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Fidgety speech emotion has important research value, and many deep learning models have played a good
role in feature modeling in recent years. In this paper, the problem of practical speech emotion is studied,
and the improvement is made on fidgety-type emotion using a novel neural network model. First, we con-
struct a large number of phonological features for modeling emotions. Second, the differences in fidgety speech
between various groups of people were studied. Through the distribution of features, the individual features
of fidgety emotion were studied. Third, we propose a fine-grained emotion classification method, which ana-
lyzes the subtle differences between emotional categories through Siamese neural networks. We propose to use
multi-scale residual blocks within the network architecture, and alleviate the vanishing gradient problem. This
allows the network to learn more meaningful representations of fidgety speech signal. Finally, the experimental
results show that the proposed method can provide the versatility of modeling, and that fidgety emotion is
well identified. It has great research value in practical applications.
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Acronyms

1-D – one-dimensional,
AI – artificial intelligence,

CNN – convolutional neural network,
GMM – Gaussian mixture model,
LSTM – long short-term memory,
PCM – pulse code modulation,
RNN – recurrent neural network,
SEU – Southeast University,
SVM – support vector machine,
USB – Universal Serial Bus,
WAV – Waveform Audio File Format.

1. Introduction

Emotion recognition is a fundamental aspect of
human communication and understanding. It plays
a crucial role in various domains, including psychol-
ogy, human-computer interaction, and social robotics.

Traditional approaches to emotion recognition have
primarily focused on categorical classification (Latif
et al., 2023; Yan et al., 2013), but there is a growing
need for more detailed analysis, especially in capturing
subtle variations and specific types of emotions.

Various feature analysis and modeling algorithms
have been applied to speech emotion recognition, in-
cluding feature normalization, stochastic parameter
optimization, neural networks and Gaussian mixture
models (Jin et al., 2009; 2014; Huang et al., 2009a;
Wang, Tashev, 2017; Lieskovská et al., 2021).
Chen and Huang (2021), proposed to study hybrid
features in speech emotion recognition. Dupuis and
Pichora-Fuller (2014) recommended to study be-
havioural features in emotional speech. Atila and
Şengür (2021) proposed to use the novel convolu-
tional neural network and long-short term memory
network for emotion recognition. In their study, deep
neural network structures were reviewed and studied.
Large amount of data is required for deep learning.
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Praseetha and Vadivel (2018) also studied deep
learning models. In their studies only basic emotions
were investigated.

Other researchers studied practical problems in
emotion recognition, including text and speaker inde-
pendent emotion recognition, practical types of emo-
tions, cognitive related states, and language specific
emotion models (Huang et al., 2013a; 2013b; 2016;
Wu et al., 2018; Jin et al., 2011; Xu et al., 2014; Zou
et al., 2011).

Zhou et al. (2021) suggested to study a cough
sound event using acoustic features. In their stu-
dy, a Mel-spectrogram was used for feature analy-
sis and a convolutional neural network was used for
modeling. COVID-19 influenced cough sound recogni-
tion has wide potential applications. Atsavasirilert
et al. (2019) proposed to study the computational ef-
ficiency in speech emotion recognition. In their study,
the light weight convolutional neural network was pro-
posed, and the real world challenges in computing re-
sources were given their work has important practi-
cal value. They further studied Mel-spectrograms and
treated the speech signal processing problem as 2-D in-
formation processing. However, in their work, emotion
types were limited.

Emotion recognition is an important field in un-
derstanding human behavior, with traditional machine
learning models and deep neural networks being widely
used for classification. However, limited research has
been conducted on emotions with specific practical val-
ues, such as fidgety emotions, which have unique sig-
nificance.

This research paper addresses the gap in fine-grai-
ned practical speech emotion recognition by provid-
ing a more detailed categorization of emotions. While
the traditional approach considers six main emotional
categories (sadness, joy, anger, disgust, surprise, and
fear), this paper aims to explore emotions with special
practical value, including fidgety emotions. By consid-
ering specific application scenarios, fine-grained sub-
types, and composite types of emotions, this paper of-
fers a comprehensive framework for emotion detection
in practical applications.

