
Archives of Acoustics Vol. 49, No. 1, pp. 95–106 (2024), doi: 10.24425/aoa.2024.148767

Research Paper

The Influential Factors and Prediction of Kuroshio Extension Front
on Acoustic Propagation-Tracked

Weishuai XU(1), Lei ZHANG(2)∗, Hua WANG(2)

(1)No. 5 Student Team, Dalian Naval Academy
Dalian, Liaoning, China; e-mail: xuweishuai2022@163.com

(2)Department of Military Oceanography and Hydrography and Cartography
Dalian Naval Academy
Dalian, Liaoning, China

∗Corresponding Author e-mail: stone333@tom.com

(received May 16, 2023; accepted September 14, 2023; published online December 19, 2023)

The Kuroshio Extension front (KEF) considerably influences the underwater acoustic environment; however,
a knowledge gap persists regarding the acoustic predictions under the ocean front environment. This study
utilized the high-resolution ocean reanalysis data (JCOPE2M, 1993–2022) to assess the impact of the KEF
on the underwater acoustic environment. Oceanographic factors were extracted from the database using the
Douglas-Peucker algorithm, and acoustic propagation characteristics were obtained using the Bellhop ray-
tracing model. This study employed a backpropagation neural network to predict the acoustic propagation
affected by the KEF. The depth of the acoustic channel axis and the vertical gradient of the transition layer of
sound speed were identified as the fundamental factors influencing the first area of convergence, with correlations
between the former and the distance of the first convergence zone ranging from 0.52 to 0.82, and that for the
latter ranging from −0.42 to −0.7. The proposed method demonstrated efficacy in forecasting first convergence
zone distances, predicting distances with less than 3 km error in >90% of cases and less than 1 km error in 68.61%
of cases. Thus, this study provides a valuable predictive tool for studying underwater acoustic propagation in
ocean front environments and informs further research.
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1. Introduction

The Kuroshio Current, a warm ocean current, flows
eastward off the coast of Japan at around 35○N and
141○E and expands eastwards at ∼165○E. The eastern
segment of this current, termed the Kuroshio Exten-
sion (Yasuda, 2003), is characterized by a zonal jet
with substantial amplitude bending, and its location
is presented in Fig. 1. The warm and highly saline
Kuroshio Current flowing from the south merges with
the cold and slightly saline Oyashio Current coming
from the north in the eastern region of Japan. The con-
vergence of these two western boundary currents forms
a distinct transition zone between subtropical and sub-
polar gyres, designated as the Kuroshio Extension
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Fig. 1. Schematic diagram of the Kuroshio and Kuroshio
Extension (base map: multiyear averaged flow field).

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:stone333@tom.com
https://creativecommons.org/licenses/by/4.0/


96 Archives of Acoustics – Volume 49, Number 1, 2024

front (KEF) (Chen, 2008). As an exceptionally promi-
nent mesoscale phenomena across global oceans, the
KEF demonstrates unique physical and chemical at-
tributes that greatly impact underwater acoustic prop-
agation. By examining the acoustic propagation at the
KEF, we can gain a deeper understanding of the influ-
ence of the marine environment on sound transmission.
This study provides essential guidance for applications
such as underwater acoustic communication and sonar
detection. Furthermore, predicting acoustic propaga-
tion variables in the oceanic front environment con-
tributes to technical assistance for ocean environmen-
tal monitoring and the development of marine sonar
detection technology.

The spatial distribution of the sound speed field
experiences rapid alterations in an ocean front with
a narrow transition zone of seawater types character-
ized as an ocean front discontinuity (Cheney, Win-
frey, 1976). Such a phenomenon considerably af-
fects underwater acoustic propagation and associated
transmission losses. As Etter (2013) initially posited,
the impact of ocean fronts on acoustic propagation
is exemplified through the surface sound speed and
the structure of the acoustic channel axis. Prior re-
search has comprehensively scrutinized the impacts
of ocean fronts on acoustic propagation (Dreini,
Jensen, 1990; Mellberg et al., 1991; Rousseau
et al., 1982; Shapiro et al., 2014), revealing that the
morphology and position of ocean fronts have a signif-
icant impact on sound propagation, which results in
an increase in transmission loss of 6–20 dB. Ozanich
et al. (2022) investigated the underwater acoustic prop-
agation of low-frequency sound waves with low graz-
ing angles via the New England Shelf Front in spring,
demonstrating the sensitivity of low-frequency propa-
gation to the geometric configurations of ocean fronts.
Being one of the major ocean fronts in the northwest
Pacific, the acoustic characteristics of the KEF have
also received considerable attention. Liu et al. (2015)
utilized the absolute gradient method to examine the
spatial information of the KEF front axis fromWOA13
data and explored the acoustic propagation character-
istics within the front area, identifying a strong in-
fluence of the sound source depth on the underwater
axis of the acoustic channel. Additionally, Chen et al.
(2017) developed a sound speed characteristic model
using ARGO andWOA data, which demonstrated that
the KEF modifies acoustic propagation by varying the
depth of the acoustic channel axis. A collaborative ex-
periment by Liu et al. (2021) in marine acoustics and
physical oceanography in the northwest Pacific Ocean
revealed a sharp rise in acoustic transmission loss to-
ward the side of the cold-water mass when the sound
source was positioned within the front area.

