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There is no doubt that traffic noise has become one of the main sources of urban noise, and the electric
bus, as an important means of transport frequently used by people in daily life, has a direct impact on the
psychological and auditory health of passengers due to its interior noise characteristics. Consequently, studying
electric bus sound quality is an important way to improve vehicle performance and comfort. In this paper,
eight electric buses were selected and 64 noise samples were measured. Acoustic comfort was taken as an
evaluation index, professionals were organized to complete the subjective evaluation tests for all noise samples
based on rank score comparison (RSC). And nine psycho-acoustic objective parameters such as loudness,
sharpness and roughness were calculated using Artemis software to establish the sound quality database of
electric buses. Aiming at the practical application requirements of high-precision modeling of acoustic comfort
in vehicles, this paper presented two improved extreme gradient boosting (XGBoost) algorithms based on
grid search (GS) method and particle swarm optimization (PSO), respectively, with objective parameters and
acoustic comfort as input and output variables, and established three regression models of standard XGBoost,
GS-XGBoost, and PSO-XGBoost through data training. Finally, the calculation results of three indexes of
average relative error, square root error and correlation coefficient indicate that the proposed PSO-XGBoost
model is significantly better than GS-XGBoost and standard XGBoost, with its prediction accuracy as high as
97.6 %. This model is determined as the evaluation model of interior acoustic comfort for this case, providing
a key technical support for future sound quality optimization of electric buses.
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1. Introduction
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As an important form of green transport, electric
bus has been developing rapidly domestically in recent
decades. However, there is serious homogenization in
the same class of models in terms of motor electric
control, battery range, vehicle safety, and other con-
ventional performance measures, resulting in increased
industry competition. Focusing on internal quality im-

provement and improving user experience have become
a differentiation strategy for electric bus development,
shifting focus from high speed to high quality. Prac-
tice demonstrates that vehicle interior noise quality
is the most direct factor affecting people’s subjective
experiences. An excellent acoustic environment is con-
ducive to the physical and mental health of drivers and
passengers, and significantly improves users’ satisfac-
tion with the vehicle (STEINBACH, ALTINSOY, 2019;
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ZHANG et al., 2021). Therefore, the change of electric
bus noise control from noise reduction to sound quality
is of great application importance in establishing the
core competitiveness of vehicle products.

Because driving motor replaces conventional en-
gine, the noise inside electric bus is more pronounced
due to the absence of engine masking effect, and many
noise types that are not easily to be detected in the
fuel bus appear more prominent in electric buses, such
as air conditioning noise, electromagnetic noise, tire
noise, and mechanical transmission noise (SHI et al.,
2018; ZHANG et al., 2022b). In particular, the mo-
tor electromagnetic noise is characterized by high cur-
rent, variable frequency regulation and high magnetic
density. Its spectral characteristics often fall within
the sensitive range of human ears to noise, leading to
a harsh subjective feeling, which has a significant nega-
tive impact on the whole vehicle acoustic comfort (Do-
LESCHAL, VERHEY, 2022). It can be concluded that it
is urgent and imperative for the development of electric
buses to improve interior sound quality.

It is well-known that subjective and objective eval-
uations are the main issues in sound quality research.
Subjective evaluation can directly reflect people’s audi-
tory feelings, but the evaluation process requires a lot
of human and material resources, and its results are
susceptible to the psychological and physiological fac-
tors of evaluators (ZHANG et al., 2018). Therefore, on
the basis of obtaining noise database, using objective
parameters as independent variables and subjective
evaluation test results as dependent variables, estab-
lishing a functional relationship between them through
data fitting, namely, a quantifiable mapping model for
acoustic quality evaluation, is a hot direction in current
vehicle sound quality research.

Sound quality modeling approaches can be broadly
classified into two categories: the first is based on math-
ematical statistics, mainly including multiple linear re-
gression (ZHANG et al., 2018), Kriging model (ZHANG
et al., 2020) and grey system theory (CHEN et al.,
2012); the second category is based on machine learn-
ing algorithms to simulate the ability of human neu-
ral networks to extract and process information fea-
tures. Since the structure of the human ear resem-
bles a nonlinear and complex sound receiver, stud-
ies have indicated that the nonlinear mapping rela-
tionship between subjective and objective evaluations
can more accurately describe real auditory percep-
tion (WANG, 2009; POURSEIEDREZAEI et al., 2021), in
which the algorithms involved in this category include
back-propagation neural networks (BPNN) (Pour-
SEIEDREZAEI et al., 2021; ZHANG et al., 2016), sup-
port vector machine (LIANG et al., 2020; DING et al.,
2023), deep learning (HUANG et al., 2016; 2021), and
extreme gradient boosting (XGBoost) (WANG et al.,
2022), etc. For example, HUANG et al. (2020) and
Kim and LEE (2022), respectively, used convolutional