Fidgety emotion represents a significant emotional
category distinct from traditional emotion research,
which primarily focuses on basic emotional categories.
Fidgety is a complex emotion with practical value,
playing a crucial role in the realms of learning and cog-
nition. It holds particular significance in influencing
cognitive abilities, behavioral control, and psycholog-
ical stability. While conventional emotion recognition
research extensively explores the six basic emotions,
happiness, anger, surprise, sadness, fear, and disgust,
there has been limited investigation into complex emo-
tions.

Fidgety emotion, characterized by its complexity, is
particularly triggered in repetitive and tedious cogni-

tive tasks, especially during prolonged periods of repet-
itive work. It remains a complex emotion with practical
implications, significantly impacting cognitive abilities,
behavioral control, and psychological stability within
the processes of learning and cognition.

The paper explores the use of a Siamese neural
network architecture, which excels in metric distance
learning, for comparing and classifying fidgety-type
emotions. We further propose to use a 1-D convolu-
tional residual neural network, to improve the Siamese
network structure. By constructing a large number of
phonological features and analyzing group differences,
the model captures individual characteristics and en-
ables precise identification of emotional subcategories.

The empirical prowess of 1-D convolutional net-
works has been well-documented, asserting their
supremacy in diverse time-serial feature extraction and
modeling tasks. Numerous instances have showcased
their state-of-the-art performance in extracting intri-
cate patterns from temporal data streams, such as vi-
bration signal processing, fault detection, and ECG
signal processing (Abdeljaber et al., 2017; Avci
et al., 2018; 2019; Kiranyaz et al., 2019; Xiong et al.,
2017). However, the use of residual shortcut and multi-
scale receptive fields in specific emotion recognition has
not been studied yet.

The proposed approach takes into account the nu-
ances and complexities of fidgety emotions, which have
important practical implications. By providing a more
detailed understanding of these emotions, the research
contributes to the development of effective emotion
recognition systems. Additionally, by considering the
specific contexts and characteristics of fidgety emo-
tions, the proposed framework is tailored to address
their unique practical challenges. This research serves
as a valuable contribution to the field of fine-grained
practical speech emotion recognition, providing in-
sights and techniques for improved detection and un-
derstanding of fidgety emotions.

The key contribution of this research lies in its
practical application of fine-grained fidgety-type emo-
tion recognition using the improved Siamese network
structure. The proposed method demonstrates versa-
tility in modeling emotions across different ages and
genders, showcasing its potential for real-world appli-
cations. The experimental results validate the effective-
ness of the approach, giving promising practical impli-
cations in emotion recognition.

The paper is structured as follows: Sec. 2 provides
an overview of the database used for training and eval-
uation. Section 3 presents the methodology employed
for fine-grained fidgety-type emotion recognition as
a few-shot learner. Section 4 presents the experimental
results obtained from applying the proposed methodo-
logy. Finally, Sec. 5 concludes the paper by summa-
rizing the key findings and discussing the implications
and future directions of the research.
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2. Database

We have employed a local database from Southeast
University (SEU) to validate our method of emotion
recognition (Huang et al., 2009b; 2011; 2014; 2020),
for fidgety-type emotions.

The recording software uses Adobe Audition. Dur-
ing recording, a monaural channel is used. The
recorded speech signals are saved in the WAV (Wave-
form Audio Format) format encoded with PCM (pulse-
code modulation). The recording hardwares include:
one high-performance computer, one M-audio Mo-
bilePre USB sound card, one large-diaphragm con-
denser microphone, and one pair of monitoring head-
phones.

The recording process takes place in a quiet lab-
oratory. After each recording, data verification and
supplementation should be carried out. The recorded
speech files should be manually checked promptly to
eliminate any possible errors that may occur during
the recording process. For example, inspecting and re-
moving segments with signal overload, irregular noises
(such as coughing), and long periods of silence caused
by abnormal pauses. If the recording files have sig-
nificant errors, supplementary recording may be ne-
cessary.

The collected data within this database encom-
passes speech-based emotions of a cognitive nature, en-
compassing emotions such as annoyance, fatigue, con-
fidence, and joy.