Artificial neural networks (ANNs) represent a fun-
damental machine learning model, with the advance-
ment of machine learning; these neural network models

have been progressively refined in recent years. The
adaptability of ANNs has increasingly improved. Their
ability to adapt to a variety of complex underwater
environments and signal conditions has resulted in
the extensive implementation of ANNs; additionally,
ANNs have achieved widespread applications in the
field of underwater acoustics domain. Doan et al.
(2020) employed convolutional neural networks for
target recognition and classification within a passive
sonar dataset, ensuring the overall accuracy of 98.85%
at 0 dB signal-to-noise ratio. Lee-Leon et al. (2021)
designed a receiver system based on a deep belief
network and, through simulation modeling and sea
trials, demonstrated that the receiver system exhib-
ited superior performance in channels affected by
the Doppler effect and multipath propagation. Lee
et al. (2022) introduced a supervised learning-based
method for quantifying uncertainty in transmission
loss and assessed its ability to simulate long-distance
underwater propagation using different computational
models, environmental scenarios, and sources and
levels of uncertainties.

As the understanding of the KEF advances, along
with the ascent of neural networks, the prediction
of underwater acoustic propagation based on KEF
oceanographic variables is emerging as an area of
research deserving attention. However, the current
dearth of studies on the impact of the KEF on the
underwater acoustic environment and the considerable
gaps in the neural network-based prediction of acous-
tic propagation in ocean front environments necessi-
tate further investigation. Therefore, this study em-
ploys high-resolution ocean reanalysis data to analyze
the vertical characteristics of the KEF and identify the
frontal zone with the most potent KEF using statis-
tical analysis methods. The factors affecting acoustic
propagation in proximity to multiple factors near the
frontal zone are investigated in Sec. 3. The study exam-
ines the primary oceanic structures influencing acous-
tic propagation in the KEF region. Based on backprop-
agation (BP) neural networks, a convergence zone pre-
diction model is constructed for the KEF environment
in Sec. 4, with the aim of providing benchmarks for
future acoustic propagation forecasts in marine front
environments.

2. Materials and methods

2.1. Materials

2.1.1. Reanalysis data

The temperature and salinity data used in this
study were derived from the high-resolution and high-
analysis product JCOPE2M (Japan Coastal Ocean
Predictability Experiment 2 Modified) based on the
Princeton Ocean Model and was provided by the Japan
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Agency for Marine-Earth Science and Technology
(Miyazawa et al., 2017; 2019). The regional coverage
includes the northwest Pacific Ocean. The dataset used
in this research spans from January 1, 1993, to Au-
gust 31, 2022, with a horizontal resolution of 1/12○ and
46 σ-levels in the vertical dimension. This dataset has
high resolution and high accuracy and has been widely
applied in the study of mesoscale phenomena and flow
fields in the Kuroshio region (Chang et al., 2015; 2018;
Liu et al., 2019).

2.1.2. Multiyear average flow field data

The Navy Coupled Ocean Data Assimilation sys-
tem, integrating the hybrid coordinate ocean model
and multiple observational datasets, was harnessed by
the United States Naval Research Laboratory to gen-
erate a 22-year average flow field from 1994 to 2015.
This dataset was used to display the position of the
Kuroshio Extension. The spatial resolution of this sys-
tem is 1/12○ horizontally and consists of 40 nonunifo-
rmly and vertically spaced layers (Chassignet et al.,
2007). Based on the hybrid isopycnal-sigma-pressure
(generalized) coordinate ocean assimilation model, the
average flow field serves as a valuable reference for re-
porting the velocity and location of Kuroshio.