neural network to establish quantitative evaluation
models of in-vehicle annoyance and driving sound
quality. In the past two years, XGBoost has been
applied to nonlinear modeling of vehicle annoyance
due to its excellent fitting performance and gener-
alization ability (WANG et al., 2022; ZHANG et al.,
2023b). WANG et al. (2022) collected interior noise
at different speeds to build a nonlinear XGBoost-
based annoyance model using subjective and objective
database.

XGBoost, first proposed by prof. Chen in 2016,
uses second-order Taylor expansion to optimize the
objective function and introduces regularization terms
to improve the model’s generalization ability and
to effectively control its over-fitting problem (CHEN,
GUESTRIN, 2016). In our past researches, for 64 elec-
tric bus sound quality modeling applications, BPNN
and standard XGBoost were utilized to establish
two high-precision interior acoustic comfort predic-
tion models with average relative error of 4.35 % and
4.67 %, respectively, (ZHANG et al., 2022a; 2023a).
To make the prediction model more accurate and ro-
bust, based on the existing standard XGBoost regres-
sion model, we explore the combination of XGBoost
with grid search (GS) and particle swarm optimiza-
tion (PSO) to optimize the mapping model parame-
ters. Thus, propose two improved algorithms of GS-
XGBoost and PSO-XGBoost, to further expand the
applicability of XGBoost in the field of vehicle sound
quality.

2. Subjective and objective evaluations
2.1. Noise sample collection

Eight different types of electric buses, denoted A
to H, were selected for noise testing. As there is no bus
sound quality standardized test, the test and evalua-
tion methods for city bus internal noise (XMQT075-
2021) were used for reference. During the test, we chose
two different working conditions with the air condi-
tioner on and off. Measurements were taken at two
positions: the driver’s seat and the rear seat, as illus-
trated in Fig. 1. The sample buses operated at constant
speeds of 30 km/h and 50 km/h on a professional track.
When the tested bus was running stably, its interior
noise signals were acquired by Squadriga II binaural
acquisition system with a headset BHS II, as shown in
Fig. 2.

2.2. Evaluation process

Obviously, in this test, the signal samples collected
are transmitted to the human ear after the compre-
hensive superposition of various noise sources such as
tire-road noise and electromagnetic noise. Since the
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Fig. 2. Test scenes and measuring instruments.

human ear may feel auditory fatigue due to expo-
sure to longer noise samples, pre-processing steps such
as interception and screening were completed before
the evaluation test, and a total of 64 in-vehicle noise
samples from electric buses, each with a duration of
5 seconds, were finally acquired (ZHANG et al., 2022a;
2023a). To avoid the potential information influence
of measuring points, speeds and working conditions of
noise samples on sound quality evaluation tests, all
samples were re-coded and randomly ordered. The re-
sults are shown in Table 1.

Table 1. Random order of all noise samples.

AFD3 |AFD5 | AFM3 | AFM5 | AND3 | AND5 | ANM3 | ANM5
49 18 9 37 1 32 13 21
BFD3 | BFD5 | BFM3 | BFM5 | BND3 | BND5 | BNM3 | BNM5
44 27 36 20 46 8 30 41
CFD3 | CFD5 | CFM3 | CFM5 | CND3 | CND5 | CNM3 | CNM5
24 19 10 26 54 48 51 2
DFD3 |DFD5 | DFM3 | DFM5 | DND3 | DNDS | DNM3 | DNM5
31 55 40 4 62 12 29 57
EFD3 | EFD5 | EFM3 | EFM5 | END3 | END5 | ENM3 | ENM5
3 34 15 22 58 11 35 63
FFD3 | FFD5 | FFM3 | FFMS | FND3 | FND5 | FNM3 | FNM5
60 43 7 52 5 16 64 25
GFD3|GFD5|GFM3 | GFM5 | GND3 | GND5 | GNM3 | GNM5
23 33 28 61 17 59 39 53
HFD3 |HFD5 | HFM3 | HFM5 | HND3 | HND5 | HNM3 | HNM5
14 47 6 45 38 50 42 56

Note — the code meaning is as follows: AND3 (number 1)
represents the noise sample acquired from an electric bus
in the driver’s position at 30 km/h with the air conditioner
turned on.