For the purpose of this paper, a specific subset of
utterances are chosen from the SEU database. To cap-
ture elicited emotional speech, negative emotions are
induced through mathematical calculation tasks, in-
volving the verbal reporting of calculated results and
recording emotional speech, all conducted in Chinese.
In the experimental dataset, 8 male and 8 female native
Chinese-speaking participants volunteered, with care-
ful selection to ensure gender balance, resulting in 3000
utterances for each gender category. The induction ex-
periment avoided a standardized text, opting for the
emotional speech collection in a natural state, in con-
trast to the scripted nature of a standardized text often
used in acted speech recording. The recorded dataset
comprises 6000 sentences, totaling 18 662 seconds, dis-
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Fig. 1. Flow chart of the fine-grained annotation for emotional speech.

tributed across 2000 samples for fidgetiness, 2000 for
happiness, and an additional 2000 for a neutral emo-
tional state, forming a comprehensive subset of 6000
samples.

In addition to utilizing the SEU database for our
research on speech emotion recognition, we have under-
taken the task of manual annotation to achieve a fine-
grained level of more detailed emotion types, as shown
in Fig. 1. This meticulous process adds significant value
to our research problem. By annotating the data our-
selves, we ensure a comprehensive and nuanced un-
derstanding of the emotions expressed in the speech
samples. This granular approach enables us to cap-
ture subtle variations and nuances within emotions,
contributing to a more accurate and comprehensive
analysis. The annotators are carefully selected with
a background in psychology study and proper train-
ing of emotion utterance annotation. The annotation
results are cross confirmed. We adopted a multiple an-
notation approach with a voting strategy.

The five fidgety levels are divided into five cate-
gories based on the general discriminative ability of
human annotators, using ratings of 1, 3, 5, 7, and 9.
Different intensity levels are assigned based on the
strength of emotions. This annotation is employed to
distinguish fine-grained emotional intensities, facilitat-
ing supervised learning to differentiate between specific
emotional nuances.

3. Methodology

3.1. Few-shot fine-grained fidgety-type emotion
recognition

Fine-grained fidgety-type emotion recognition
refers to the accurate detection and classification of
subtle variations in emotions, particularly those ex-
pressed through fidgety behavior. Few-shot learning
is a machine learning approach that can generalize
from a small number of training examples, which is
crucial for emotion recognition tasks where obtaining
large labeled datasets is challenging.

In our paper, a few-shot learning framework is ap-
plied to fine-grained fidgety-type emotion recognition.
The paper introduces the concept of a Siamese neural
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network, which is well-suited for metric distance learn-
ing. The Siamese network compares the input samples
with templates and learns to measure the similarity or
dissimilarity between them, as shown in Fig. 2.
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Fig. 2. Siamese network for fine-grained fidgety-type emo-
tion recognition.

The novelty of the proposed solution lies in the uti-
lization of the Siamese network as a few-shot learner.
By leveraging this architecture, the model can effec-
tively learn to recognize and classify fidgety-type emo-
tions, even with limited training data. The Siamese
network ability to learn meaningful representations of
emotional features, combined with the few-shot learn-
ing approach, enhances the accuracy of fine-grained
identification.

By constructing a large number of phonological fea-
tures, analyzing group differences, and utilizing resid-
ual connections to address the vanishing gradient prob-
lem, the proposed method in the paper achieves a fine-
grained emotion classification. This approach allows
for the precise analysis of subtle differences between
emotional categories. The experimental results demon-
strate the versatility of the proposed method, high-
lighting its potential for practical applications in emo-
tion recognition tasks involving fidgety speech.

First, we generate pairs of emotional samples, di-
vided into positive and negative matches, and when we
collect a small number of fidgety emotional types of
specific speakers, we randomly select samples that are
not sub-category and pair them to produce a negative
training dataset. It is necessary to focus on the gener-
ation of negative sample pairs of similar sub-categories
to improve fine-grained identification.