2.1.3. Bathymetric data

The bathymetric data used for underwater acous-
tic propagation simulation in this study were obtained
from the joint release of the ETOPO1 bathymetric
model, bearing a grid size of 1′ × 1′. This model inte-
grates global land topography and ocean depth data
based on various relevant models and measured
data (Amante, Eakins, 2009). The majority of the
ocean depth data in this model are derived from
the bathymetric model released by the Scripps Institu-
tion of Oceanography, while the land topography data
mainly come from the GTOPO30 global digital ele-
vation model with a resolution of 30 arc-s. The study
area based on ETOPO1, as illustrated in Fig. 2, covers
the region from 142○ to 162○E and 33○ to 37○N.

Table 1. Factors considered in this study and their calculation methods.

Parameters Calculation method

Environmental parameters

Horizontal temperature gradient
Absolute gradient method

Horizontal salinity gradient (HSG)
Acoustic channel axis depth (ACAD)

Douglas–Peucker (DP) algorithmSonic layer depth (SLD)
Transition layer of sound speed (TLSS)

Underwater acoustic
propagation parameters

Short-range detection (SRD) distance
Propagation distance of underwater

acoustic at the figure
of merit factor level of 90 dB

First convergence zone distance Horizontal distance to the first minimum value
of underwater acoustic transmission loss
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Fig. 2. Topography of the study area.

2.2. Methods

This study uses reanalyzed temperature and salini-
ty data to explore the KEF environment. The Macken-
zie empirical formula, which was introduced in 1981,
was utilized to calculate the sound speed field in the
KEF environment. Additionally, the absolute gradient
method was employed to extract the temperature and
salinity frontal information near the KE region. The
variation of the KEF strength with depth is examined,
and a cross-section with the highest horizontal tem-
perature gradient (HTG) in the KEF area is selected
as the focus of the study from the daily JCOPE2M
dataset. Based on Etter’s (2013) work on the impact
of ocean fronts on acoustic propagation and fundamen-
tal propagation modes for both near and distant acous-
tic propagation, calculations were performed for five
environmental and two acoustic propagation parame-
ters (Table 1). A correlation heatmap was created to
statistically analyze the significant impact of the envi-
ronmental parameters on underwater acoustic propa-
gation. Based on these findings, an acoustic propaga-
tion prediction model for the KEF environment was
constructed using a BP neural network.

2.2.1. Calculation methods for environmental
parameters

The KEF is formed by the interaction between the
warm and salty Kuroshio Extension and the cold and
fresh coastal currents. Therefore, this study uses the
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absolute gradient method to determine the horizon-
tal temperature and salinity gradients and the ab-
solute gradient as a measure of the KEF strength.
This method is widely used in oceanic frontal research
(Dong et al., 2006; Liu et al., 2015; Wang et al., 2020;
Yu et al., 2020). The equation is stated as:

Grad =
√
(∂φU /∂x)2 + (∂φV /∂y)2, (1)

where ∂φU represents the meridional difference of
the study variable (temperature and salinity), ∂φV re-
presents the zonal difference of the study variable,
∂x represents the meridional distance, and ∂y repre-
sents the zonal distance.

Furthermore, this study employs the Douglas–
Peucker algorithm to simplify the underwater acous-
tic field environment into a three-layer sound veloc-
ity structure, as proposed by Urick (1975). This in-
cludes extraction of the sonic layer depth and the
transition layer of sound velocity. The transition layer
of sound velocity refers to the vertical gradient within
the sound speed interface. The Douglas–Peucker al-
gorithm is a classic line simplification algorithm that
can extract characteristic points in the sound ve-
locity structure based on a fixed distance threshold.
It uses the vertical distance as a simplification indi-
cator, which ensures the shape characteristics of the
sound velocity profile. Moreover, when the distance
threshold is set, the extraction of characteristic points
remains relatively consistent.

2.2.2. Calculation methods for acoustic propagation
factors

This study considers both long-range and short-
range sonar detection methods. The horizontal dis-
tance from the first convergence zone (FCZ) and the
horizontal distance of a passive sonar’s figure of merit
(FOM) factor, which is 90 dB, are extracted as the
acoustic propagation factors. The convergence zone
is a major acoustic propagation mode for long-range
sonar detection, and the horizontal detection distance
at a 90 dB FOM factor denotes the detection dis-
tance for short-range detection. Both factors are com-
puted using the Bellhop ray-tracing model (Porter,
2011), which is based on geometric and physical prop-
agation laws and can accommodate various types of
rays, including Gaussian beams. The parameters for
the Bellhop model used herein were set according to
Table 2, where the seafloor parameters were derived

Table 2. Parameter settings for the Bellhop ray-tracing
model.

