaying is not very rapid so that we can consider this reradiated wave to
be a planar wave, with different amplitude in different Λ-wide domains centered at mΛ.
We know the total force in that domain, it is |Tm|, thus we may guess that the average
stress in this Λ-wide domain is T0 = |Tm|/Λ. This average is the 0-th Bloch component
of the interface stress distribution discussed detaily in [1].

The surface stress T0 (this is a shear stress in the discussed system) excites shear
bulk waves of power density Πy = |T0|2/Zt combined in both upper and lower halfspaces,
where Zt =

√
ρµ is the acoustic impedance. (Exact evaluation of the wave field compo-

nents and powers is presented in Appendix C.) The power reradiated into bulk in one
Λ-wide domain is ΛΠy (the power per comb tooth), and the total reradiated (“leaking”)
power on both sides of the excited tooth is

P lkg =
2

ZtΛ

∞∑
m=1

|T0|2e−2rI
cmΛ, (4)

that must be equal to the total power of the generated interface waves in both directions,
that is 2Πc where Πc is the right-propagating interface wave power.

Thus, on the strength of Eqs. (3), (4), we obtain important estimation

Πc =
1

2rI
cZt

∣∣∣∣
T0

Λ

∣∣∣∣
2

=
1
2
|ac|2
rI
cZt

|u̇0|2, (5)

for the crack wave power generated in one direction by a single tooth. It depends on the
excitation strength u̇0, and also on both spectral transfer function parameters discussed in
previous section: rc and a. (We apply notation of Π for the power flux density: [Wm−2]
for bulk waves and [Wm−1] for interface waves, and P for total delivered power: Π

multiplied by a beam width of bulk waves, for instance.)
In general, the parameter a in Eqs. (2), (3) has complex value. It describes the compli-

cated phenomenon of crack wave generation by the excited comb tooth in presence of the
bulk wave field that is excited simultaneously, and which field is described by the term
const in Eq. (20) of [2]. This term is neglected in Eq. (2) of this paper; only terms describ-
ing interface waves alone are accounted for there. The resulting simplified approximation
cannot be used for evaluation of the delivered power to the system through 1) evaluation
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of the resulting force at the excited tooth T0, and 2) applying it in the relation for the
executed work .5Re

{
T0u̇∗0

}
, because T0 is not the full force there.

There is another point of view however, by analogy to the similar problem for in-
terdigital transducers [5]. We can apply another parameter a′ in Eq. (2) instead of the
original complex a, in order to evaluate the work on excitation of the isolated interface
waves only, provided that 1) a′ has imaginary value so that the power delivered to the
system by far spectrum (|r| large) vanishes (and vanishes if there are no poles at all),
and 2) the excited wave field, in our case |Tm|, evaluated with a′ is the same as that
evaluated with a.

Both conditions are immediately satisfied by applying a′ = j|a|. This makes the
relation (2) to describe correctly the system supporting the isolated crack waves only,
thus the evaluated force under the excited tooth can be used for evaluation of the executed
power on excitation of interface waves, that is, the power delivered to crack waves alone

T
′
0 =

u̇0

2K

∞∫

−∞

( |a|
r − rc

+
|a|

r + rc

)
(ejrΛ/2 − e−jrΛ/2) dr. (6)

Note that the Jordan lemma is satisfied either in lower or upper complex halfspaces of
r. This yields T

′
0 = jΛ|a| exp(jrcΛ/2), and finally the delivered power to the system

P dlv =
1
2

Re
{
T
′
0u̇0

}
=

1
2
|u̇0|2|a|e−rcΛ/2 sin πrR

c /K, (7)

which power must be equal to the earlier evaluated total power of both excited crack
waves. This produces the relationship that is fairly well satisfied in the computed exam-
ples

|a| = Ztr
I
crR

c |rc|−2. (8)

Direct evaluation of the excited crack wave power that verifies the above estimation is
presented in Appendices C and D; that evaluation is used primarily in the computed
results presented below.