Within this system, we have incorporated a speaker
recognition module that utilizes MFCC features with
an i-vector approach. The i-vector approach is a com-
monly used technique in speaker recognition. It is a sta-
tistical modeling method that represents speaker char-

acteristics using a low-dimensional fixed-length vector
called the i-vector. This module enables fine-grained
matching of fidgety subcategories, specifically within
the sample range of individual speakers. The goal is to
enhance the accuracy of fine-grained identification.

Not all components of the output contribute
equally to the comparison process of the Siamese net-
work outputs. As a result, we have implemented a fully
connected layer that takes the outputs of the two sub-
networks and generates the final classification output.

3.2. Improved Siamese network based on multi-scale
residual network

In the realm of fine-grained modeling and recog-
nition, our proposed incorporation of “multi-scale” ar-
chitectures with various receptive fields is a promising
avenue. This approach allows for a more intricate un-
derstanding of intricate details within data. Alongside
this, the fusion of few-shot learning principles with dis-
tance learning methodologies has proven to be a potent
combination in the pursuit of enhancing recognition
capabilities.

In a typical Siamese network, we have two identi-
cal subnetworks that process input examples indepen-
dently and produce fixed-length embeddings. These
embeddings are then compared to determine their sim-
ilarity or dissimilarity. In an improved Siamese net-
work, to enhance the network’s performance, we can
incorporate residual connections within each subnet-
work.

3.2.1. 1-D Convolution

1-D convolution is a fundamental operation in sig-
nal processing and data analysis, particularly for an-
alyzing time-series signals. It involves combining two
input signals to produce an output signal by sliding one
signal (known as the kernel or filter) over the other, el-
ement by element, and computing the sum of element-
wise products at each step. This operation is often used
for various tasks such as feature extraction, filtering,
and pattern recognition within time-series data.

The input speech signal is denoted as x[n]. The
convolution kernel is denoted as h[k].

Sliding operation: the convolution operation in-
volves sliding the kernel over the input signal. At each
step, the kernel is aligned with a portion of the input
signal, and an element-wise multiplication is performed
between the kernel and the overlapping portion of the
input signal.

The convolution operation at a given time index n
is calculated by sliding the kernel h[k] over the speech
signal x[n] and performing the element-wise multipli-
cation followed by summation, as shown in Eq. (1):

y[n] =
∞

∑

k=−∞

x[n − k] ⋅ h[k]. (1)
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In practice, the summation is limited to the valid
range of k where both x[n − k] and h[k] are defined.

The resulting convolved signal y[n] is obtained by
performing the above convolution operation for each
time index n, as shown in Eq. (2):

y[n] =
∞

∑

k=−∞

x[n − k] ⋅ h[k] for all n. (2)

One of the primary applications of 1-D convolution
in time-series analysis is feature extraction and filter-
ing. Using compact 1-D convolution we can highlight
specific patterns and features within the fidgety speech
signal.

3.2.2. Multi-scale residual convolution

Let us consider a specific layer, denoted as the
layer L. The output of the layer L can be represented
as HL(x), where x is the input to that layer. To
introduce a residual connection, we define the resid-
ual function RL(x), which captures the difference be-
tween the input and output of the layer L. The output
of the layer L with the residual connection, denoted as
FL(x), is given by:

FL(x) =HL(x) +RL(x), (3)

where FL(x) represents the desired output of the
layer L. By adding the residual function RL(x) to
the input x, we allow the network to learn the resid-
ual mapping.

The residual function RL(x) can be defined as:

RL(x) =WL ⋅ x, (4)
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Fig. 3. Proposed multi-scale residual Siamese network structure.

where WL represents the weights of the residual con-
nection, which are learned during the training process.
Multiplying the input x by WL allows the network
to capture the residual information that needs to be
added to the output.

With the addition of residual connections, the out-
put of layer L + 1 can be expressed as:

HL+1(FL(x)) =HL+1(HL(x) +RL(x)). (5)

Convolutional kernels of different scales can extract
features of varying precision, with smaller kernels cap-
turing finer details. If a single layer uses only kernels
of the same scale, it may overlook features of other
precisions, resulting in incomplete information being
represented by the extracted features. Consequently,
we have designed three distinct resolutions for feature
extraction, as illustrated in Fig. 3.

