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Spotting a significant number of drones flying near the entrance of a beehive during late Spring could
indicate the occurrence of swarming mood, as the the surge in drone presence is related to an overcrowded
hive. Swarming refers to a natural reproductive process witnessed in honey bees, wherein half of the bee colony
departs from their hive alongside the aging queen. In the paper, we propose an early swarming detection
mechanism that relies on the behavior of the drones. The proposed method is based on audio signals registered
in a close proximity to the beehive entrance. A comparative study was performed to find the most effective
preprocessing method for the audio signals for the detection problem. We have compared the results for three
different power spectrum density coefficients estimation methods, which are used as an input of an autoencoder
neural network to discriminate drones from worker bees. Through simulations employing real-life signals, it has
been demonstrated that drone detection based solely on audio signals is indeed feasible. The attained level of
detection accuracy enables the creation of an efficient alarm system for beekeepers.
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1. Introduction

Swarming is a natural phenomenon that occurs
when a honey bee colony reproduces and divides into
multiple colonies. Swarming typically occurs during
the late spring and early summer months (Wright,
1913; Ostrowska, 1980). Early detection of swarming
(Zgank, 2011; Hadjur et al., 2022) in honey bees is
essential for swarming prevention, colony health mon-
itoring, queen management, swarm capture, and effec-
tive population management. It allows beekeepers to
take timely actions to maintain healthy colonies, pre-
vent the loss of bees, and optimize honey production.

There are several ways to predict when honey bees
will swarm. Most of them require interference in the
hive. Here are a few:

– queen cells present,
– the old age of the queen,

– a hive becomes too crowded,
– increased foraging activity, more drones coming

and going.
Thus, the detection of swarming without interfer-

ing in the hive can be based on the detection of drones’
activity around the hive. This can be accomplished by
analyzing the sounds around the hive and identifying
drones.

Honey bees use sound as means of communication,
both within the hive and with other bees outside
the hive. The sound produced by bees is a form of
vibration created by the rapid beating of their wings
and is used to convey information about the location
of food, the presence of danger, and other important
information. One of the most well-known sounds
produced by bees is the buzzing sound that is heard
when they are in flight. This sound is created by the
rapid beating of their wings, which can occur at a rate
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of up to 200 beats per second. The frequency of the
buzzing sound can vary depending on the size and
species of the bee (Kawakita, Ichikawa, 2019). The
typical range of frequencies generated by different bees
is piping signal in the range: 100 Hz–500 Hz (See-
ley, Tautz, 2001), with a fundamental frequency of
384 Hz (Sarma et al., 2002), tooting: 400 Hz–500 Hz,
and quacking: around 350 Hz.

Distinguishing between bees and drones, based
on the sounds they make, can be done using the fact
that the drones are bigger, have bigger wings. The re-
sults showed that body shape or wing size can be cor-
related with fundamental frequency (Gradišek et al.,
2017), and the duration of the buzzes has also been
shown to differ with body size (larger bees produc-
ing shorter buzzes). Moreover, using the amplitude,
frequency, and duration of flight, one can distinguish
between bees and drones by analyzing the frequency
spectrum of their sounds (Ribeiro et al., 2021).

This paper is divided into the following sections.
Section 1 briefly provides information why distinguish-
ing between worker bees and drones is important to
control beehive environment and its health. Section 2
presents related works on the bee sound detection and
classification. In Sec. 3 the methodology of the pro-
posed solution is discussed. We focus on feature ex-
traction and the implementation of machine learning
techniques. Section 4 discusses the identification re-
sults based on the collected datasets. The final conclu-
sions are in Sec. 5.

2. Related work

2.1. Audio analysis methods

Mel-frequency cepstral coefficients (MFCCs) (Da-
vis, Mermelstein, 1980; Soares et al., 2022; Libal,
Biernacki, 2024) are the most common set of fea-
tures used in studies that exploited a machine learn-
ing framework. Many studies analyzed MFCCs to ex-
tract information for bee detection, queen absence and
swarming detection, and bee species identification, as
well as environmental effects, with the three first coeffi-
cients showing the greatest discrimination. Peng et al.
(2020) used the so-called improved MFCC (IMFCC)
proposed in (Yegnanarayana et al., 2005) to capture
additional information from the higher-frequency part
of the spectrum that is typically ignored by traditional
MFCC. This has been shown to improve the classifi-
cation accuracy for queenless hive detection tasks. In
(Zlatkova et al., 2020), the short-time Fourier trans-
form (STFT) calculated with filter banks and the over-
lapping method was used to detect swarming events.
The STFT has been calculated using 128, 256, 512, and
1024 bins to investigate the impact of window width.
In the study (Gourisaria et al., 2024), the MFCC
approach was compared with the STFT.