The sound quality evaluation process consists of
subjective evaluation and objective acoustic parame-
ter calculation. In this case, the rank score compari-
son (RSC) was used for subjective evaluation tests of
electric bus noise samples. Acoustic comfort was taken
as the evaluation index, divided into five comfort lev-
els: poor, accepted, satisfied, good, and excellent, and
each further added two values for each level. Thus, the
acoustic comfort level range within [1, 10] was consti-
tuted. The jury for this subjective evaluation test was
composed of NVH engineers, drivers and acoustic ex-
perts with rich experience in bus noise. It is well-known
that different people may yield different evaluation re-
sults for the same noise sample due to psychological
and emotional influences and cognitive differences. In
order to ensure the validity and reliability of the sub-
jective evaluation results, four measures were taken:
(1) increase the number of acoustic experts, includ-
ing university professors and senior engineers, who ac-
counted for nearly half of the jury; (2) to avoid mutual
interference between evaluators, only one evaluator
was allowed to participate in the subjective evalua-
tion in a specialized testing room; (3) for reducing the
discreteness of subjective activities, the evaluation test
was divided into two stages, i.e., pre-evaluation and fi-
nal evaluation. In the pre-evaluation test, acoustic ex-
perts conducted subjective evaluation on the two se-
lected comparison noise samples (numbered 34 and 49
in Table 1) and assigned appropriate acoustic comfort
values. In the final evaluation test, all evaluators first
played the two comparison samples and paid atten-
tion to their acoustic comfort values, and then com-
bined them with their subjective feelings to complete
the scoring of 64 noise samples in turn; (4) in the
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data statistics stage, Spearman correlation coefficient
and K-means clustering were used to analyze the data
characteristics of all the evaluators, and after exclud-
ing the data with correlation coefficients lower than 0.7
and low similarity, the data of the remaining evalua-
tors were averaged, that is, the acoustic comfort values
of all noise samples were finally obtained, as listed in
Table 2.

In terms of objective evaluation, Artemis software
by HEAD was applied to calculate objective psycho-
acoustic parameters of all noise samples, including lin-
ear sound pressure level (dB), A-weighted sound pres-
sure level (dB(A)), loudness (sone), sharpness (acum),
roughness (asper), fluctuation strength (vacil), articu-
lation index (AI, %), impulsiveness (iu), and relative
approach (cPa), corresponding to independent vari-
ables z1, x2, 3, x4, T5, T, T7, Ts, and xg, respectively.
The objective evaluation results of all noise samples are
displayed in Table 3.

Table 2. Acoustic comfort values of 64 noise samples after
subjective evaluations.

1 2 3 4 5 6 7 8
5.17 | 3.33 | 6.42 | 5.33 | 4.67 | 3.25 | 2.58 | 3.42
9 10 11 12 13 14 15 16
5.75 | 525 | 4.58 | 4.83 | 4.42 | 4.67 | 2.33 | 5.42
17 18 19 20 21 22 23 24
3.17 | 7.25 | 292 | 7.08 | 4.92 | 2.08 | 5.33 | 3.84
25 26 27 28 29 30 31 32
2.33 | 3.08 | 3.92 2.5 4.25 | 5.08 | 3.92 2.5
33 34 35 36 37 38 39 40
2.42 | 4.25 | 1.75 7.5 5.08 | 1.42 | 2,58 | 6.75

41 42 43 44 45 46 47 48
6.92 2.5 4 5.17 | 2.33 | 3.84 | 483 | 3.08
49 50 51 52 53 54 55 56

7.67 | 412 | 3.67 | 2.58 | 2.67 | 4.25 | 5.58 | 1.92
57 58 59 60 61 62 63 64
5.33 | 3.58 | 258 | 532 | 4.33 | 4.84 | 1.58 | 3.13

Table 3. Objective parameter calculation results of 64 noise samples.