By incorporating residual connections in this man-
ner, the gradient can flow directly from the output of
a layer to its input, facilitating the flow of gradients
during training. This alleviates the vanishing gradient
problem and enables the network to learn more mean-
ingful representations.

In the improved Siamese network, multiple resid-
ual connections can be added at different layers. By
utilizing residual connections, the improved Siamese
network can effectively learn complex patterns and re-
lationships in the input data, leading to better simi-
larity or distance measurements and improved perfor-
mance in fine-grained emotion recognition. The over-
all framework is shown in Fig. 4.

Our innovative approach to the fine-grained fidgety
emotion recognition challenge involves the utilization
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Fig. 4. Metric learning using speaker instances as few-shot learning.

of a 1-D convolutional residual neural network, strate-
gically designed to augment the traditional Siamese
network. The integration of residual blocks within this
framework plays a pivotal role in enhancing conver-
gence during the training process. By capitalizing on
the inherent advantages of 1-D convolutions, particu-
larly their proficiency in processing time-serial signals,
our architecture demonstrates remarkable potential.

3.3. Training samples generation

Let S be a speech sample, Cfid be the main cate-
gory of the fidgety emotion, and c jfid be the subcategory
of the fidgety emotion within the main category. The
method for generating positive and negative sample
pairs is as follows:

S1 ∈ Cfid, (6)

S2 ∉ Cfid. (7)

Neg_coarse = {S1, S2} forms a negative sample
pair:

S1 ∈ cjfid, (8)

S2 ∈ ckfid, (9)

j ≠ k. (10)

Neg_fine = {S1, S2} forms a negative sample pair,
representing samples that require fine-grained distinc-
tion. Neg_fine ∶ Neg_coarse > 3 ∶ 1 This ensures that
the model has a higher resolution for fine-grained sam-
ples:

S1 ∈ cjfid, (11)

S2 ∈ cjfid. (12)

Pos = {S1, S2} forms a positive sample pair, used
to supervise the output results of the Siamese network.
The distance between samples in the same fine-grained
subclass should be relatively close.

4. Experimental results

4.1. Experimental data

In our experiments on speech emotion recognition,
we have recognized the critical role of the emotion cor-
pus. While basic emotion types have received consid-
erable attention, the study of emotions with practical
value remains insufficient. Particularly, the scarcity of
negative practical emotions in existing databases poses
a challenge. Therefore, we have made a deliberate de-
cision to exclusively employ the SEU database for our
research. Unlike other databases that predominantly
focus on basic or positive emotions within ordinary
settings, the SEU database offers a unique advantage
by providing a comprehensive collection of practical
emotions, including the elusive fidgety-type emotion.
This strategic selection enables us to delve deeper into
understanding and accurately recognizing the nuanced
emotions encountered in real-world scenarios.

4.2. Models comparison

In this research study, we aim to investigate
the effectiveness of the proposed multi-scale residual
Siamese network for fine-grained fidgety-type emotion
recognition. We compare it against four other classi-
fiers: baseline Siamese network, LSTM, support vector
machine (SVM), and Gaussian mixture model (GMM).

The baseline Siamese network is a deep neural net-
work architecture that learns to measure similarity be-
tween input samples. It consists of two identical sub-
networks that share weights, enabling it to compute
a similarity metric between two inputs. The residual
Siamese network builds upon this architecture by in-
corporating residual connections, which help alleviate
the vanishing gradient problem and enable easier op-
timization.

Long short-term memory (LSTM) is a widely used
recurrent neural network (RNN) architecture that
has shown remarkable success in various sequence-
based tasks, including natural language processing and
speech recognition. Unlike traditional RNNs, LSTM
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incorporates specialized memory cells that can capture
and retain information over long periods. This unique
characteristic enables LSTM to effectively learn and
model complex temporal dependencies in sequences.

SVM is a supervised machine learning algorithm
used for classification tasks. It aims to find an optimal
hyperplane that maximally separates different classes
in the feature space. SVMs are known for their ability
to handle high-dimensional data and work well when
there is a clear margin of separation between classes.