Sound source
parameters

Source frequency Grazing angle range
1 kHz −45○–45○

Seafloor
parameters

Density Compressional
wave velocity

Attenuation
coefficient

1.421 g/cm3 1520 m/s 0.12

from the acoustic properties of sediment provided by
Hamilton (1980).

2.2.3. Factor analysis and prediction methods

After determining the aforementioned seven factors
(Table 1), we constructed a correlation heatmap for
statistical analysis, representing the relations between
variables. Different colors were used to encode the
Pearson correlation coefficients between each pair of
variables. This study aims to investigate the impact
of five oceanographic environmental factors on acous-
tic propagation in the ocean frontal zone. Correlation
analysis results help in selecting the highly correlated
factors of acoustic propagation to construct a predic-
tion model using the BP neural network. The model
proposed herein is a typical supervised learning algo-
rithm that employs the learning process of the error BP
algorithm to autonomously learn the complex relation
between the sound waves and environmental factors,
thereby improving the accuracy and precision of the
predictions. Moreover, the model provides valuable in-
sights for the comprehensive analysis of acoustic prop-
agation forecasts.

3. Results of the statistical analysis between
KEF and acoustic propagation

3.1. Variation characteristics of KEF strength
with depth

The HTG in the KE region serves as a princi-
pal method for measuring KEF. Extensive research
has been conducted on the variation characteristics of
the KE temperature front (Seo et al., 2014; Wang
et al., 2016; 2020; Yu et al., 2020). However, there is
limited understanding of the evolving trends of sub-
surface KEF characteristics beneath the sea surface.
In this study, we combine the KEF range offered by
Kida et al. (2015) and adopt the method proposed
by Sugimoto et al. (2014). We utilize two indicators,
namely, average HTG and maximum HTG, within the
region of 142○–162○E and 33○–37○N as the measures
of the KEF strength. For a comprehensive representa-
tion of the KEF strength, we statistically analyze the
depths at which these two indicators reach their max-
imum values, and their frequency and distribution are
plotted in Fig. 3.

The findings indicate that the KEF strength in-
creased and the strength exhibited an increasing trend
followed by a decreasing trend with depth. The peak
intensity of KEF frequently occurred at depths of 300
and 400 m, with strengths of 0.8395 and 0.7656○C/km,
respectively. Below 800 m, the frequency approached 0,
indicating that the peak KEF strength occurred most
frequently at depths of 300 and 400 m.

This finding aligns with the conclusion of Liu et al.
(2015), which demonstrates that the intensity of KEF
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Fig. 3. Statistics and frequency distribution of the strongest
depth frequency in KEF.

is considerably higher between 200 and 500 m com-
pared to other water layers. Similarly, the average tem-
perature gradient showcases a pronounced high-value
zone at 300 m, indicating the largest range of the KEF
at this depth. The maximum average temperature gra-
dient in this area is 0.0646○C/km.

Thus, this study demonstrates that the utilization
of the HTG at a depth of 300 m provides improved ac-
curacy in determining the precise location of the KEF.
This methodology is more effective compared to solely
relying on surface intensity and position as it uncovers
a comprehensive understanding of the variation char-
acteristics exhibited by the KEF.

This study categorized the intensity levels of the
KEF based on a maximum HTG of 300 m. Combin-
ing statistical data from JCOPE daily data, the KEF
with a maximum HTG between 0 and 0.2○C/km were
defined as weak fronts, accounting for 22.0% of the to-
tal recorded days. Further, the KEF with a maximum
HTG between 0.2 and 0.3○C/km were classified as
moderate intensity fronts (50.7%), whereas those with
a gradient between 0.3 and 0.9○C/km were classified as
strong fronts (27.3%). Three different months were se-
lected to examine acoustic propagation under varying
frontal conditions (Table 3), and a correlation heatmap
was plotted to illustrate the impact of ocean fronts on
the oceanic structure and acoustic propagation.

Table 3. Representative month for three intensity
temperature gradients.