Sample x1 T2 T3 x4 5 Tg Ty s T9
1 105.43 | 73.11 | 29.6 | 1.6 0.105 0.087 43.6 | 0.398 | 19.1
2 108.24 77.59 43.2 2.3 0.122 0.108 18.8 0.409 19.7
3 96.73 | 61.18 | 15.8 | 1.34 | 0.071 0.0722 | 79.4 | 0.57 15.7
4 108.53 | 74.4 34.1 | 1.84 | 0.0958 | 0.112 34.8 | 0.36 20.2
5 102 67.51 | 24.5 | 1.62 | 0.0827 | 0.0795 | 54.6 | 0.376 | 17.9
6 89.57 | 66.71 | 20.9 | 1.39 | 0.131 0.061 62.4 | 0.286 | 15.7
7 95.65 | 67.97 | 243 | 1.6 0.105 0.0623 | 55.7 | 0.334 | 16.3
8 102.38 74.24 34 1.99 0.12 0.0645 314 0.394 18.4
9 100.06 69.54 22.2 1.42 0.0951 0.0793 59.9 0.37 16.3
10 102.46 69.85 25.2 1.73 0.0974 0.0755 48.5 0.408 15.9
11 99.03 72.45 28.6 1.84 0.122 0.0638 41.2 0.343 16.6
12 107.04 | 72.78 | 33.4 | 1.78 | 0.0943 | 0.0954 | 37.9 | 0.431 | 20.3
13 100.57 | 70.76 | 25.7 | 1.72 | 0.106 0.0824 | 47.5 | 0.387 | 16.7
14 95.06 | 63.03 | 18.2 | 1.55 | 0.0878 | 0.0727 | 67.4 | 0.279 | 15.6
15 91.63 | 69.81 | 22.5 | 1.28 | 0.117 0.0638 | 63.1 | 0.358 | 13.7
16 106.93 | 72.01 | 33.7 | 1.74 | 0.0932 | 0.0967 | 41.2 | 0.465 | 21.4
17 97.07 | 69.2 25.3 | 1.8 0.106 0.0576 | 46 0.351 | 16.2
18 105.61 72.5 28.4 1.51 0.1 0.0847 | 47.2 0.414 19.1
50 101.53 | 71.83 | 31.6 | 1.59 | 0.117 0.0744 | 43.1 | 0.264 | 18.6
51 100.35 | 71.11 | 26.9 | 1.81 | 0.112 0.0664 | 44.8 | 0.393 | 16
52 101.18 | 73.57 | 35.3 | 1.86 | 0.123 0.0761 | 36 0.492 | 20.6
53 101.12 | 74.08 | 354 | 1.78 | 0.12 0.0649 | 35.2 | 0.349 | 18.4
54 107.55 | 72.01 | 31.6 | 2.01 | 0.097 0.0795 | 35.4 | 0.46 19.7
55 107.61 | 73.21 | 32 1.67 | 0.0889 | 0.092 41.8 | 0.474 | 20.8
56 95.57 | 74.79 | 31.5 | 1.67 | 0.157 0.0793 | 36.8 | 0.225 | 17.6
57 106.14 | 75.12 | 35 2.06 | 0.102 0.111 30.8 | 0.363 | 18.7
58 97.78 | 70.22 | 26.4 | 1.86 | 0.112 0.0574 | 44.9 | 0.343 | 16
59 103.2 78.46 | 42.8 | 1.68 | 0.104 0.106 35.3 | 0.322 | 19.2
60 101.53 | 65.3 21.7 | 1.41 | 0.0728 | 0.0804 | 66.5 | 0.464 | 18.9
61 100.28 72.34 29.3 1.58 0.1 0.0704 46.4 0.306 17.6
62 101.65 70.62 25.5 1.77 0.0837 0.0845 50.5 0.429 18.4
63 97.08 78.18 38.1 1.96 0.165 0.0779 26.5 0.334 16.3
64 96.98 | 70.89 | 29.9 | 1.72 | 0.117 0.0626 | 44.4 | 0.363 | 16.7
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3. XGBoost and its improved algorithms
3.1. XGBoost

XGBoost is implemented based on the gradient
boosting decision tree using the integration method
of boosting. The modeling idea is to first define an ob-
jective function, then find the best tree model to fit
the residual error of the previous prediction in each
iteration, and pursue to minimize the objective func-
tion so that predicted value is as close to targeted value
as possible. Its theory and implementation process are
detailed in the corresponding reports (WANG et al.,
2022; ZHANG et al., 2023D).