GMM is a probabilistic model that represents the
distribution of data points as a mixture of Gaus-
sian distributions. It can capture complex data pat-
terns by estimating the parameters of Gaussian com-
ponents. GMMs are versatile and can handle a wide
range of data distributions, making them suitable for
modeling fine-grained emotions.

4.3. Parameter settings

For the Siamese networks, we use a learning rate of
0.001, batch size of 32, and training for a fixed num-
ber of epochs (100). For training the LSTM model,
the chosen parameter setting was a learning rate of
0.001, a batch size of 64, training for approximately
50 epochs. SVM parameter settings: C = 1, kernel
= radial basis function (RBF), gamma = 0.1. GMM
parameter settings: number of Gaussian components
= 12, mean and covariance initialization based on data,
maximum number of iterations = 100.

“Epoch” refers to a single pass through the en-
tire training dataset, and it is used to optimize the
model’s parameters by adjusting them based on the ac-
cumulated error to improve overall performance dur-
ing training. “Learning rate” in the context of machine
learning is a hyperparameter that determines the size
of the steps taken during the optimization process,
influencing how quickly or slowly a model converges
to the optimal set of parameters. “Batch size” refers to
the number of training examples utilized in one iter-
ation, influencing the efficiency of model training and
the amount of computational resources required.

The training-to-validation-to-testing ratio is 6:1:3,
totaling 6000 samples. Training dataset consists of
3600 utterances; validation dataset consists of 600 ut-
terances; testing dataset consists of 1800 utterances.

Table 1. Confusion matrix for fine-grained fidgety-type emotion recognition using multi-scale residual Siamese network.

Actual emotion
Predicted emotion

Fidgety level 1 Fidgety level 2 Fidgety level 3 Fidgety level 4 Fidgety level 5 Neutral
Fidgety level 1 80.1 8.4 4.5 3.5 1.0 2.5
Fidgety level 2 7.5 81.9 3.5 0.8 1.2 5.1
Fidgety level 3 3.9 6.1 75.2 5.0 2.5 7.3
Fidgety level 4 2.5 5.5 6.0 77.8 4.0 4.2
Fidgety level 5 1.8 2.2 8.0 7.5 75.1 5.4

Neutral 1.5 2.1 2.1 3.9 3.1 87.3

In the experimental process of comparing mod-
els, we utilized different parameters to obtain the
empirically optimal performance for each model. For
example, we conducted a search for SVM parameters
to set the optimal values. We compared different kernel
functions, including RBF, linear, and polynomial, and
the results indicated that RBF performed the best.
We optimized the values of C and gamma through the
grid search. For GMM, we experimented with different
values for the number of mixture components (4, 12,
16, 24) and employed a diagonal matrix initialization
method to optimize the empirically best results for the
model. In the case of LSTM, we compared different
optimizers, with Adam yielding the best results.
We conducted a search for different learning rates,
selecting the empirically optimal learning rate based
on F1 scores.

The purpose of comparing these models is to eval-
uate the efficacy of the proposed multi-scale residual
Siamese network for fine-grained fidgety-type emotion
recognition. By contrasting its performance with other
established classifiers, such as the baseline Siamese
network, LSTM, SVM, and GMM, we can determine
whether the additional architectural enhancements of
the residual Siamese network yield improved accuracy
and robustness in recognizing fine-grained emotions
characterized by fidgety behaviors.

4.4. Results

In our experiment, we adopt the confusion matrix
as a crucial tool for evaluating and comparing different
emotion recognition models. As show in Tables 1–5,
the confusion matrix provides a comprehensive sum-
mary of the models’ predictions, enabling us to analyze
the true positives, true negatives, false positives, and
false negatives in classifying emotions. By utilizing the
confusion matrix, we can gain insights into the per-
formance of each model in accurately recognizing and
classifying different emotions. This evaluation allows
us to compare the effectiveness of various models and
make informed decisions regarding their suitability for
emotion recognition tasks.

As shown in Fig. 5, we compared various popular
machine learning models to gain insights into their per-
formance and effectiveness in our study. By examining
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Table 2. Confusion matrix for fine-grained fidgety-type emotion recognition using baseline Siamese network.