2.2. Machine learning algorithms

A typical machine learning framework encompasses
signal measurement, preprocessing, feature extraction,
and finally classification. In the area of acoustic ana-
lysis of bee sounds, many different classifiers have
been explored. The most common classifier is a sup-
port vector machine (SVM) (Cejrowski et al., 2020;
Nolasco et al., 2018), a kernel-based method that
projects data into higher dimensions in which a hyper-
plane can separate the classes.

More recent deep learning neural network-based
methods are being introduced. In (Ruvinga et al.,
2021; Kulyukin et al., 2018) the use of so-called long
short-term memory (LSTM) recurrent neural networks
(RNN) for the queen bee presence detection is pro-
posed. A comparison between LSTM, a multi-layer
perceptron (MLP) neural network, and logistic regres-
sion was made, and it showed the power of the LSTM
for the task at hand. Recently, convolutional neural
networks (CNN) (Nolasco et al., 2018; Kim et al.,
2021), have gained popularity, especially within com-
puter vision tasks. To make them directly applica-
ble to the bee acoustics analysis, researchers have re-
lied on image-like inputs, such as spectrograms, mel-
scaled spectrograms, or other two-dimensional time-
frequency representations of the audio signals.

3. Methods

Presented in the article results based on a selected
set of audio recordings acquired in the context of
the beehive monitoring system capable of identifying
and predicting certain events and states of the hive
that are of interest to the beekeeper. All recordings
are sampled with frequency of 44 100 Hz and saved
in WAV format without any compression. For sig-
nal processing the recordings were divided into 1 sec-
ond long samples. The data set used for simulations
consists of 10 000 samples of bee flight sound and
around 1700 samples of a flying drone sound. To record
the audio samples, we used a directional microphone
mounted on top of the hive and aimed at its entrance.

The whole detection process is divided into two
parts: feature extraction and classification by autoen-
coder neural network. The signal processing flow chart
is shown in Fig. 1.
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Fig. 1. Signal processing flow chart.
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3.1. Power spectrum density coefficients

Power spectrum coefficients are the type of features
that can be extracted from an audio signal to charac-
terize its spectral content. They are calculated by tak-
ing the squared magnitude of the Fourier transform of
the signal, which represents the power or energy con-
tent of the signal at each frequency component. The
power spectrum coefficients can then be used as a fea-
ture vector to identify or classify different types of au-
dio signals. We decided to employ power spectrum den-
sity (PSD) coefficients as features used in the detection
phase of the identification.

Power spectral density estimation techniques can
be divided into parametric and nonparametric meth-
ods. The non-parametric methods estimate PSD ex-
plicitly from signal samples, without any assumptions
about a particular process structure. Parametric ap-
proaches assume that the signal can be described as
the stationary process (MA – moving average, AR
– autoregressive, or ARMA – autoregressive moving
average) of the order m. The power spectral density
is then calculated using estimated model parameters.
This paper presents PSD estimated with the paramet-
ric approaches (the Burg method) and nonparametric
methods (the Blackman-Tukey method).

3.1.1. Burg algorithm

The Burg algorithm (Kay, 1988; Orfanidis, 1995)
assumes that a signal can be described as an autore-
gressive (AR) process of the order m:

x̂ = −
m

∑
k=1

am(k)x(n − k). (1)

The Burg algorithm solves the ordinary least squares
problem. AR parameters am are estimated by minimiz-
ing the prediction forward and backward errors which
are referred to as the error between the actual value
signal and the corresponding estimators in forward and
backward:

PSDBurg
x (f) = Em

∣1 +
m

∑
k=1

am(k)e−j2πfk∣
2
. (2)

3.1.2. Blackman-Tukey method

The Blackman-Tukey (Blackman, Tukey, 1958;
Cooley, 1997) power spectrum estimate is calculated
with the use of the fast Fourier transform (FFT) in the
following way:

PSDB−Tx (f) = ∣FFT{w(n) ∗R(n)}∣, (3)

where w(n) is a window, R(n) is an autocorrelation of
the input signal x(n).