XGBoost is a powerful and highly flexible machine
learning model that is significantly affected by several
structural parameters. These structural parameters are
categorized into weak learner parameters and boosting
framework parameters, mainly including the maximum
depth of the decision tree, the maximum number of leaf
nodes, the learning rate, etc. Different combinations
of these parameters may result in the model exhibit-
ing very different levels of performance on different
tasks. Due to the complex interactions between these
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parameters, manually tuning them to achieve optimal
performance becomes extremely complex in the high-
dimensional parameter space. Therefore, the introduc-
tion of intelligent optimization algorithms to efficiently
search for optimal combinations of structural parame-
ters with optimal performance is necessary to improve
the prediction accuracy of the model.

3.2. Improved XGBoost based on GS

The grid search (GS) method introduced in this
section is an intelligent algorithm for structural pa-
rameter optimization (WANG et al., 2020). The steps
for combining it with XGBoost mainly include: travers-
ing all possible values of specified parameters to form
a parameter grid. Then, all parameter combinations in
the grid search are put into the model successively for
prediction, and the one with the smallest error among
all parameter combinations is taken as the best param-
eter. Finally, a new GS-XGBoost model is established
with the best parameters, thus realizing the parame-
ter optimization of XGBoost (DAS et al., 2014). The
proposed algorithm of GS-XGBoost is illustrated in
Fig. 3.
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Fig. 3. Flow block diagram of GS-XGBoost algorithm.
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Table 4. Structural parameter and range for GS-XGBoost.

Parameter Value and range Meaning of structural parameters
Learning _rate (0.2, 0.3) with step of 0.01 Learning rate
Max _depth (3, 10) with step of 1 Maximum depth of the tree
Subsample (0.6, 0.9) with step of 0.01 | Percentage of randomly selected samples
Colsample bytree | (0.6, 0.9) with step of 0.01 Feature random sampling ratio
alpha (0, 0.01) Ly canonical term parameters
lamba (0, 1) Lo canonical term parameters

According to the above description, GS is an ex-
haustive method that involves exploring all possible
combinations of structural parameters and then using
these parameter sets for model prediction. Based on
the characteristics of GS, the iteration time for opti-
mizing XGBoost increases significantly with the num-
ber and range of parameters. Therefore, in this case,
after going through the initial manual search, the pa-
rameters to be optimized and their respective ranges
are identified. The structural parameters involved and
their ranges are listed in Table 4.

3.8. Improved XGBoost based on PSO

Particle swarm optimization (PSO) is a population
intelligence-based algorithm that optimizes objective
function by simulating the collective behavior of birds
(ZHANG et al., 2016; MADVARI et al., 2022). In prin-
ciple, it is assumed that n particle populations in
D-dimensional space are generated, the position of
each particle is solved as X; = (z},22,...,27), and the

velocity value of the i-th particle is V; = (v}, v2, ...,vP),

i Vi
the extreme values of individual and population are
P, = (p},p?,....,pP) and P, = (pgl],pg,...,pf), respec-
tively. Then, according to the given fitness function,
the fitness of each particle is calculated and the opti-
mal values of individual and population are continu-
ously updated. Finally, the remaining particles update
their positions and velocities according to the current
extreme values. The position and velocity of a particle
are updated by the following equations:

Vit = wVig+ e (Pl - XE) + cora(Pry - XFy), (1)

Xig ' = Xig+Vig™, (2)
where w is the inertia factor; i = 1,2,3,...,n, and n is
the number of particles; d =1,2,3,..., D, and D is the

dimension of the particle swarm; k is the number of

current iterations; V;4 and X4 stand, respectively, for
the velocity and position of the particle id; P;q and Pyq
are the optimal position experienced by particle id and
the entire particle swarm; c¢; and cs represent learning
factors; and r; and r, are random numbers distributed
in the interval [0, 1]. The basic parameters of PSO are
listed in Table 5.

Compared with the GS method, PSO can improve
search efficiency through the collaborative and follow-
ing behavior of the population, thereby reducing the
time and space complexity of parameter search. And
thus, for PSO, the influence of the number and range
of parameters on optimization time is relatively small,
mainly depending on the optimization objectives and
constraints set. In this case, in order to construct the
PSO-XGBoost regression model with high accuracy
and strong generalization capability, the types and
ranges of structural parameters are expanded and pre-
sented as in Table 6.

The proposed regression modeling process of PSO-
XGBoost consists of three steps (see Fig. 4):

Step 1: preprocess the sound quality data and divide
it into training and testing sets, followed by
determining the model parameters and their
search ranges as shown in Table 6.