Actual emotion
Predicted emotion

Fidgety level 1 Fidgety level 2 Fidgety level 3 Fidgety level 4 Fidgety level 5 Neutral
Fidgety level 1 72.7 10.4 6.3 3.1 4.5 2.0
Fidgety level 2 4.7 77.1 6.0 5.5 5.4 1.3
Fidgety level 3 5.8 8.0 70.2 6.4 4.5 5.1
Fidgety level 4 3.4 3.7 0.3 74.8 11.3 6.5
Fidgety level 5 4.5 3.3 7.9 8.5 70.3 5.5

Neutral 1.1 3.4 2.3 4.4 8.4 80.4

Table 3. Confusion matrix for fine-grained fidgety-type emotion recognition using LSTM.

Actual emotion
Predicted emotion

Fidgety level 1 Fidgety level 2 Fidgety level 3 Fidgety level 4 Fidgety level 5 Neutral
Fidgety level 1 70.1 8.6 8.2 7.1 1.2 4.8
Fidgety level 2 8.6 75.2 2.4 4.4 7.4 2.0
Fidgety level 3 6.5 7.4 64.9 7.4 6.3 3.5
Fidgety level 4 5.7 7.4 5.3 70.3 6.5 4.8
Fidgety level 5 6.3 6.3 5.2 7.8 64.8 9.6

Neutral 7.8 6.4 3.7 3.3 3.7 75.1

Table 4. Confusion matrix for fine-grained fidgety-type emotion recognition using SVM.

Actual emotion
Predicted emotion

Fidgety level 1 Fidgety level 2 Fidgety level 3 Fidgety level 4 Fidgety level 5 Neutral
Fidgety level 1 77.2 4.7 6.3 4.5 3.7 3.6
Fidgety level 2 8.3 75.4 7.4 6.3 2.1 0.5
Fidgety level 3 3.2 10.9 66.8 8.4 8.4 2.3
Fidgety level 4 4.6 8.6 7.3 70.1 5.5 3.9
Fidgety level 5 3.3 1.4 5.6 7.5 71.4 10.8

Neutral 6.4 4.5 2.4 3.3 3.1 80.3

Table 5. Confusion matrix for fine-grained fidgety-type emotion recognition using GMM.

Actual emotion
Predicted emotion

Fidgety level 1 Fidgety level 2 Fidgety level 3 Fidgety level 4 Fidgety level 5 Neutral
Fidgety level 1 70.2 7.3 6.3 5.5 3.1 7.6
Fidgety level 2 7.4 77.9 6.2 3.9 2.4 2.2
Fidgety level 3 7.8 8.4 70.8 7.9 3.4 1.7
Fidgety level 4 1.7 8.9 8.4 69.1 6.9 5.0
Fidgety level 5 4.1 1.9 7.3 7.4 70.9 8.4

Neutral 9.8 2.3 5.8 4.5 2.4 75.2
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Fig. 5. Comparison among various modeling algorithms
for averaged recognition rates.

and comparing the different curves generated by these
models, we were able to assess their recognition rates
and classification accuracy for the task at hand.
This comparative analysis allowed us to evaluate the
strengths and weaknesses of each model, identify areas
of specialization, and uncover potential limitations.

From the experimental results, we can see that vari-
ous modeling algorithms exhibit distinctive recognition
rates for different fine-grained emotions.

Siamese network: the Siamese network exhibits
moderate recognition rates across all fine-grained emo-
tions, ranging from 70.2 % to 80.4 %. It achieves rela-
tively higher rates for fidgety level 1 and fidgety level 2
compared to the other emotions.
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Multi-scale residual Siamese network: the resid-
ual Siamese network demonstrates consistent perfor-
mance, with recognition rates ranging from 75.1 % to
87.3 %. It achieves higher rates for fidgety level 1, fid-
gety level 2, and neutral emotions, indicating its effec-
tiveness in recognizing these categories.

LSTM: the LSTM model showcases relatively lower
recognition rates, ranging from 64.8 % to 75.2 %.
It may require a much larger training database to
capture the subtle distinctions between fine-grained
emotions, resulting in slightly lower overall perfor-
mance.