Intensity Month Temperature gradient
[○C/km]

Monthly average
[○C/km]

Strong 2012.07 0.304(7.14)–0.831(7.30) 0.5498
Middle 2002.12 0.220(12.1)–0.315(12.5) 0.2793
Weak 2022.08 0.130(8.16)–0.388(8.10) 0.1874

3.2. Statistical analysis of the impact
of environmental parameters on underwater

acoustic propagation in the KEF environment

To pinpoint the location of the most potent KEF,
the grid where it transpires is identified using daily

data, and a section spanning 12 nodes (∼1○) from both
the warm and cold sides of KEF is selected as the re-
search scope for the given day. Subsequently, sound
sources are arranged in the first 11 nodes, and informa-
tion regarding ocean structure alterations and acous-
tic propagation distance between the outliers is docu-
mented (Fig. 4). Throughout the research process, only
the alterations in the sound field environment of adja-
cent grids are considered. For instance, when the sound
source is located at Station A1, the sound field environ-
ment is constructed using the sound speed profile be-
tween the A1 and A2 grids. Thereafter, 10 sets of sound
speed profiles from A2 are replicated along the acoustic
propagation direction to construct the environmental
sound field file. This methodology aids in circumvent-
ing any interference caused by the changes in the ocean
structure at other locations on acoustic propagation.
Considering the practical scenarios in which sonar is
employed, this study sets the deployment depth of the
sound source at 30 m and the receiver depth at 150 m.

Fig. 4. Schematic of the research methodology (the base fig-
ure represents the sound velocity distribution of 2012.7.30

section [m/s]).

Subsequences of 5 environmental parameters and
2 underwater acoustic propagation parameters, with
each subsequence containing 11 datasets, were con-
structed. The daily subsequences of the mentioned pa-
rameters are concatenated into monthly sequences for
correlation analysis using the equations:

X = x1 ⊕ x2 ⊕ ...⊕ xN , (2)

r =

M

∑
i=1
(Xi −X)(Yi − Y )

√
M

∑
i=1
(Xi −X)2

√
M

∑
i=1
(Yi − Y )2

(M = 11N), (3)

where x and y symbolize two factors, n signifies the
number of days in the current month, and the ⊕ op-
erator indicates the sequence concatenation. The cor-
relation analysis results are displayed in Fig. 5, where
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Fig. 5. Heatmap of correlation between sea structure and the underwater acoustic propagation parameters of Kuroshio
Extension front presented at three different intensities. Panels (a) and (b) display data from July 2012 with warm-water
side to cold-water side and cold-water side to warm-water side orientations, respectively. Panels (c) and (d) present
data from December 2002, with warm-water side to cold-water side and cold-water side to warm-water side orientations,
respectively. Panels (e) and (f) display data from August 2022, with warm-water side to cold-water side and cold-water

side to warm-water side orientations, respectively.

the correlation heatmap translates the values in the
correlation matrix into colors based on specific rules,
thus visualizing the correlation through color varia-
tions. Warm colors suggest a positive correlation, and
cold colors denote a negative correlation. The color
and data of each cell in the heatmap represent the cor-
relation between the row and column variables. The
primary conclusions are:

(1) When the sound source emits sound waves from
the warm-water side toward the cold-water side, the
horizontal temperature and salinity gradients consid-
erably influence the detection range at the strong KEF

(July 2012) and the moderate KEF (December 2002).
The correlation coefficients for the temperature gradi-
ent are 0.62 and 0.75, whereas for the salinity gradient,
they are 0.65 and 0.66, respectively. Thereafter, we fo-
cused on the depth of the acoustic channel axis, ex-
hibiting a positive correlation of 0.53 and 0.69. The
vertical gradient of the transition layer of sound speed
demonstrates a negative correlation with absolute cor-
relation coefficients exceeding 0.5. The impact of the
sound layer depth on underwater acoustic propaga-
tion displays noticeable seasonal characteristics. For
the moderate KEF in winter, the surface sound layer
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is thicker, resulting in a high correlation coefficient
of 0.7 between the sound layer depth and the short-
range detection distance in December. Conversely, in
July, a weak correlation is seen. At the weak KEF
(August 2022), the correlation between the horizon-
tal temperature-salinity gradient and the short-range
detection distance considerably decreases and becomes
unrelated. The factors with higher correlation denote
the vertical gradient of the transition layer of sound
speed and the depth of the acoustic channel axis, exhi-
biting a negative correlation of −0.53 and a positive
correlation of 0.41, respectively.