4. Transducer efficiency

It results from Eq. (22) of [2] that the incident wave of particle displacement velocity
u̇I is modelled by u̇0 = 2u̇I in Eq. (1). Using again the plane wave approximation to
the incident shear wave beam of one period width, the estimated incident power is P I =
.5Λ|u̇0/2|2/Zt. The one-sided generation efficiency of a single comb tooth (accounting for
only the interface wave propagating in either right or left direction), can be defined as

η1 = Πc/P I = rR
c Λ

rI
crR

c

|rc|2 , (9)

where we exploited Eqs. (7) and (8). This strikingly simple estimation is valid for close to
normal incidence and small rc, independently of the teeth width or period, but may be
less accurate for larger values of K−Kc. The bulk to crack wave conversion coefficient is
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twice that: 2η1 ≈ rR
c ΛIm {(rc/|rc|)2}. Figure 3 presents the single comb tooth efficiency

evaluated for aluminium and steel materials. Up to about 25% of the incident wave
beam power can be transformed into the interface waves by a tooth in both left and
right directions (Appendix E). This is equivalent to about 5% of the incident power in
an interface wave in the sample alone and in one propagation direction.

Fig. 3. A single tooth efficiency for aluminium and steel, for normal incident shear wave and solid
contact between cracks, evaluated with help of Appendices A and B. Dash lines present the estimated
values, Eq. (9). Maximum efficiency is achieved with comb teeth ∼ 30% narrower than half teeth period

(∆ ∼ 0.4).

It is interesting how much power can be transformed into an interfacial wave by direct
tooth excitation, that is by applying u̇0 neglecting how that can be done practically. This
depends on how much bulk wave power is simultaneously generated by u̇0. This depends
on the neglected const in the approximation (2) to Y(r), see Eq. (20) of [2]. This const
can be evaluated by applying small value of r ¿ rR

c in Eq. (17) of [2]. The resulting Fig. 4
shows that this const = 0 for certain Ko. In this case the bulk wave radiation ceases; only
interface waves are generated in both directions from the excited tooth. If there are many
excited teeth, the evaluated interface wave field looks like these presented in Fig. 4. This
figure computed using FFT like in the paper [2] shows that indeed at Ko, the interface
wave field includes only the decaying crack waves, without bulk waves.

From practical point of view, more important is the maximum interface wave power
that can be generated for given uniform excitation. Each of comb teeth contributes to the
crack wave power. For M = 2N − 1 excited teeth, the resulting interface wave amplitude
can be characterized by a force of the next to the last excited tooth in the system

|TN | =
∣∣∣∣∣u̇0

N−1∑

l=1−N

YN−l

∣∣∣∣∣ ≈ |u̇0|Λ2 |a|
∣∣1− ejrcMΛ

∣∣ , (10)
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Fig. 4. The const part of Y(r) that is responsible for direct bulk wave generation by the excited comb
teeth, vanishes at certain Ko. The wave-field exponential shape inside the uniform excitation domain of
100 teeth confirms well that there is almost exclusively an interface wave without a floor of bulk waves.
This is not the case if K 6= Ko, shown here for comparison. This figure clearly shows that applying more
teeth than optimal does not produce any higher interface wave amplitude: compare wave-fields outside

the excitation domains of 20 and 100 teeth.

Its value is |1− ejrcMΛ||2 sin πrc/K|−1 times greater from the earlier evaluated |T1| for
a single excited tooth, Eq. (3).

Applying this value for estimation of the crack wave power, Eq. (5) or the correspond-
ing relations from Appendix C, we obtain that

Πc = Π∞|1− ejrcMΛ|2, Π∞ =
P I

2rI
cΛ
|a/Zt|2, (11)

where P I = .5ZtΛ|u̇I |2 is the incident power per comb period. In the limit of infinite
comb, Πc = Π∞. The coefficient g = Πc/P I shows how much times the crack wave
power is greater than the incident bulk wave power per comb period. The transformation
efficiency of comb transducer is g/M because the total incident power is MP I . Example
dependences of the generated interface wave power on a number of exciting comb teeth are
shown in Fig. 5 (reminding the correspondence of ω and K−1, this figure also represents
the comb frequency response). There are local maxima resulting from certain interference
of contributions of the edge comb teeth that ceases with growing M because of wave
damping, rI

c > 0. For given K, the first maximum appears at M where

e−rI
cMΛ sinφ = sin(rR

c MΛ + φ), sinφ = rI
c/|rc| (12)

(π − 2φ < rR
c MΛ < π − φ). This M is an optimal number of teeth making the comb to

produce the maximum power of an interface crack wave.
It depends on rc how many teeth the comb must count to achieve the maximum crack

wave power. In practice, the comb should have number of teeth evaluated for K produc-
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Fig. 5. Power conversion efficiency of combs with different teeth number M , as evaluated from the
crack wave power (solid lines) and estimated (dash lines). Accounting for that ω ∼ K−1 for given comb
period, the frequency characteristic of comb can be figured out from the comb efficiency dependence on
K. Figures show that, for reasonable values of M , the maximum efficiency is achieved at K not much
higher from Kc, and that the efficiency is higher for narrower teeth, at cost of narrower passband, which

relative width is generally smaller by half, than M−1.

ing the highest interface crack power. Figure 6 presents the convenient dependency of
maximum interface power on the optimal number of teeth, both evaluated for given K.
This parametric dependence (with parameter K), is sufficient for the comb optimiza-
tion: we seek the largest power possible within the required passband that in inversely
proportional to the teeth number (Fig. 5).