The signal processing scheme for the Blackman-
Tukey estimation method of PSD is shown in Fig. 2.

Low pass
FIR filter Autocorrelation

Windowing Power spectrum
estimation

x(n)

PSD(f)

Fig. 2. Schema of Blackman-Tukey method
of power spectrum estimation.

The lowpass FIR filter is used to adjust the band-
width of the signal to investigate its influence on iden-
tification. Filter coefficients were changed to obtain
the desired filter characteristic. Power spectrum esti-
mation requires the Fourier transform calculation. To
minimize leakage of spectrum a windowing procedure
was implemented. Different windows were investigated
(Hanning, Hamming, Kaiser).

During trait extraction, we noticed some differences
in PSD coefficients to distinguish bees from drones.
It can be observed in Fig. 3.

a)

0 2000 6000 80004000 
Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

P
S

D

b)

0 2000 6000 80004000 
Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

P
S

D

Fig. 3. PSD: a) worker bees; b) drones.
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3.2. Mel-frequency cepstral coefficient

The motivating idea of MFCCs is to compress in-
formation about the vocal tract (smoothed spectrum)
into a small number of coefficients based on an under-
standing of the cochlea in the ear. The basic steps to
calculate MFCC are shown in Fig. 4.

Window |FFT()|

log()

Audio signal
frame

Cepstral
coefficients

Discrete Cosine
Transform

sum

Mel scale filter bank

sum

sum

Fig. 4. MFCC calculation diagram.

The extraction of cepstral coefficients allowed for
noticing some differences in MFCCs distinguishing
worker bees from drones. It can be observed in Fig. 5
and in the calculated difference in Fig. 6.

3.3. Autoencoder

An autoencoder neural network is a type of artifi-
cial neural network that is used for unsupervised learn-
ing of efficient data representations. The network con-
sists of an encoder and a decoder, where the encoder
maps the input data to a compressed representation
(Hinton, Salakhutdinov, 2006), and the decoder
maps the compressed representation back to the origi-
nal data. The objective of the autoencoder is to mini-
mize the difference between the input and output data,
while also enforcing a constraint on the dimensionality
of the compressed representation.

In audio signal identification, autoencoder neural
networks can be used to learn compact representations
of audio signals that capture their essential features.
This can be useful for tasks such as pattern recog-
nition, classification, identification, anomaly detection
or noise reduction. Autoencoder neural networks have
been used in a variety of applications in speech recog-
nition, speaker identification or music genre classifica-
tion. By training an autoencoder on a large dataset of
audio signals, the network can learn to extract features
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Fig. 5. MFCCs: a) worker bees; b) drones.
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Fig. 6. Difference between MFCCs for worker bees and
drones.

that are relevant to the task at hand, while also dis-
carding noise and irrelevant information. They have
also been combined with other types of neural net-
works, such as CNNs or RNNs, to improve performance
on more complex tasks.

One common approach for using autoencoders in
audio signal identification is to train the network on
a reconstruction task, where the input is an audio
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signal and the output is the reconstructed audio sig-
nal. The loss function used during training is typically
a measure of the difference between the input and out-
put signals, such as mean squared error (MSE) or mean
absolute error. The mean square error is a reconstruc-
tion loss of the output produced by the network, ob-
tained for a particular input vector after encoding and
decoding stages. Once the network is trained, the com-
pressed representation learned by the encoder can be
used as a feature vector for identifying or classifying
different types of audio signals. The scheme of such
a network is shown in Fig. 7.

layer
Output

Hidden
layer 2

Code

Hidden
layer 1Hidden

layer 1Input
layer

Encoder                             Decoder
Fig. 7. General schema of autoencoder neural network.