(2) When the sound source emits sound waves
from the warm-water side toward the cold-water side,
the depth of the acoustic channel axis correlates
most strongly with the FCZ distance, with a max-
imum positive correlation coefficient of 0.82. There-
after, the vertical gradient of the transition layer of
sound speed, which displays a significant negative cor-
relation, has a maximum value of −0.63. The hori-
zontal temperature-salinity gradient highly correlates
with the convergence zone than within the range of
the source reception depth, indicating that as the
sound source migrates from the KEF to the cold-water
side with the reduced KEF strength, the horizontal dis-
tance between the FCZ distance and the sound source
becomes shorter.

(3) When the sound source emits sound waves
from the cold-water side toward the warm-water side,
the vertical gradient of the transition layer of sound
speed greatly impacts underwater acoustic propaga-
tion at short range, with negative correlation coeffi-
cients of −0.62, −0.51, and −0.32. The correlation co-
efficient decreases with the KEF strength. The depth
of the acoustic channel axis displays the highest pos-
itive correlation of 0.65 with the short-range under-
water acoustic propagation distance. The horizon-
tal temperature-salinity gradient exhibits a negative
correlation with the short-range underwater acoustic
propagation distance when the sound source is lo-
cated on the warm-water side, with correlation coef-
ficients ranging from −0.3 to −0.6. The sound layer
depth exhibits the strongest correlation in December
2002, reaching 0.86, while the remaining periods dis-
play weak or no correlation.

(4) The statistical results are analogous when the
sound source is on the warm-water side. The vertical
gradient of the transition layer of sound speed and the
depth of the acoustic channel axis pose the most sig-
nificant impact on the convergence zone, with absolute
correlation coefficients ranging from 0.4 to 0.8. Subse-
quently, the horizontal temperature-salinity gradient,
which shows different degrees of negative correlation,
ranged between −0.4 and −0.6 at strong and moderate
KEF intensities. The correlation of the temperature
gradient is slightly higher (by 0.13) than that of the
salinity gradient by suggesting that as the sound source

migrates from the KEF to the warm-water side with
a decrease in the KEF strength, the horizontal distance
between the FCZ and the sound source lengthens.

Based on the above analysis, we concluded that the
KEF has a more pronounced effect when the sound
source is situated on the warm-water side. Moreover,
the correlation between the HTG and HSG on the
warm-water side and the underwater acoustic prop-
agation parameters is 0–0.3 higher than on the cold-
water side. Among the factors examined, the depth of
acoustic channel axis and the vertical gradient of the
transition layer of sound speed have the most signifi-
cant influence on the convergence zone distance. The
correlation between the former and the distance of
the FCZ can reach 0.52–0.82, whereas the latter ranges
from −0.42 to −0.7. Moreover, the FCZ distance has
a slightly higher correlation of HTG (0–0.13) compared
to HSG. Nevertheless, under weak front conditions, the
temperature-salt gradient is either weakly correlated
or uncorrelated with underwater acoustic propagation.
Additionally, the sound layer exhibits noticeable sea-
sonal variation characteristics, posing a substantial im-
pact on the short-range detection distance (up to 0.86)
in winter and a weak correlation in July and August.

4. Establishment and validation
of the underwater acoustic propagation

prediction model

Construction of the underwater acoustic propaga-
tion prediction model based on the BP neural network
follows the same acoustic field construction method
as described in Sec. 3. Over a 30-year period, the
JCOPE2M dataset from February and August were
utilized to construct the input sequences, encompass-
ing four datasets with the sound source positioned on
the warm-water and cold-water sides. Based on the sta-
tistical analysis of the correlations between the input
parameters, the five environmental parameters were
analyzed as input features for the month of February,
while for the month of August, four environmental pa-
rameters, excluding the sound layer depth, were con-
sidered as the input features. The output features of
the model include the distance to the FCZ distance
and the short-range detection distance.

After performing normality tests on the data and
eliminating outliers based on the 3σ rule, the selected
sequences were randomly sorted and split into training
and testing sets at a ratio of 9:1. The BP neural net-
work was employed to estimate initial predictions on
the first convergence distance of the ocean front zone.
This is a standard algorithm used to train ANNs. By
training with sample data and constant adjustments
of network weights and thresholds, the error function
can be minimized in the direction of a negative gra-
dient, thereby approaching the desired output. In this
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Input layer

Hidden layer

Output layer

Fig. 6. Structural diagram of the backpropagation (BP) neural network.

study, the sigmoid function was utilized for the hid-
den and output layers. Two hidden layers were set,
and a training algorithm was used for optimization it-
eration. The following empirical equation was used to
determine the number of nodes in the hidden layer:

m =
√
n + l + ∂, (4)

where m signifies the number of nodes in the hid-
den layer, n represents the number of nodes in the
input layer, l represents the number of nodes in
the output layer, and ∂ is a constant ranging from 1
to 10, which determines the range of hidden layer
nodes. Multiple network structures are created within
this range, and each network with varying nodes in the
hidden layer is modeled and trained. The mean square
error is computed for each network, and the optimal
number of nodes in the hidden layer is determined to be
12 based on the lowest mean square error. The struc-
ture of the constructed neural network is illustrated in
Fig. 6.