Step 2: take the training error of XGBoost model
as fitness, initialize the parameters of PSO
shown in Table 5, and obtain the optimal fit-
ness parameters in the solution space. Finally,
the convergence condition is whether the ma-
ximum number of iterations or accuracy re-
quirements is reached, and the model’s best
parameters are output when the condition is
satisfied; otherwise the algorithm continues to
perform the above optimization search steps.
establish a new PSO-XGBoost model based
on the optimal parameters, train the model,
and output its prediction results.

Step 3:

Table 5. Pre-selected parameters of PSO.

Parameter Value | Meaning of structural parameters
w 0.5 Inertia factor
c1 0.5 Learning factor
c2 0.5 Learning factor
swarmsize 20 Number of populations
Max Stallterations 50 Maximum number of iterations
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Table 6. Structural parameter and range for PSO-XGBoost.

Parameter Value range Meaning of structural parameters
n_estimators (50, 100) Number of trees
Learning _rate (0.001, 0.5) Learning rate
Max_depth (1, 5) Maximum depth of the tree
Subsample (0.1, 1) Percentage of randomly selected samples
Colsample bytree (0, 0.8) Feature random sampling ratio
alpha (1, 10) L1 canonical term parameters
lamba (0, 10) Lo canonical term parameters
gamma (0, 15) Minimum drop value of loss function required for node splitting
Max _delta_step (0, 10) Maximum step size for each tree weight change
Min_child weight (0, 10) Sum of sample weights of minimum leaf nodes
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Fig. 4. Flow block diagram of PSO-XGBoost algorithm.

4. Acoustic comfort evaluation modeling
and prediction

4.1. Optimum structural parameters

The purpose of this section is to develop a new
model for electric bus acoustic comfort with high ac-
curacy based on the above established sound quality
database, where objective psycho-acoustic parameters
and acoustic comfort are the input and output depen-
dent variables of the model, respectively, correspond-
ing to x1 to xg9 in Tables 2 and 3. The database is
divided into two data sets by noise samples: the first
to 56th sample data for training and the 57th to 64th
sample data for testing. The algorithms of standard

XGBoost, GS-XGBoost, and PSO-XGBoost were per-
formed, respectively, on the MATLAB platform, with
their corresponding model parameters and imported
data were set. After running the codes, the optimal
structural parameters of each regression model were
obtained. Finally, the results are listed in Table 7.

4.2. Evaluation indicators of model accuracy

In order to evaluate and compare the algorithm
performance of the above three regression models, av-
erage relative error (ARE), root mean square error
(RMSE) and correlation coefficient (R?) are taken as
the accuracy indexes to measure the models, and their
calculation formulas are expressed further, where yj
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Table 7. Optimized structural parameters for two regression models.

Regression model | Structural parameter variable | Optimal structural parameters
Learning rate 0.285
Max_depth 3
GS-XCGBoost Subsample 0.9
Colsample_ bytree 0.8
alpha 0
lamba
n_ estimators 71
Learning_rate 0.499
Max_depth 2
Subsample 0.739
PSO-XGBoost Colsample bytree 0.691
lamba 7.259
alpha 1.644
gamma 0.181
Max_ delta_step 5.689
Min_child weight 3.024

and z; represent the test and predicted values, respec-
tively.

The smaller the values of ARE and RMSE, describ-
ing the degree of deviation between predicted and test
values, the higher the model prediction accuracy, and
they are defined by the equations:

L
N k=1

Yk — 2k
Yk

x 100 %, (3)

€EARE

€RMSE

R? is a parameter measuring the closeness of two data
groups, calculated by Eq. (5), and its higher value in-
dicates the higher model’s fitting accuracy:
e B(X-BX)(Y - BY))
XY = )
VD(X)\/D(Y)

where F represents the variable’s mathematical expecta-
tion; D is the symbol for variance; E(X-EX)(Y-EY))

(5)

is the covariance between the random variables X
and Y.

4.8. Acoustic comfort prediction results
and comparison

Based on the testing set, the evaluation indexes
of regression models trained by standard XGBoost,
GS-XGBoost, and PSO-XGBoost were calculated. The
predicted values and accuracy results are obtained and
listed in Table 8.