In the discussed transfer function model, we neglected the term resulting from the
unknown T0 in Eq. (B.1). Now we check the validity of this assumption. Figure 6
presents the interface wave field evaluated from the model and evaluated directly from
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Fig. 6. A basis for comb optimization: the parametric dependence of maximum, with varying K, of the
generated crack wave power on the teeth number M : for given K, an optimal M is evaluated and then
the resulting crack wave power at the comb edge. Much higher power can be achieved with larger but
not practical values of M resulting for lower K, and for narrower teeth width because of smaller crack
wave leakage: smaller rI

c at low K −Kc. Example interface wave-fields are shown for optimal value of
Mo = 20 teeth assumed somewhat narrower than half period Λ (∆ = 0.2), inside and outside the comb
domain and for optimal, lower and higher values of K. They are evaluated using the model (lines), and
by applying the “sin x/x” angular spectrum of incident wave beam TI(r) in Eq. (A.1) (symbols). The

overlapping results confirm the assumptions applied in modeling the teeth excitation (Appendix B).

Eqs. (A.1) – (A.5), by applying TI(r) = M sin(rMΛ/2)/ sin(rΛ/2): this is an approxi-
mated spectrum of uniform incident wave beam of width MΛ. The agreement is excel-
lent.

5. A modified comb

Let’s consider a slightly oblique incidence, at angle α off normal. It results in the
interface force having different phase at different comb teeth: u̇l = u̇0 exp(jlΛkt sin α).
Neglecting the origin of these forces, whether resulting from an incident wave or from a
direct teeth excitation, their spectral representation at the interface plane has the known
“sin x/x” shape, x = (r − kI)MΛ/2 where MΛ is the excitation area.

For normal incidence considered in previous sections, this sin x/x function is centered
at r = 0. The excited interface wave amplitude however, is evaluated from Eqs. (1), (2) at
poles ±rc 6= 0. This means particularly that the interface waves are excited inefficiently
by side, off-maximum spectral line of the excitation force, and can be near zero if rR

c falls
near zero of sin x/x (this depends on M). The remedy to this defficiency is discussed
here. To place the maximum spectral line of the excitation force closer to rc, we modify
the comb transducer arrangement by applying oblique wave beam incidence. In order to
stay within previously applied assumption of T22 = 0 at the comb/sample interface, two
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oblique incident shear waves (with ±α angle of incidence) should be generated by two
piezoelectric slab transducers at the comb top. Their total normal power flux combined
Πy yields an equivalent teeth excitation u̇0 =

√
2Πy cosα/Zt exp(±jkIx) that is

√
cos α

times that of a single normal incident wave beam discussed earlier.
A pair of off-normal incident wave beams produces an interface excitation force having

two spectral lines of sin x/x shapes with maxima placed at ±kI . We may assume that the
left incident wave beam, producing spectral line at kI , matches rc = K−kc and produces
only the left-propagating crack wave, and the right wave beam – the right interface wave
only. For uniform excitation with variable phases, the amplitude of tooth force just right
to the comb is

TN = u̇0

∑

l

K∫

−K

a

r + rc
ej(r−kI)(N−l)Λ sin πr/K dr/K,

(13)

|TN | ≈ |ac||u̇0|Λ
∣∣∣∣
1− exp j(rc − kI)MΛ

2 sin(rc − kI)Λ/2

∣∣∣∣,

which |TN |, like in all numerical results presented above, can be applied in equations of
Appendices C, D in order to evaluate the interface power Πc.

The maximum crack wave appears at kI = rR
c ; this determines a center frequency

of the structure. This maximum is ∼ M exp(−rI
cMΛ/2) dependent on M , and there is

optimal Mo = 2/rI
cΛ producing its largest value ∼ Mo/e. The maximum value of |TN |/Λ

is |u̇0||ac|Mo/e which value is used for the estimation of both generated interface waves
power based on Eqs. (5) and (8).