When the sound source is positioned on the warm
side, a scatter plot is drawn between five parameters
and the distance to the FCZ (Fig. 7). The correlation
between the depth of the acoustic channel axis and
the distance to the FCZ distance displayed the best
continuity, suggesting that a deeper acoustic channel
axis generally produces a convergence zone at a more
distant location. The distribution of the sound layer
depth is similar to the former but more spread out.
The horizontal thermohaline gradient shows a trend of
increasing and then decreasing with the distance to the
convergence zone, with the maximum value appear-
ing at ∼60 km. The vertical gradient of the transition
layer of sound speed exhibits a decreasing trend with
the convergence zone, which is in accordance with the
conclusions derived in the previous section.
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Fig. 7. Scatter plot between the convergence zone

and the fitting factors.

Using the constructed BP neural network, we mod-
eled and predicted the convergence zone distance in
the KEF environment in February. The regression
and fitting results of the prediction are presented in
Fig. 8. We observed that the predicted outcomes were
primarily clustered near the regression line, and the
trend variation between the predicted values and
the input values was generally consistent. The regres-
sion coefficient (R) was 0.84, indicating a good predic-
tion effect.

The training outcomes of the remaining three
datasets are similar to the first one. Table 4 presents
the fitting performance of the four datasets evaluated
in terms of the mean absolute error (MAE) and the
coefficient of determination (R2), both of which re-
flect the degree of agreement between the predicted
and actual datasets; smaller values imply superior fit-
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Fig. 8. Prediction effect of BP neural network: a) predic-
tion regression scatter plot (abscissa denotes the normal-
ized original distance and ordinate charts the normalized
predicted distance); b) line graph comparing the predicted
distance and the original distance of the FCZ distance

(the horizontal coordinate is the number of data).

ting performance. The percentage deviation between
the predicted and original datasets is also provided.
Overall, the results observed that the predictive perfor-
mance of the August dataset is superior, with an MAE

Table 4. Predictive performance of the four datasets.

Month Sound position
Train Test Predicted error [%]

MAE R2 MAE R2
<1 km <2 km <3 km

2
W 1.35 0.71 1.39 0.71 45.77 75.30 90.67
C 1.26 0.61 1.25 0.58 49.24 76.52 90.65

8
W 0.99 0.70 0.98 0.65 59.73 87.77 96.13
C 0.50 0.37 0.51 0.37 68.61 91.62 97.85

Table 5. Prediction performance of the source reception depth distance based on the backpropagation neural network.

Month Sound position
Train Test Predicted error [%]

MAE R2 MAE R2
<1 km <2 km <3 km

2
W 1.71 0.47 1.80 0.43 39.45 68.72 83.36
C 1.96 0.40 2.28 0.30 36.45 61.68 74.77

8
W 0.42 0.55 0.41 0.54 95.52 99.59 99.90
C 0.50 0.40 0.51 0.35 90.80 98.98 99.69

of ∼0.3–0.4 km lower than that of the February dataset.
When the sound source is situated on the cold-water
side, the frequency of test data with prediction errors
under 1 km reaches 68.61% and that with errors under
2 km surpasses 90%, which is higher than that of the
February dataset on the same cold-water side (49.24
and 76.52%, respectively). As there is a certain thick-
ness of the sound layer in February, the distribution of
convergence distance is more dispersed, resulting in an
R2 of >0.7 for the warm-water side of February, offering
the best fitting effect among the four datasets. How-
ever, the proportion of test data with training errors
of less than 1 km is less than half.

Similarly, we follow the same forecasting process for
modelling and predicting underwater acoustic prop-
agation distances at short range (Table 5). The oc-
currence of the sound layer is closely associated with
the season, and the prediction accuracy of the short-
range detection distance exhibits significant seasonal
variations. In the summer months, the surface layer
in the KE region is dominated by sound ducts, where
sound rays rapidly bend downward, resulting in rel-
atively shorter horizontal detection distances. There-
fore, when the sound source is located on the warm-
water and cold-water sides in August, the probabil-
ity of the prediction error being less than 3 km is ex-
tremely high, exceeding 99%. On the contrary, during
the winter season, the surface layer is typically dom-
inated by the sound layer. Based on the BP neural
network, the probability of the prediction error at less
than 3 km was ∼80%.