Table 8 visually indicates that the prediction ac-
curacy of standard XGBoost, GS-XGBoost, and PSO-
XGBoost models all meet the application requirements
of maximum relative error (MRE) and ARE less than
10 % and 5 %, respectively. For the standard XGBoost
model, MRE and ARE are 8.53 % and 4.67 %, respec-
tively. For the GS-XGBoost model, MRE is 8.83 %,
0.3 % higher than the standard XGBoost, and ARE
is 3.64 %, 1.03 % lower than the standard XGBoost.
For the PSO-XGBoost model, MRE and ARE are
6.33 % and 2.30 %, respectively, which are 2.2 % and
2.37 % lower than the standard XGBoost. In addition,

Table 8. Prediction results of three regression models.

Standard XGBoost (ZHANG et al., 2023a) GS-XGBoost PSO-XGBoost
Sample Target Predicted Relative error Predicted Relative error Predicted Relative error

value value [%] value [%] value [%]
57 5.33 5.20 2.44 5.24 1.69 5.35 0.38
58 3.58 3.59 0.28 3.53 1.40 3.66 2.23
59 2.58 2.8 8.53 2.54 1.55 2.66 3.10
60 5.32 5.68 6.77 5.79 8.83 5.22 1.88
61 4.33 4.02 7.16 4.04 6.70 4.35 0.46
62 4.84 4.56 5.79 4.79 1.03 4.94 2.06
63 1.58 1.55 1.90 1.67 5.70 1.48 6.33
64 3.13 3.27 4.47 3.06 2.23 3.07 1.92
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according to Eq. (4), the RMSEs of PSO-XGBoost and
GS-XGBoost models correspond to 0.0843 and 0.2039,
which are 0.1365 and 0.0169 smaller than 0.2208 of
the standard XGBoost model, respectively. It can be
concluded that the prediction accuracy of the three
established models can be ranked from high to low
as follows: PSO-XGBoost > GS-XGBoost > standard
XGBoost.

In terms of model’s fitting accuracy, three corre-
lation coefficients of standard XGBoost, GS-XGBoost
and PSO-XGBoost are calculated by Eq. (5) as 0.9848,
0.9881, and 0.998. Figures 5—7 show the fitting results
of the above three models, in which solid dot is the
sample data corresponding to test and predicted val-
ues, and orange solid and blue dotted lines represent
the best fitting position and the error range of 10 %,
respectively. It can be seen that the predicted data
point distribution of PSO-XGBoost model is closest to
the best fitting line, followed by GS-XGBoost model,
and the last is the standard XGBoost model, indi-
cating that the three models perform consistently in
terms of fitting accuracy with respect to prediction ac-
curacy.
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Fig. 5. Fitting result of standard XGBoost model.
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Fig. 6. Fitting result of GS-XGBoost model.
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Fig. 7. Fitting result of PSO-XGBoost model.

To sum up, for the acoustic comfort modeling of
electric bus, the prediction and fitting accuracy of GS-
XGBoost model and PSO-XGBoost model are higher
than that of standard XGBoost model, proving the
improved XGBoost algorithms have obvious applica-
tion effectiveness and superiority. Therefore, the estab-
lished PSO-XGBoost model is finally adopted as the
acoustic comfort evaluation model for this case, which
provides a new technical support for research on elec-
tric bus interior sound quality.

5. Conclusions and future work

The electric bus is widely used and its interior
sound quality research is an emerging field. Establish-
ing sound quality prediction model aims to overcome
the shortcomings of subjective evaluation tests with
tedious processes and susceptible results. Based on the
subjective and objective evaluation database, for im-
proving model’s accuracy and robustness, two intel-
ligent algorithms, GS and PSO, were introduced to
improve the XGBoost algorithm by optimizing model
parameters. This led to establishing the acoustic com-
fort evaluation model for electric bus based on GS-
XGBoost and PSO-XGBoost. Finally, ARE, RMSE,
and R? of the predicted results demonstrates that
PSO-XGBoost model has the best prediction and fit-
ting accuracy, followed by GS-XGBoost model, prov-
ing the effectiveness and applicability of the improved
XGBoost algorithms.

Future research will primarily focus on two as-
pects: one is to collect noise signals in unsteady condi-
tions, and further evaluate the generalization abilities
of the improved XGBoost algorithms in characteriz-
ing dynamic sound quality; second will consider more
observation points for improving sound quality data
scale, and combine the proposed algorithms with semi-
supervised learning to explore online modeling meth-
ods for electric bus interior sound quality.
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