2Πc
max ≈ 8

ΠyΛ cos α

rI
cΛ

∣∣∣∣a
rcΛ

2Zt

∣∣∣∣
2

Mo

e2

2
rI
cΛ

, (14)

it can be as high as .5ΠyMoΛ. It results that almost 50% conversion can occur in an
optimal case.

The structure is promising. Particularly, rc − kI can have purely imaginary value at
center frequency. Thus the maximum interface wave power is independent of how large
the value of rR

c is, allowing us to exploit the optimal case of large a and small rI
c in the

whole domain of K. With small rI
c , we get large optimal wave beam width MoΛ that

is large total incident power, and large part of it can be converted into crack waves at
center frequency.

6. Incident longitudinal waves

The short discussion here concerns the case of normal incidence of longitudinal wave
beam and sliding contact between cracks. The same materials are assumed for the comb
and the sample. Therefore the interface stress T = [0, Tyy], particle displacements u =
[0, uy], acoustic impedance Zl =

√
ρ(2µ + λ), and proper transfer function Y should

be applied in the theory that is otherwise similar to that presented above for incident
shear wave. Here we present only numerical results in the domain of K where Eq. (8)
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is satisfied with adequate accuracy. This means that the same physical interpretation of
the results holds in both cases.

Fig. 7. Optimization figure for the case of incident longitudinal wave and sliding comb-sample contact.
The efficiencies evaluated from the Bloch wave powers (higher values) and estimated, Eq.(9) (lower
values), diverge at higher K indicating that the model losses its validity there. The comb efficiency is

much lower than in the case of incident shear wave in the analogous domain of K and M .

We notice from Fig. 1 that the free vibrations exist only for relatively wide crack
and narrow teeth: below Λ/3 wide. Figure 7 presents the single tooth efficiencies, both
evaluated from the energy flow of the generated wave-field, and from the approximation
(8). Note that the efficiency is much lower than in the previously discussed case of solid
contact in similar domain of K. This results in low efficiency of comb having practical
M < 25 teeth; the generated power is much less than the incident power per comb
period.

7. The edge phenomena

Above, we discussed the phenomenon of interface wave generation in infinite system
of periodic cracks, that is the generation under an infinite comb attached to an infinite
sample (albeit only finite number of teeth were insonified by the incident wave beam).
The interface waves were assumed to propagate freely along the entire system. This
assumption is correct for combs long enough with respect to the interface wave length
2π/kc ≈ Λ, and is well satisfied for combs with near optimal number of teeth (10 or
more, Fig. 6).

There is an edge however in any practical combs, where the crack waves can no
longer propagate and thus the complicated phenomena of reflection, transformation into
a Rayleigh wave existing outside comb, and scattering into bulk waves must be invoked.
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It is far beyond the scope of this paper to cover adequately the resulting diffraction
problem for semiinfinite periodic system (to focus attention on the single edge of a comb
only). Instead, we will present a simplified model appropriate only for better physical
understanding of comb transducers. We will consider only the wave field in the sample
neglecting this part of the interface wave that propagating inside the comb, must fall on
the comb walls and scatter. Moreover, we neglect the backward wave component of the
interface waves.

The considered system is periodic, and thus the interface wave field is composed
of series of Bloch components. Two of them, ±1st components carry energy along the
interface: the 1st carries energy in positive direction with respect to the interface wave
propagation, this is a forward propagating component, and the −1st carries energy in
opposite direction – this is a backward wave component. The power carried by an interface
wave is the sum of both partial powers Πc = Π(1)+Π(−1), accounting for that Π(−1) < 0.
These two components may have quite different wave numbers: kc = k1 = −rc + K and
k−1 = −rc −K respectively for the forward and backward components of a crack wave
propagating right, and they decay quite differently in depth of the sample [1]. This makes
the considered scattering phenomenon much more complicated than the corresponding
phenomenon of interdigital transducers where both forward and backward components
are only weakly perturbed Rayleigh modes [3] in which case the exploited simplification
leads to the reflection/transmission problem only.

Examples of the standing wave coefficients γ2 = −Π(−1)/Π(1) in the considered
structures are presented in Fig. 2, as yet another characterization of interface waves. We
notice that γ → 1 at K → Kc; this explains why the interface “free vibrations” (K = Kc)
do not transport energy along the interface: the energy carried back by backward Bloch
component compensates perfectly the energy carried forward by the forward component.
For greater K however, γ < 1 and the backward energy transport diminishes allowing
some net energy to be transported along the interface; this is the interface wave power.
In what follows, we will consider the case of small γ, allowing us to neglect the back-
ward wave component. This simplifies the modeled wave scattering phenomenon. It is
still however, much more complicated than that for interdigital transducers because of
proximity of wave numbers kc and kt (the shear wave number). Due to the resulting
significant difference in the penetration depths of crack and Rayleigh waves, much power
is expected to be scattered into bulk waves.