In conclusion, this research assembled four datasets
with sound sources located on the cold-water and
warm-water sides of the KEF for the months of
February and August over a span of 30 years. The BP
neural network was employed to establish a prediction
model for the FCZ distance and the short-range detec-
tion distance. The results verified that the convergen-
ce zone distance and the short-range detection distance
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can be feasibly predicted by fitting the model using
five oceanic front structures and acoustic field envi-
ronmental factors. Experimental results indicated that
the predicted distances followed the same trend as the
training set, with superior prediction performance in
August. The proportion of data with a prediction error
of less than 3 km for the convergence zone distance ex-
ceeded 90%, and for the short-range detection distance,
it accounted for ∼80% of the total data.

5. Conclusions

In this study, JCOPE2M, a high-resolution ocean
reanalysis product, was utilized to determine the depth
of the maximum intensity of the KEF based on the hor-
izontal absolute gradient. Subsequently, three months
with different KEF intensities were selected, and envi-
ronmental parameters and underwater acoustic prop-
agation parameters were constructed using the DP al-
gorithm and the Bellhop underwater acoustic prop-
agation model. Through analysis, the effects of the
KEF on underwater acoustic propagation were re-
vealed. Moreover, a BP neural network with 2 hidden
layers, each containing 12 hidden layer nodes, was con-
structed to model and forecast the convergence zone
distance based on five factors. The primary findings of
this study are:

(1) Our analysis revealed that the strength of KEF
follows an increasing-then-decreasing pattern as the
depth increases. The highest frequency of the most in-
tense KEF occurred in the water layer with a depth
of 300–400 m, showcasing a maximum strength rang-
ing from 0.7656 to 0.8395○C/km. Nevertheless, the fre-
quency of the strongest KEF tended to be zero in the
water layer with a depth exceeding 800 m.

(2) This study primarily focused on two acous-
tic propagation parameters: the short-range detection
distance and the FCZ distance. The influence of the
KEF is more pronounced when the sound source is lo-
cated on the warm-water side. The correlation be-
tween the horizontal temperature and salinity gradient
on the warm-water side and the acoustic propagation
factors is superior compared to the cold-water side,
ranging from 0 to 0.3. When examining the short-range
detection distance, significant seasonal effects are ob-
served. In winter, the impact on the short-range de-
tection distance is significant, with a maximum correla-
tion of 0.86, whereas in July and August, the corre-
lation is weaker. The significant factors influencing the
FCZ distance are the acoustic channel axis depth and
the vertical gradient of the transition layer of sound
speed discontinuity. The former demonstrated a corre-
lation with the FCZ distance ranging from 0.52 to 0.82,
whereas the latter ranged from −0.42 to −0.7. The hori-
zontal temperature and salinity gradient are the subse-
quent influencing factors. The correlation of the tem-
perature gradient is higher than that of the salinity

gradient, with the difference ranging from 0 to 0.13.
Under weak front conditions, the temperature and
salinity gradient may exhibit weak or no correlation
with underwater acoustic propagation.

(3) There is considerable potential for using neu-
ral networks in forecasting the convergence zone dis-
tance. Based on the constructed sequences of ocean
and acoustic environmental parameters, the BP neural
network can achieve good fitting and prediction of the
convergence zone distance in ocean front environments.
The prediction performance in August surpasses that
in February, and the prediction accuracy is the high-
est when the sound source is located on the cold-water
side. The frequency of the prediction distance error
less than 3 km exceeds 90%, and the highest frequency
with an error less than 1 km is 68.61%.

The correlation between the vertical temperature
and salinity gradient and underwater acoustic propa-
gation in this study depends on the modeling approach.
To avoid the mutual influence among the analyzed en-
vironmental parameters, the KEF was segmented for
analysis, which introduced some discrepancies from the
actual KEF. However, these deviations did not impact
the proposed approach for underwater acoustic propa-
gation prediction based on the environmental parame-
ters outlined in this study. Future research should fo-
cus on improving the selection and discrimination of
the environmental parameters by utilizing more accu-
rate modeling and feature extraction methods to en-
hance prediction accuracy.
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