In our simulations we have used neural networks
with 1, 2, and 3 activation (ReLu) layers for the en-
coder. The decoder had always 2 layers: one with ReLu
and one with a sigmoid activation function. In the case
of power spectrum estimation based on the Burg nad
Blackman-Tukey method, we decided for the following
neural network settings. For the neural network with
3 activation layers, the number of features for encoder
in layer 1 was 64, layer 2 – 32, layer 3 – 16. For the
neural network with 2 activation layers, the number
of features in layer 1 was 64, and layer 2 – 32. And
for the neural network with only 1 activation layer,
the number of features in layer 1 was 64. In the case
of the usage of the MFCC, we decided to apply only
the autoencoder neural network with only 1 activation
layer, because the number of cepstral coefficients was
relatively small, from 10 to 35 only.

Worker bees are present in the beehive the whole
year, while no drones survive the Winter. This is the
reason why the detection of a drone can be treated as
an anomaly, which occurs most often in the time of
the year preceding swarming. The process of anomaly
detection using an autoencoder is divided into the fol-
lowing main steps:

– Step 1. Training: in the first step, the autoencoder
is trained on the flight sounds of worker bees only.

– Step 2. Testing: in the second step, it is used
for a test reconstruction of recordings from both

classes: worker bees and drones. Our hypothesis is
that the abnormal signals (sounds of drones) will
have a higher reconstruction error.

– Step 3. Classification: the last step is the detection
of drone signals as anomalies if the reconstruction
errors surpass a fixed threshold.

It is worth mentioning that the system takes into
account that there are many more worker bees flying
in and out the hive in the spring time than drones. The
worker bees are extremely busy collecting nectar and
pollen, and they generate huge traffic when flying to
the hive. Fortunately, a special property of the autoen-
coder neural network prevents undetectability of less
numerous drones, that could be the case for other clas-
sifiers. Autoencoder trained on the set containing only
worker bees flight recordings generates much larger
MSE for recordings of drones. The autoencoder neural
network is a type of generative networks, and the re-
construction loss (after encoding and decoding stages)
informs of the quality of recreation of the input by the
network. An anomaly given as input to such a network,
produces a higher loss value. The standard input gives
a minimal loss value, related to a deviation between
the input audio frames in the training set.

In Fig. 8, we present an exemplary histogram of
the MSE in a series of numerical experiments returned
by the autoencoder neural network for training (worker
bees) and testing (drones) data sets. The vectors of co-
efficients representing recordings of drone flights pro-
duce a higher MSE because they deviate significantly
from the signatures of worker bees, in the sense of
the frequency components. The threshold is marked
by the red dotted line.
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Fig. 8. Exemplary histogram of the MSE loss produced by
autoencoder neural network for training and testing data

sets.

As we see in Fig. 8, the MSE generated by drones is,
on average, significantly greater than the MSE gener-
ated for worker bees. In the presented case, both his-
tograms of the MSE are well separated in terms of
separability of the corresponding probability densities.
The proposed system of detecting drones is in fact de-
tecting only a higher frequency of drones’ flights since
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the system does not count particular individuals but
only classifies audio frames of 1 second length. In this
paper, we present results of classification recordings of
bees into two classes based on a cleared and tagged
(unquestionably by worker bees or drone labels) data
set. It is absolutely possible that in practice we will en-
counter numerous situations of huge traffic of bees next
to beehive entrance when many worker bees and drones
can be present while recording an audio. This problem
should be investigated in future research, and we hope
that the special property of the autoencoder (giving
the reconstruction loss as output) can also make it pos-
sible to detect a drone in the presence of many worker
bees.

4. Results

The experiment was performed for an autoencoder
neural networks with 1, 2, and 3 activation layers, and
for three preprocessing methods resulting in three dif-
ferent signal representations in the frequency domain
by the following estimates:

– the Burg parametric method of power spectral es-
timate,

– the Blackman-Tukey nonparametric method of pow-
er spectral estimate,

– MFCC calculation.

Two first two methods, Burg and Blackman-Tukey
methods, operate on a linear scale in the frequency
domain. The third method, MFCC, uses a logarith-
mic scale. The goal was to investigate whether any ap-
proach will present a higher recognition results, con-
sidering that the learning process is done by neural
networks and the calculated spectral coefficients are
not analysed directly, but consist an input of the au-
toencoder neural networks.