Summarizing, the model of the scattering problem is the following. There is a semi-
infinite comb where an interface wave propagates (only its forward propagating Bloch
component is accounted for but its damping is neglected, Im {kc} → 0) towards the edge
where it scatters producing the transmitted Rayleigh wave outside the comb, and also
producing the reflected interface wave and bulk waves. We are interested mostly in the
transmitted Rayleigh wave amplitude and also in the reflected interface wave because it
can result in certain spurious “ringing” phenomenon in real finite combs. The problem is
considered in detail in Appendix F with help of the Wiener-Hopf technique [6]. Figure 8
presents the computed examples. Generally, the interface wave to Rayleigh wave trans-
formation depends strongly on kc when kc ∼ kt. In practical combs however, kc does
not change much with K (Figs. 2 and 3) and thus the transmission coefficient does not
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Fig. 8. An interface to Rayleigh wave transformation at the comb edge, estimated on the basis of the
Wiener-Hopf diffraction problem: the incident and the reflected crack waves have wave numbers ±kc,
the transmitted is the Rayleigh wave with wave number kR. The transmission is low when kc is close
to kt, and is full when kc ≈ kR. Reflection coefficient is small, few percents, and can be neglected. The

remaining part of the incident wave power is scattered into bulk waves.

change significantly with K: it is approximately 90%. The reflection coefficient can be
neglected.

8. Conclusions

Comb transducers are rather complicated structures. The developed model is perhaps
the simplest but powerful enough to figure out the transducer basic parameters: efficiency
and frequency response, and can be used for certain optimization of the system. Moreover,
the model reveals a number of wave phenomena involved in the bulk to Rayleigh wave
transformation needed for better understanding the comb in practical use.

Summarizing the numerical results presented in this paper we conclude that the
efficiency of comb transducers is not high; about 5% of the incident power (MP I) is
transformed into right-propagating Rayleigh wave in the sample only. The usefulness of
comb relies however on using large P I (incident power per comb period) to generate
strong Rayleigh wave of power ∼ 2P I . The overal efficiency can be perhaps improved
with the proposed modified comb (oblique incidence).

Surprisingly, the optimal number of comb teeth (∼ 20) agree with practical applied
combs [4] (they are usually glued to the sample with salol to make rather solid contact;
practical comb teeth height is a fraction of comb period, and the crack model with
infinitesimal teeth height seems acceptable). However, low expected efficiency of comb
with longitudinal incident wave is rather disappointing.
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Perhaps higher efficiency at smaller M and wider transducer passband can be achieved
with different comb material of rather low acoustic impedance and especially optimized
for given types of materials, e.g. steel or aluminium. Anisotropic or composite materials
can also be analyzed within the developed technique.
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Appendix A: The scattering problem

An elastic halfspace y > 0 is characterized in spectral domain by a harmonic Green’s
relationship u = GT, where u and T are surface particle displacement and stress; G is
the Green’s matrix for the sample. The incident wave in comb material is characterized
by uI = GTI . The scattering problem of bulk waves on cracks is described by a system
of equations [1]

[g∞Sn−m − g(r + nK)]tmPn−m(∆) = −ġ(r)δn0TI(r), (A.1)

for n-th Bloch wave field component, r∈(0,K). There is summation over m∈ [−N, N+1],
Pν is a Legendre function, and

g(p) = −jp
(
G + G

T
)

, ġ(p) = −jp
(
G + G

T
)

. (A.2)

The applied method of solution allows us to constrain n to a finite domain: n ∈ [−N, N ],
where N À kt/K (the domain of n is shifted left for r ∼ K); we used N = 3 in
computations.

The equation results from a contact condition between comb and sample

u =
jπ

K sin πr/K
g∞(−1)mtmP−m−r/K(−∆) = 0 (A.3)

that closes the system.
Now, tm(r) can be evaluated for any r and given spectrum of the incident wave TI(r).

For example, the n-th Bloch component of the interface stress is

Tn = tmPn−m(∆). (A.4)

and the spectral representation of a discrete interface force is

T(r) = ΛtmP−m−r/K(∆), (A.5)

which inverse Fourier transform over domain (0, K) yields Tl, the total force exerted by
l-th comb tooth on the sample. This force may result directly from the incident wave
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beam or, if l is outside the area of incidence (−M/2,M/2), from the generated interface
waves. In this case TM/2+1 can be used for evaluation of the crack wave amplitude. This
straightforward evaluation of the excited interface wave was applied in [2]. In this paper,
we apply the transfer function model presented in Appendix B.