SVM: the SVM model demonstrates varied recog-
nition rates, ranging from 66.8 % to 80.3 %. It per-
forms relatively well for fidgety level 1 and fidgety le-
vel 2 emotions, but its performance drops for fidgety
level 3 and fidgety level 4.

GMM: the GMM model achieves recognition rates
ranging from 69.1 % to 77.9 %. It displays relatively
lower rates compared to other models, particularly for
fidgety level 1, fidgety level 3, and fidgety level 4 emo-
tions.

Overall, the multi-scale 1-D residual Siamese net-
work stands out with the highest recognition rates
across various fine-grained emotions. The Siamese net-
work and SVM models perform reasonably well, but
their rates are slightly lower compared to the residual
Siamese network. The LSTM and GMM models ex-
hibit comparatively lower recognition rates, indicating
the need for further improvement in capturing fine-
grained emotional nuances.

4.5. Discussions

The advantages of the multi-scale residual Siamese
network lie in its ability to enhance the model depth
and, consequently, improve representation capability
by introducing residual results. The use of the Siamese
network structure enables fine-grained differentiation
of emotion categories. However, its drawback is its re-
liance on a substantial amount of data for training,
making it highly data-dependent.

The baseline Siamese network excels in distinguish-
ing subtle differences between different emotions but
lacks the introduction of residual structures, leaving
room for improvement in representation capability.

LSTM’s strength lies in its structure, which is con-
ducive to modeling time series data. However, its com-
putational complexity and convergence in modeling
may not always achieve ideal results, especially under
conditions of limited objective data.

SVM exhibits strong discriminative power under
small-sample conditions, but it lacks the ability for au-
tomatic representation learning, making it challenging
to fully exploit the value of training data.

GMM’s advantage lies in its strong fitting capabil-
ity and ability to model arbitrary feature distributions.

However, this is contingent upon having sufficient and
diverse data coverage, resulting in a high dependence
on data.

The performance of a model is influenced by the
characteristics of different input data because the sta-
tistical machine learning approach is inherently depen-
dent on data. To address this challenge, a strategy is to
separate training, validation, and testing data. This al-
lows for objective and reasonable testing on an unseen
test set, effectively demonstrating the model’s general-
ization ability.

The multi-scale residual Siamese network proposed
by us exhibits high reliability and stability. This is en-
sured through the separation of our testing, validation,
and training sets. Experimental results indicate that
its recognition performance surpasses that of other tra-
ditional models.

To substantiate the efficacy of our proposed model,
we conducted a comprehensive comparative analysis.
Our proposed network was meticulously pitted against
the traditional Siamese network, as well as other
prominent machine learning algorithms. Through rig-
orous experimentation and meticulous evaluation, our
results unveil the prowess of our approach, demon-
strating its superior performance in the realm of fine-
grained fidgety-type emotions modeling and recogni-
tion tasks. This novel fusion of multi-scale architectu-
res, few-shot learning, and distance learning principles,
bolstered by the advancements of 1-D convolutional
residual neural networks, introduces a pioneering stride
towards unraveling the complexities of intricate data
domains.

5. Conclusions

This paper focuses on the practical application of
fidgety speech emotion recognition. Our contributions
are centered around the development of phonological
features and the implementation of a meticulous emo-
tion classification method that utilizes Siamese neural
networks with residual connections.

To enhance the precision of emotion classification,
we have introduced a meticulous approach employ-
ing Siamese neural networks. By integrating residual
connections, we have effectively addressed the chal-
lenge of the vanishing gradient, enabling the network
to acquire more meaningful representations of fidgety
speech emotions.

Experimental results have demonstrated the effi-
cacy and adaptability of our approach, as we have
successfully achieved accurate identification of fidgety
emotions. Our proposed approach exhibits significant
potential for practical applications and lays the foun-
dation for further advancements in this field.

In future endeavors, it would be valuable to ex-
plore the integration of contextual information, such
as situational cues and temporal dynamics, in order to
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enhance both the accuracy and contextual comprehen-
sion of fidgety speech emotion recognition.
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