For linear frequency scale, we cut the frequency
bandwidth with the step 100 Hz in the range from
100 Hz to 3000 Hz. For the Mel-frequency spectrum
scale, we have chosen 10, 15, 20, 25, 30 or 35 cep-
stral coefficients. The comparison study should deter-
mine the most effective method for estimating spec-
tral coefficients, but also the number of cepstral co-
efficients or frequency bandwidth, depending on the
chosen method.

4.1. Statistical evaluation

Our database contained significantly less drone
recordings in comparison to the huge number of worker
bee recordings. Due to unbalanced data, it is important
not only to focus on classification accuracy, but also on
other result parameters such as recall and F1-score.

The accuracy for the binary classification problem
is the proportion of correct predictions, both true pos-
itives (TP – number of correct detections) and true

negatives (TN – number of correct rejections), to the
total number of cases examined:

Accuracy = TP +TN
TP +TN + FP + FN

, (4)

where FP is false positive, also called false alarm, and
FN is false negative.

In addition to accuracy, a recall value was calcu-
lated, meaning a sensitivity of the detection test:

Recall = TP
TP + FN

. (5)

We analyzed also a F1-score, which is defined as:

F1 = 2TP
2TP + FP + FN

. (6)

The F1-score takes values in the range [0,1]. The high-
est possible value of F1-score (equal 1) indicates per-
fect precision and recall of the detection method.

In the series of experiments for different sets of
settings, the above parameters: accuracy, recall and
F1-score are going to indicate the best method for the
considered drone detection problem. The ideal method,
with zero incorrect classifications for both worker bees
and drones, would have all three parameters equal 1.
This is, of course, an unrealistic expectation, but the
method which obtains the results closest to the value 1,
will be considered the best.

For the better understanding of the obtained re-
sults, we also apply a weighted confusion matrix in the
form presented in Fig. 9. In standard confusion matrix,
there are simple counts: true positives (TP), true neg-
atives (TN), false positives (FP), and false negatives
(FN), showing numbers of cases classified correctly or
wrongly to both classes. Due to highly unbalanced
data set, with many more worker bee audio record-
ings (10 000 samples) compared to only 1700 drone
samples, the presented values were accordingly divided
and presented in percent points. That way of present-
ing results, shows the actual percentage of correctly
classified or misclassified worker bees and drones.
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Fig. 9. Weighted confusion matrix.
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4.2. Drone detection results

The classification of honey bees into two classes:
worker bees and drones, based on audio recordings of
the sound generated during their flight was performed
for a data set of 10 000 audio samples for workers and
1700 for drones. The training of the autoencoder was
performed with the use of 80 % of the honey bee flight
recordings. The rest (20 %, 2000 samples) was used for
testing, together with all records of drone flights (1700
samples). The experiment was carried out in 100 iter-
ations. In each iteration, the autoencoder was trained
and tested. The training stage gives full calculation
of all parameters of the neural network. At this stage
also a threshold dividing standard class (worker bees)
and anomaly (drones) was derived from the formula:

threshold =mean(MSEtrain) + std(MSEtrain), (7)

where mean is a mean value and std is a standard
deviation of mean square errors, which are estimated
using only outputs of the worker bee recordings dur-
ing a training stage. In that way, the autoencoder was
trained and ready for testing. The cases for which the
mean square error was smaller than the calculated
threshold were classified to the worker bees class and
the cases for which was bigger to the drone class:

class(x) =
⎧⎪⎪⎨⎪⎪⎩

worker class, if MSEtest(x) ≤ threshold,
drone class, if MSEtest(x) > threshold.

(8)

In the end all cases were compared with the true
labels, which led to obtaining statistical indicators pre-
sented in this section.

The resulting accuracy for the Burg and Blackman-
Tukey methods is shown in Fig. 10. The recall val-
ues for the methods are placed in Fig. 11. For five
of the six methods: NN_2_Burg, NN_3_Burg,
NN_1_B_T, NN_2_B_T, and NN_3_B_T, the
obtained values of accuracy and recall, after reaching
a certain bandwidth, remain in almost constant value
ranges, different for each specific method. Surprisingly,
the only exception is a neural network with one acti-
vation layer for input in the form of Burg estimates
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Fig. 10. Accuracy for neural networks with 1, 2, and 3 acti-
vation layers, and power spectrum estimation by Burg and

Blackman-Tukey method.