Appendix B: The model

Following the earlier development [2], the incident wave TI can be equivalently char-
acterized by a direct teeth excitation u̇. Here, we present shortly how, and with what
approximation, can this be done.

It is assumed here that r/K is small. This is reasonable if the normal incident wave
beam is wide and thus its spectrum is narrow, see Eq. (A.1). In what follows, we will
neglect small terms of an order of r. Noticing first that the right-hand side of the
Eq. (A.1) at n = 0 is small (∼ r), we divide it by −jr and add to Eq. (A.3) multiplied by
jK sin(πr/K)/π ≈ −jr. This yields

−jr−1g∞[S−mP−m(∆)− (−1)mP−m−r/K(−∆)]tm = 2uI −
[
G + G

T
]
T0 , (B.1)

because ġTI = 2uI . The other component on the right-hand side, (G + G)T(0) is still
unknown. We will have to check it a’posteriori if this term can be neglected.

Note that the coefficients of above equation are of an order of r0, thus finite with
r → 0. Moreover, with the accepted accuracy, Eq. (A.1) at n = 0 becomes

g∞S−mtmP−m(∆) = 0. (B.2)

It makes possible to neglect the first term of (B.1), and thus for r → 0, the Eq. (A.1) and
the above equations yield the following system that constitute the model

[g∞Sn−m − g(r + nK)]tmPn−m(∆) = 0,
(B.3)

jωg∞(−1)mtmP−m−r/K(−∆) = u̇ sin πr/K,

which u̇(r) = 2u̇I − jω(G+G)T(0). Using Eqs. (A.5) and (B.3), we evaluate the spectral
transfer function R(r) involved in

T(r) = R(r)u̇ sin πr/K, R(r) ≈ const + Y(r), (B.4)

as presented in [2]. Its inverse Fourier transform yields Eq. (1), neglecting the const term,
unimportant for interface waves.

The unknown component in u̇ on the right-hand side of Eqs. (B.3) requires certain
further interpretation. We attempt to replace the incident wave, the true source of inter-
face waves, by certain known teeth excitation at the interface. This is like attempting to
neglect the intrinsic impedance of an electric voltage source, replacing it by known volt-
age at the load port. Naturally, we need to correct this voltage a’posteriori, accounting
for the voltage drop due to the current flowing through the impedance.

Something similar, but more complicated is the case considered in this paper: the
interface equivalent excitation u̇ depends on the unknown 0-order Bloch component of
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the interface stress T0. The same stress is responsible for the leakage of interface waves
which is rather small, allowing the wave to propagate along the interface. This suggest
that it can be indeed neglected.

Moreover it is worth to note here that the interface stress T1 is, in fact, responsible for
resonant generation of the interface waves because both have the same wave number−rc+
K = kc (for right propagating waves). Thus we can define alternatively the equivalent
u̇ that reproduces, at r = −rc = kc − K and in a domain around it, the original T1

resulting from TI in Eq. (A.1).
To check the validity of the above introduced model, we may evaluate Y(r) and T1

in both cases, that is using 1) Eqs. (A.1) and (A.3) with TI given, and 2) Eqs. (B.3)
with given equivalent u̇, solving these equations and evaluating the above mentioned
functions of r. The numerical verification proves that the above mentioned equivalent
characterization is very satisfactory in most important domain of spectral variable |r −
rc| ≤ |rc|, for any K discussed in this paper. In fact, this is also confirmed in Fig. 6. As
such, it can be used for evaluation of both rc and a, and the Eq. (1) can be indeed applied
in our analysis of comb transducers.

Appendix C: Amplitudes and powers

Introducing notation for longitudinal and shear partial wave amplitudes Fl and Ft,
it was shown in [1] that

[
u̇1

u̇2

]
=

j√
ρω

[
p −qt

ql p

][
Fl

Ft

]
, (C.1)

which Fl,t can be evaluated from stress T = [T21 T22]T at y = 0
[

Fl

Ft

]
= j

ω

µ

√
ρω

D

[
2pqt k2

t − 2p2

2p2 − k2
t 2pql

][
T21

T22

]
, (C.2)

where p is the wave number r + nK of n-th Bloch component of a wave field; ql,t are
p-dependent wave numbers in depth of the body of corresponding partial waves, and

Π2 = Re
{
ql|Fl|2 + qt|Ft|2

}
/2 (C.3)

is the y-component of the Poynting vector. It can be used for evaluation of the power
shed by the interface wave into bulk wave, particularly by its 0-order Bloch component,
p = −rc for the right propagating interface wave.