0 500 1000 1500 2000 2500 3000
Frequency bandwidth [Hz]

75

80

85

90

95

100

Re
ca

ll 
[%

]

NN_1_Burg
NN_2_Burg
NN_3_Burg

NN_1_B_T
NN_2_B_T
NN_3_B_T

Fig. 11. Recall for neural networks with 1, 2, and 3 acti-
vation layers, and power spectrum estimation by Burg and

Blackman-Tukey method.

(NN_1_Burg), for which the accuracy and recall
values increase significantly as the frequency band is
extended. The method has reached the highest evalu-
ation factor values from all analyzed methods for the
frequency bandwidth 3000 Hz.

The results for the MFCC are presented in Fig. 12.
Both accuracy and recall values are presented as
a function of the number of cepstral coefficients on the
Mel-frequency scale. The experiment was carried out
only for a neural network with 1 activation layer due
to the small number of input coefficients, it is 10, 15,
20, 25, 30 or 35 MFCCs. It turns out that for this
method (NN_1_Mel), the highest accuracy and re-
call are reached for only 10 cepstral coefficients and for
the 15 and more coefficients they fall slightly.
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Fig. 12. Accuracy and recall for MFCC as input of neural
network with 1 activation layer.

In Figs. 13a–c, we present the confusion matrices of
the best results for all the three preprocessing methods:
MFCC (NN_1_Mel 10 MFCC), Blackman-Tukey
(NN_1_B_T 3000 Hz), and Burg (NN_1_Burg
3000 Hz), respectively. The results were normalized
by dividing by the size of the drone class in the up-
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Fig. 13. Weighted confusion matrices, presented in percent
points: a) NN_1_Mel 10 MFCC; b) NN_1_B_T 3000 Hz;

c) NN_1_Burg 3000 Hz; d) NN_2_Burg 3000 Hz.

per row of the confusion matrix and by the size of the
worker bee class in the lower row. The worst result
for the same 3000 Hz bandwidth was obtained for the
Burg method and the neural network with 2 activation
layers (NN_2_Burg 3000 Hz). We place the confu-
sion matrix for that case in Fig. 13d.

In all cases with preprocessing based on Blackman-
Tukey or Burg methods, the true negative rate (TNR)
is 100 % and the false positive rate (FPR) is 0 %, which
means that all signals from the worker bee class were
correctly labeled as worker bees by neural networks.

On the other hand, for all cases using MFCC, the false
positive rate has values higher than zero, meaning that
the probability of a false alarm is also non-zero. Our
method allows for an early detection of the swarming
mood of honey bees, thanks to an analysis of the num-
ber of occurrences of drones flying in close proximity
to the entrance of a beehive. Drones represent at most
around 15 % of the population in beehives at the top,
that is, during the late spring, and the worker bees
are significantly more numerous at the same time –
around 85 % of the population. That is why a higher
false alarm rate can lead to many more false classifica-
tions of worker bees to the drone class. And as a con-
sequence, the system would start the swarming alarm
the whole year, except in winter, when worker bees are
not active and stay inside the beehive.

4.3. The best results

The best results, taking into account the high-
est values of the three statistical factors: the accu-
racy of drone recognition, the recall value (sensitiv-
ity of the method) and the F1-score, were obtained
for the Burg power spectrum estimate method with
the widest considered frequency band of 3000 Hz and
neural network with one activation layer (marked
as NN_1_Burg 3000 Hz – see Table 1). Accu-
racy reached 95.90 %, recall 91.92 %, and F1-score
96.11 %. The same method with a slightly nar-
rower frequency band (NN_1_Burg 2900 Hz and
NN_1_Burg 2800 Hz) achieved comparatively ex-
cellent results. Next in order, methods based on MFCC
and Mel-frequency scale (such as, e.g., NN_1_Mel
10 MFCC) have given the accuracy at a very similar
level, but recall recorded a decrease of around 5 % in
all cases. Similarly, F1-score for MFCC method drops
for more than 2 % compared to the Burg method.

However, it is worth noting that the unrivaled
Burg method requires recordings with a bandwidth of
2500 Hz–3000 Hz to achieve the high classification re-
sults – see Table 1. If this would be a hardware lim-
itation for some reasons, then it is better to use the

Table 1. Ten the best accuracy results and the correspond-
ing recall and F1-score values.

Method Accuracy Recall F1-score
1 NN_1_Burg 3000 Hz 0.959010 0.919165 0.961152
2 NN_1_Burg 2900 Hz 0.958210 0.917626 0.960442
3 NN_1_Burg 2800 Hz 0.957031 0.915206 0.959327
4 NN_1_Mel 10 MFCC 0.956934 0.868622 0.938068
5 NN_1_Mel 15 MFCC 0.955990 0.865345 0.936714
6 NN_1_Burg 2600 Hz 0.954863 0.910953 0.957374
7 NN_1_Burg 2700 Hz 0.954778 0.910762 0.957287
8 NN_1_Mel 20 MFCC 0.954680 0.861279 0.934943
9 NN_1_Mel 25 MFCC 0.953653 0.858056 0.933549
10 NN_1_Burg 2500 Hz 0.953010 0.907349 0.955725
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MFCC-based method, at the cost of lowering the re-
call parameter and F1-score, and thus making more
incorrect drone detections.

5. Conclusion

In this article, we have investigated the possibility
of building an early swarming alert system for beekeep-
ers, based on the detection of a larger number of drones
flying at the entrance to a beehive. The system applies
neural networks of autoencoder type, which must be
previously trained on the basis of a signal database,
containing worker bees and drones flight sound record-
ings, preferably registered in the environment where
the system will be installed.

The preliminary study focused on finding the best
signal processing methods and settings for the assumed
task. We have compared three signal preprocessing
methods, producing frequency-domain coefficients rep-
resenting the recorded signals. They are: the Burg
parametric method, the Blackman-Tukey nonparamet-
ric method, and the MFCC method. The power spec-
tral or cepstral coefficients were the input of the au-
toencoder neural network. The detection was per-
formed by the three settings of the encoder-decoder
neural network pairs: with various (1, 2 or 3) number
of activation layers for the encoder and with fixed 2
activation layers for the decoder.

The results obtained show that the configuration of
the autoencoder neural network with only 1 activation
layer has given the highest accuracy and recall values
for all preprocessing methods. The best results have
been received for the Burg parametric method of power
spectrum estimation in a linear frequency scale and
the frequency bandwidth of 3000 Hz (NN_1_Burg
3000 Hz). The accuracy of drone detection is 95.90 %,
the recall (sensitivity) – 91.92 %, F1-score – 96.12 %,
and false alarm rate equals 0.00 %. Cutting the band-
width (to 2900 Hz, 2800 Hz, ..., and so on) has gradu-
ally decreased the accuracy of the drone detection.

The method using MFCC and the mel-frequency
scale was found to give slightly worse results than
the Burg preprocessing method with accuracy 95.69 %,
the recall (sensitivity) – 86.86 %, F1-score – 93.81 %,
and false alarm rate equals 0.06 % (for the case
NN_1_Mel 10 MFCC). The accuracy level stays
close to the accuracy for the best Burg method, but
recall drops for more than 5 %, F1-score for more than
2 %, and the false alarm rate increases. The probability
of a false alarm for the MFCC method is non-zero in
all investigated cases, meaning that worker bees can be
classified by the neural network as drones. Contrary to
the Burg and Blackman-Tukey preprocessing methods,
for which the probability of a false alarm is always zero.

Considering that the aim of the proposed method
is an early detection of swarming mood of honey bees,
based on more frequent observations of drones close

to a beehive entrance, it is important that the worker
bees, which are more numerous in a swarm (around
85 % in late spring) than the drones (around 15 % in
late spring), are not mistaken with the drones. This
would increase the drone detection rate and falsely
alarm beekeepers of a possible start of the swarming
mood. In the future, a further study on the behav-
ior of drone bees should be conducted. In particular,
the correlation between the frequency of drone obser-
vation in relation to other bees and the state of the
swarm should be investigated.
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