To evaluate the x-component of Poynting vector, we need T11. It must be evaluated
from equations of motion of the body

T11,1 + T12,2 = −ρω2u1 , (C.4)

which, using (A.1-2), yields T11 = jµ[(2q2
l − k2

t )Fl + 2pqtFt]/(ω
√

ρω) and thus

[T11 T12] =
j√
ρω

µ

ω
[Fl Ft]

[
2q2

l − k2
t −2pql

2pqt 2q2
t − k2

t

]
. (C.5)
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Taking into account that the wave field inside the body is exp(jωt− jpx− jql,ty), y > 0
for instance, the x-component of Poynting vector is Π1 = .5Re {Tu̇∗}, that is

Π1(y) = −1
2

Re
{
k−2

t [Fl Ft]X[F ∗l F ∗t ]T
}

(C.6)

X = E
[

2q2
l − k2

t −2pql

2pqt 2q2
t − k2

t

][
p∗ −q∗t
q∗l p∗

]
E∗,

where E = diag(e−jqly, e−jqty).
For real ql,t this yields the y-averaged value analogous to (C.3)

Π1 = Re
{
p|Fl|2 + p|Ft|2

}
/2, (C.7)

but in our analysis, where both p and q’s are complex, the wave field decays in depth of
the body and we need the total power carried in the domain y ∈ (0,∞). This requires
integration of Eq. (C.6) term by term

Πx =

∞∫

0

Π1(y) dy (C.8)

(the resulting formula is too complex to be presented here). The above relations can be
applied to any Bloch component of an interface wave under substitution p = −rc + nK.

Appendix D: Low Bloch components

The boundary value problem for interface crack waves is closed in the homogeneous
system (A.1), (A.3) taken with TI = 0, or equivalent system (B.3) taken with u̇ = 0; its
solution is then eventually applied in other equations to obtain corresponding wave field
components, particularly T, that may characterize the wave amplitude. For given T, we
use Eqs. (A.5) in place of (A.3) to evaluate tm and then the other wave field components,
particularly the lower Bloch components of interface stress, T0,±1 from Eq. (A.4) at
n = 0, ±1. In the case of interface waves (no incident bulk wave, TI = 0), these are equal
stresses on both sides of the contacting halfspaces that can be used in Eqs. (C.3), (C.8)
in order to evaluate the corresponding power flux.

The most important are powers carried along the interface by ±1 Bloch components:
Π(±1), and in depth of the body by 0-th component, Πy. (The ±1 components can
carry comparable powers in opposite directions; this is a typical phenomenon in peri-
odic systems [8]; the ratio γ2 = −Π(−1)/Π(1) describes the standing wave coefficient).
These powers determine the total power carried by an interface wave along the interface,
Πc = Π(1) + Π(−1) and the power shed into bulk due to the leakage phenomenon, Πy.
Both directly evaluated crack wave power and the total shed power agree perfectly in
computations. One may thus conclude that the other Bloch components contribute neg-
ligibly to the energy transport in the system; this is also evident from Eq.(C.8) applied
for wave components having large p = −rc + K.
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Appendix E: Maximum efficiency

Theorem. 2η1 ≤ 1/2 results from the system symmetry.

Proof. In certain units, the interface wave power is |aT|2, while the incident power
is |TI |2/Zc, and reflected and transmitted powers are |T−TI |2/Zc and |T|2/Zs, respec-
tively, see Eqs. (3) of [1] for stress in the upper and lower elastic halfspaces. We apply
index c for the acoustic impedance Z of a comb, and s of a sample.

The energy conservation law states that

2|aT|2 + |T−TI |2/Zc + |T|2/Zs = |TI |2/Zc , (E.1)

resulting in

|T| = |TI |cos θ/Zc

a2 + α
, α = (Z−1

c + Z−1
s )/2, (E.2)

where θ is a possible phase shift between T and TI . Substituted into expression for the
interface wave power, this yields

Πc/P I =
2
Zc

a2 cos2 θ

(a2 + α)2
, (E.3)

which ratio has maximum at a2 = α, thus

2Πc/P I =
cos2 θ

1 + Zc/Zs
(E.4)

that is less than a half for the considered case of Zc = Zs. Only 50% of the incident
power can be transformed into crack waves in both directions.

Making a digression, let’s consider a bulk wave beam scattering on a solid surface with
periodic grooves on it; this arrangement was proposed for generation of surface waves
[8]. There is not transmitted bulk wave, thus the last term on the left hand side of (E.1)
must be neglected, and we easily obtain that up to 100% of the incident power can be
transformed into Rayleigh waves in this arrangement.

Appendix F: Edge scattering

Here we apply an approximation [9] to the planar harmonic Green’s function of arbi-
trary elastic halfspace assuming that the normal stress vanishes at the body surface. For
harmonic waves exp(jωt− jpx) on the surface, we have

u =
1√
p2

√
p2 − k2

t√
p2 − k2

t − α
√

p2
T, (F.1)

where u = u1 and T = T12, in certain units that are not important here. The approxima-
tion is valid in vicinity of kt, but we apply it in the whole domain of spectral variable p;
this yields the simplest model of elastic halfspace supporting only shear bulk wave mode
which is cut-off at |p| = kt. The halfspace supports also a Rayleigh wave (for T = 0)
having wave number kR > kt at zero of denominator (F.1).
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To model crack interface waves having wave number kc > kt at another boundary
conditions, we put an elastic layer on the halfspace described by ∆T = eu

√
p2 where ∆T

is the stress difference on both sides of the layer (although it is considered infinitesimally
thin). The stress on the top of the system is

T ′ = T +
e√
p2

u = (1 + e)

√
p2 − k2

t − β
√

p2

√
p2 − k2

t − α
√

p2
T, (F.2)

β = α/(1 + e). There is another surface wave for T ′ = 0,

kR = kt/
√

1− α2, kc = kt/
√

1− β2. (F.3)

The layer is semiinfinite, residing at x < 0, and its edge correspond to the edge of
comb transducer; the rest of the body surface, x > 0, is free where a Rayleigh wave
can propagate. We are going to consider a scattering problem with incident “interface”
wave exp(jωt− jkcx), x < 0, propagating from −∞ towards the edge at x = 0 where it
scatters producing the reflected interface wave exp(jωt+jkcx), x < 0, and a transmitted
Rayleigh wave exp(jωt− jkRx), x > 0, and also the scattered bulk waves.

It is convenient to introduce certain Rayleigh (x > 0) and interface (x < 0) modal
amplitudes F+ and F−, respectively, related to the mode powers by .5|F±|2. Equation
(F.2) can be transformed into

F− =
1√
ξ

√
α

β

1− β2

1− α2

√
p2 − k2

t − β
√

p2

√
p2 − k2

t − α
√

p2
F+, (F.4)

that is convenient for Jones’ formulation of the Wiener-Hopf problem [6] where 1/(p−kc)
describes the incident wave,

F− +
1

p− kc
= A

p2 − k2
R

p2 − k2
c

Gβ(p)
Gα(p)

F+,

(F.5)

Ga(p) =
1

1 + a

(
1 +

a
√

p2

√
p2 − k2

t

)
→ 1 at |p| → ∞,

which Ga(r), a = α, β, can be easily factorized into G+
a G−a , a product of functions regular

in either upper or lower complex halfplanes of p, A2 = [(1−α)/(1+α)][(1+β)/(1−β)]α/β.
The standard separation of functions regular in different complex halfplanes yields

F− =

[
p + kR

p + kc

G−β (p)

G−α (p)
2kc

kc + kR

G−α (kc)
G−β (kc)

− 1

]
1

p− kc
,

(F.6)

F+ =
1
A

2kc

kc + kR

G−α (kc)
G−β (kc)

G+
α (p)

G+
β (p)

1
p− kR

.

An applied inverse Fourier transform would yield the solution, but we are interested only
in the modal amplitudes which are determined by corresponding residua at poles −kc

and kR.
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Both kc,R > kt, and this simplifies evaluation of the required factors of Ga(p),
p = ±kc,R

G+
a (p) =

j
√

kt√
|p| − kt

exp





a

π

π/2∫

0

ln(|p/kt − sin η|)
cos2 η + a2 sin2 η

dη





. (F.7)

It is easy to check that for both kc,R sufficiently larger from kt,

F− ≈ kR − kc

kR + kc
, F+ ≈ 2

√
kckR

kR + kc
, (F.8)

which power combined, approximately equals the incident power, and thus the scattering
into bulk waves is weak. But for kc close to kt, both amplitudes of transmitted and
reflected modes can be much smaller and large part of the incident power goes into bulk
waves.
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